JPH02114665A - Radiation resistant semiconductor device - Google Patents

Radiation resistant semiconductor device

Info

Publication number
JPH02114665A
JPH02114665A JP26925688A JP26925688A JPH02114665A JP H02114665 A JPH02114665 A JP H02114665A JP 26925688 A JP26925688 A JP 26925688A JP 26925688 A JP26925688 A JP 26925688A JP H02114665 A JPH02114665 A JP H02114665A
Authority
JP
Japan
Prior art keywords
boron
semiconductor device
atomic weight
radiation
physical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26925688A
Other languages
Japanese (ja)
Inventor
Noboru Kusama
草間 昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP26925688A priority Critical patent/JPH02114665A/en
Publication of JPH02114665A publication Critical patent/JPH02114665A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve a semiconductor device of this design in resistance to radiation by a method wherein stable isotopes, boron 10 and boron 11 in physical atomic weight respectively, are separated from each other, and the mixed boron of boron 11 and boron 10 is used as a P-type impurity, where the compositional ratio of boron 11 is made larger than 90%. CONSTITUTION:When a semiconductor device is applied to an NPN bipolar transistor, a P-type base region (base diffusion layer) is formed through ion implantation of the impurity of boron as a raw material which contains 10% or less of boron 10B with a physical atomic weight of 10 and most of the implanted boron is boron 11B whose physical atomic weight is 11. Therefore, even if neutrons, which are induced when primary cosmic rays hit a space deployed equipment, hit boron contained in the P-type region, they do not cause a serious permanent change to the semiconductor device, so that the semiconductor device can be improved in resistance to radiation.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、宇宙空間で使用されるIC、パワートランジ
スタ等の半導体装置に関し、特に、放射線に対する耐力
を向上した半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to semiconductor devices such as ICs and power transistors used in outer space, and particularly to semiconductor devices with improved resistance to radiation.

従来の技術 従来、宇宙用半導体装置としては、薄いゲート酸化膜を
使用した事を特徴とするFET 、あるいはパッケージ
に放射線シールド効果をもたせたバイポーラリニアIC
等が知られていた。
Conventional technology Conventionally, semiconductor devices for space use include FETs, which are characterized by the use of a thin gate oxide film, or bipolar linear ICs, whose packages have a radiation shielding effect.
etc. were known.

宇宙空間においては、陽子、アルファ粒子が主成分であ
る一次宇宙線が存在する。この宇宙線の中にはX線γ線
としての光子も存在する。従来の耐放射線半導体装置に
おいてはγ線による電離作用を問題視し、その電離の発
生確率を低下させるために、ゲート酸化膜の厚さを薄く
する等の対策が採られてきた。
In outer space, there are primary cosmic rays whose main components are protons and alpha particles. Photons as X-rays and gamma-rays also exist in these cosmic rays. In conventional radiation-resistant semiconductor devices, the ionization effect caused by gamma rays has been considered a problem, and measures such as reducing the thickness of the gate oxide film have been taken to reduce the probability of ionization occurring.

発明が解決しようとする課題 しかしながら、−次宇宙線が宇宙機器を構成する物質に
あたり、結果として生ずる中性子に対し、特別の防御は
とられていなかった6というのも、中性子のライフタイ
ムは10分程度であり、広い宇宙空間を飛行している内
に中性子は陽子とβ線と、灰中性徴子とに分離してしま
い、−次宇宙線には中性子が存在していないからであっ
た。
Problems to be Solved by the Invention However, cosmic rays hit the materials constituting space equipment, and no special protection was taken against the resulting neutrons.6 This is because the lifetime of a neutron is 10 minutes. This was because neutrons were separated into protons, beta rays, and gray neutral particles while flying through wide space, and there were no neutrons in negative cosmic rays.

上述した従来の耐放射線半導体装置は、宇宙空間に存在
する放射線の内γ線に対しては耐力を有していたが、重
粒子放射線に対しては、ソフトエアー又は恒久的変化を
生じやすいという欠点を有していた。特に、シリコンウ
ェフアース上にP壁領域を構成する材料としては、物理
的原子量10のボロン(10a)が約2’)y6、物理
的原子量11のボロン(1la)が約80%の存在率か
らなる通常のボロンが使用されていた。
The conventional radiation-resistant semiconductor devices mentioned above have resistance to gamma rays, part of the radiation present in outer space, but are susceptible to soft air or permanent changes when exposed to heavy particle radiation. It had drawbacks. In particular, as materials constituting the P wall region on the silicon wafer earth, boron (10a) with a physical atomic weight of 10 is about 2')y6, and boron (1la) with a physical atomic weight of 11 has an abundance of about 80%. Ordinary boron was used.

本発明は従来の上記実情に鑑みてなされたものであり、
従って本発明の目的は、宇宙機器を構成する物質で生じ
る二次宇宙線としての中性子に対する防御として、安定
同位体の中で物理的原子量11のボロン(lla)の比
率を向上させたボロンをP壁領域の不純物原料とするこ
とによって、従来の技術に内在する上記欠点を解消する
ことを可能とした新規な耐放射線半導体装置を提供する
ことにある。
The present invention has been made in view of the above-mentioned conventional situation,
Therefore, the purpose of the present invention is to use boron (P), which has an increased proportion of boron (lla) with a physical atomic weight of 11 among stable isotopes, as a protection against neutrons as secondary cosmic rays generated in materials constituting space equipment. It is an object of the present invention to provide a novel radiation-resistant semiconductor device which makes it possible to eliminate the above-mentioned drawbacks inherent in the conventional technology by using the impurity material in the wall region.

課題を解決するための手段 上記目的を達成する為に、本発明に係る耐放射線半導体
装置は、P型の不純物材料として、安定同位体である物
理的原子量10のボロン(If)a)と物理的原子量1
1のボロン(IIs)とを分離し、物理的原子量11の
ボロン(lla)の比率を90%以上とじたボロンをP
壁領域の不純物原料として構成されている。
Means for Solving the Problems In order to achieve the above object, the radiation-resistant semiconductor device according to the present invention uses boron (If) a) having a physical atomic weight of 10, which is a stable isotope, as a P-type impurity material, and a physical target atomic weight 1
Boron (IIs) with a physical atomic weight of 11 is separated from boron (IIs) with a ratio of 90% or more of boron (lla) with a physical atomic weight of 11.
It is configured as an impurity raw material in the wall region.

実施例 次に本発明をその好ましい各実施例について図面を参照
して具体的に説明する。
EXAMPLES Next, preferred embodiments of the present invention will be specifically explained with reference to the drawings.

第1図は本発明による第1の実施例を示す断面図である
FIG. 1 is a sectional view showing a first embodiment of the present invention.

第1図を参照するに、本節1の実施例は、本発明をNP
N型バイポーラトランジスタに適用した場合のものであ
る。本例では、P型のベース領域(ベース拡散層4)は
不純物として物理的原子量10のボロン(Ion)の比
率を10%以下としたボロンを原材料とし、イオン注入
により製造されている。
Referring to FIG. 1, the embodiment of Section 1 describes the present invention as
This example is applied to an N-type bipolar transistor. In this example, the P-type base region (base diffusion layer 4) is manufactured by ion implantation using boron as a raw material in which the proportion of boron (Ion) having a physical atomic weight of 10 is 10% or less as an impurity.

第2図は本発明による第2の実施例を示す断面図である
FIG. 2 is a sectional view showing a second embodiment of the present invention.

第2図において、本節2の実施例は本発明をNチャネル
型FETに適用した場合のものである。本例では、P型
ウェル領域15は物理的原子量IOのボロン(10e)
の含有率を10%以下としt:ボロンを不純物原とし、
拡散により製造されている。
In FIG. 2, the embodiment in Section 2 is an example in which the present invention is applied to an N-channel FET. In this example, the P-type well region 15 is made of boron (10e) with a physical atomic weight of IO.
The content of t is 10% or less, and t: boron is an impurity source,
Manufactured by diffusion.

天然のボロン原料は約20%がlOn 、約80%がL
Lである。そしてその原子量は10.016対11.0
13であり、ウランの235対238に比較して重量比
率が約8倍大きく、ウランの場合に比較して遠心分離に
よる分離が容易である。たとえば、ボロンの1ヒ合物で
ある三ツ・ノ1ヒホウ素BF3は、フッ素の物理的原子
量は19のみしか自然界に存在しないために1分子量と
しては07かb8のみとなる。従って、その分子の質量
の比は1.015倍である。質量の異なる気体成分(原
子量10のボロンとの分子であるBF、と原子量11の
ボロンどの分子であるBF3)から成る混合物を高速回
転の回転円筒内に置くと遠心力により半径方向に圧子勾
配が生じ、この勾配が気体の分子量によって異なるため
に、場所によって分圧比が異なり中心部分には原子量1
0のボロンとの分子であるBF3が、外周部には原子量
11のボしフンとの分子であるBF3が多くなる。
Natural boron raw materials are about 20% LOn and about 80% L
It is L. And its atomic mass is 10.016 vs. 11.0
13, the weight ratio is about 8 times greater than uranium's ratio of 235 to 238, and separation by centrifugation is easier than in the case of uranium. For example, 3-no-1 boron BF3, which is a compound of boron, has a molecular weight of only 07 or b8 because the physical atomic weight of fluorine is only 19 in nature. Therefore, the ratio of the masses of the molecules is 1.015 times. When a mixture of gas components with different masses (BF, which is a molecule of boron with an atomic weight of 10, and BF3, which is a molecule of boron with an atomic weight of 11) is placed in a rotating cylinder that rotates at high speed, centrifugal force creates an indenter gradient in the radial direction. Since this gradient differs depending on the molecular weight of the gas, the partial pressure ratio differs depending on the location, and the central part has an atomic weight of 1.
BF3, which is a molecule with boron having an atomic weight of 0, increases in the outer periphery, and BF3, which has a molecule with boron having an atomic weight of 11, increases in the outer periphery.

また、三フッ化ホウ素BF、のガスを多孔質膜を通過さ
せ、気体分子が細孔中で互いに衝突しない程度に細孔径
を小さくする事によって、軽い分子をいち早く通過させ
る事によって、分離する事も可能である。
In addition, by passing the gas of boron trifluoride BF through a porous membrane and reducing the pore diameter to the extent that the gas molecules do not collide with each other in the pores, light molecules can be passed through quickly and separated. is also possible.

発明の詳細 な説明したように、本発明による半導体装置においては
、P壁領域の不純物には原子量10のボロン(10a)
はほとんど存在せず、原子量11のボロン(lla)が
ほとんどであるので、宇宙機器に一次宇宙線が当たり発
生した中性子かP型領域中に存在するボロンに当たって
も、重大な恒久変1ヒを与える事がない。
As described in detail, in the semiconductor device according to the present invention, boron (10a) having an atomic weight of 10 is used as an impurity in the P wall region.
There are almost no ions, and most of them are boron (lla) with an atomic weight of 11, so even if space equipment is hit by neutrons generated by primary cosmic rays or boron existing in the P-type region, it will cause serious permanent damage. There's nothing wrong.

逆に言って、20%の11〕Bが存在する自然のボロン
をP型不純物として使用した場合には、宇宙機器の物質
に一次宇宙線があたって発生した中性子と下記の式に示
す反応を生じ、α線が発生する。
Conversely, if natural boron containing 20% 11]B is used as a P-type impurity, the reaction shown in the following equation with neutrons generated when primary cosmic rays hit the material of space equipment will occur. and alpha rays are generated.

”B  + ’n−* ’Li  + 4Heα線は大
型粒子で飛程が短く、そのα線が半導体装置内部で発生
するためにその影響が大きい。また、上式でもわかるよ
うに■族のボロンが、■族のリチウムに変化するなめに
、半導体装置そのものに恒久的変化を与える。本発明で
は原子量10のボロン(10e)がほとんど存在しない
ために、この様な問題がない。また、宇宙機器内での中
性子の発生源としては可動機構部品に使用されるベリリ
ウムカッパの中に含まれるベリリウムは2 Mev程度
の比較的低いエネルギーのγ線で、光核反応を起こし、
中性子を発生するのみならず、α線に当たっても中性子
を放出する。
``B + 'n-*' Li + 4Heα rays are large particles with a short range, and the influence is large because the α rays are generated inside the semiconductor device.Also, as can be seen from the above equation, group II boron However, as it changes to group II lithium, it permanently changes the semiconductor device itself.In the present invention, there is almost no boron (10e) with an atomic weight of 10, so there is no such problem. The beryllium contained in beryllium kappa, which is used for moving mechanism parts, causes a photonuclear reaction with relatively low energy gamma rays of about 2 Mev.
Not only does it generate neutrons, but it also emits neutrons when it is hit by alpha rays.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明をバイポーラトランジスタに適用した場
合の本発明による第1の実施例を示す断面図、第2図は
本発明をMOS FETに適用した場合の本発明による
第2の実施例を示す断面図である。 1・・・エミッタ電極、2・・・エミッタ拡散層、3・
・・ベース![=、4・・・ベース拡散層、5・・・エ
ピタキシャル領域、6・・・うめ込み領域、7・・・酸
化膜領域、10・・・ゲート電極、11・・・ソースを
極、12・・・ソース拡散層、13・・・ドレイン電極
、14・・・トレイン拡散層、15・・・P−Well
領域、16・・・サブストレート、17・・・酸化膜、
18・・・絶縁膜 1・・・ エミッタを梯 3 、マース党楠 5・・ エビクキシゴル1斌 7・ 、 酸イしn51#域 2・・・エミッタ拡散層 4・・・代−ス槙款1 6、・、うめ込みiin 第1 関
FIG. 1 is a sectional view showing a first embodiment of the present invention when the present invention is applied to a bipolar transistor, and FIG. 2 is a cross-sectional view showing a second embodiment of the present invention when the present invention is applied to a MOS FET. FIG. 1... Emitter electrode, 2... Emitter diffusion layer, 3...
··base! [=, 4... Base diffusion layer, 5... Epitaxial region, 6... Buried region, 7... Oxide film region, 10... Gate electrode, 11... Source as pole, 12 ... Source diffusion layer, 13... Drain electrode, 14... Train diffusion layer, 15... P-Well
region, 16...substrate, 17...oxide film,
18...Insulating film 1...Emitter layer 3, Mars party Kusunoki 5...Ebikuxigol 1/7, Acid n51# area 2...Emitter diffusion layer 4...Temporary layer 1 6., Umekomi iin 1st Seki

Claims (1)

【特許請求の範囲】[Claims] シリコンウェフアース上にP型及びN型領域をもうけて
構成する半導体装置において、安定同位体である物理的
原子量10のボロン(10_B)と、物理的原子量11
のボロン(11_B)とを分離し、物理的原子量10の
ボロン(10_B)の含有比率を10%以下としたボロ
ンを前記P型領域の不純物原料とした事を特徴とする耐
放射線半導体装置。
In a semiconductor device configured by providing P-type and N-type regions on a silicon wafer, boron (10_B) with a physical atomic weight of 10, which is a stable isotope, and boron (10_B) with a physical atomic weight of 11 are used as stable isotopes.
A radiation-resistant semiconductor device characterized in that boron is separated from boron (11_B) having a physical atomic weight of 10 and the content ratio of boron (10_B) with a physical atomic weight of 10 is 10% or less as an impurity raw material for the P-type region.
JP26925688A 1988-10-25 1988-10-25 Radiation resistant semiconductor device Pending JPH02114665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26925688A JPH02114665A (en) 1988-10-25 1988-10-25 Radiation resistant semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26925688A JPH02114665A (en) 1988-10-25 1988-10-25 Radiation resistant semiconductor device

Publications (1)

Publication Number Publication Date
JPH02114665A true JPH02114665A (en) 1990-04-26

Family

ID=17469822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26925688A Pending JPH02114665A (en) 1988-10-25 1988-10-25 Radiation resistant semiconductor device

Country Status (1)

Country Link
JP (1) JPH02114665A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0612106A1 (en) * 1993-02-16 1994-08-24 Texas Instruments Incorporated Electronic device with reduced alpha particles soft error rate
WO2003044837A3 (en) * 2001-11-19 2003-10-16 Applied Materials Inc Ion imlantation method and apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188150A (en) * 1986-02-13 1987-08-17 Fuji Electric Co Ltd Ion implantation equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188150A (en) * 1986-02-13 1987-08-17 Fuji Electric Co Ltd Ion implantation equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0612106A1 (en) * 1993-02-16 1994-08-24 Texas Instruments Incorporated Electronic device with reduced alpha particles soft error rate
US5395783A (en) * 1993-02-16 1995-03-07 Texas Instruments Incorporated Electronic device and process achieving a reduction in alpha particle emissions from boron-based compounds essentially free of boron-10
US5523597A (en) * 1993-02-16 1996-06-04 Texas Instruments Incorporated Electronic device achieving a reduction in alpha particle emissions from boron-based compounds essentially free of boron-10
WO2003044837A3 (en) * 2001-11-19 2003-10-16 Applied Materials Inc Ion imlantation method and apparatus

Similar Documents

Publication Publication Date Title
Wick Range of nuclear forces in Yukawa's theory
Paulikas et al. Penetration of solar protons to synchronous altitude
Gerber et al. Precision measurement of positron polarization in Ga 68 decay based on the use of a new positron polarimeter
JPH02114665A (en) Radiation resistant semiconductor device
Pomansky Underground low background laboratories of the Baksan Neutrino Observatory
Berzins et al. The decay of 111Pd and 111mPd
Black et al. The low-lying excited states of 103Rh
McKenzie Development of the semiconductor radiation detector
Itoh et al. Excited states in 216Ra
Main et al. Rotational structure in 29Si
Van Patter et al. 62Ni levels and the decay of 62Cu
Starke et al. Radioactivity of 105Cd and 106In
Sawa Energy Levels in 70Ga
Rossi Further Evidence for the Radioactive Decay of Mesotrons
Ryde et al. Rotational bands on two-particle configurations with Kn= Kp= 12
Velasco et al. Anisotropy of cosmic ray fluxes measured with AMS-02 on the ISS
Sithole Coupling of single neutron configurations to col-lective core excitations in 162 Yb using 163 Yb
Jonson et al. The Decay of 20986Rn123 to Levels in 20985At124
Fajans et al. A Note on the Radiochemistry of Europium
Reiffel Low-Energy X-Rays from Interplanetary Space
Circella et al. Measurements of primary cosmic-ray hydrogen and helium by the WiZard collaboration
Draper et al. Energy levels in 145Sm from the decay of 145Eu
Gorchakov Distribution in space of the earth's outer radiation belt and the aurora zone
Gōnō Low-Lying States of Gd152
Bubna Development of Ultra Radiation-Hard Silicon Sensors for High-Luminosity Upgrade of LHC