JPH0211395B2 - - Google Patents

Info

Publication number
JPH0211395B2
JPH0211395B2 JP22841384A JP22841384A JPH0211395B2 JP H0211395 B2 JPH0211395 B2 JP H0211395B2 JP 22841384 A JP22841384 A JP 22841384A JP 22841384 A JP22841384 A JP 22841384A JP H0211395 B2 JPH0211395 B2 JP H0211395B2
Authority
JP
Japan
Prior art keywords
angle
contact
finger
hand
cylindrical part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22841384A
Other languages
Japanese (ja)
Other versions
JPS61109684A (en
Inventor
Yoshihide Nishida
Yoji Hirata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP22841384A priority Critical patent/JPS61109684A/en
Publication of JPS61109684A publication Critical patent/JPS61109684A/en
Publication of JPH0211395B2 publication Critical patent/JPH0211395B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は円柱部品把持装置の制御方法、特に
箱の中にばら積みされた円柱部品のように位置・
姿勢の定まつていない状態で置かれている円柱部
品を把持する円柱部品把持装置の制御方法に関す
るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a control method for a cylindrical component gripping device, and particularly to a control method for a cylindrical component gripping device, particularly for controlling the position and position of cylindrical components stacked in bulk in a box.
The present invention relates to a method of controlling a cylindrical component gripping device that grips a cylindrical component placed in an undetermined posture.

〔従来の技術〕 従来、たとえば箱の中にばら積みされた円柱部
品のように、位置と姿勢が定まつていない円柱部
品を把持する円柱部品把持装置として、テレビカ
メラと画像処理装置を用いて円柱部品の位置と姿
勢を認識し、工業用ロボツトにより把持するもの
があつた。
[Prior Art] Conventionally, a cylindrical part gripping device that grips cylindrical parts whose position and orientation are not fixed, such as cylindrical parts stacked in bulk in a box, has been used to grasp cylindrical parts using a television camera and an image processing device. There was a part that recognized the position and orientation of the part and was grasped by an industrial robot.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来の円柱部品把持装置は高価で
あり、また、円柱部品の表面状態により反射率が
変動するため、円柱部品の位置および姿勢の検出
精度が悪くなり、検出不能に陥いるなどの問題点
があつた。
Conventional cylindrical component gripping devices such as those described above are expensive, and the reflectance varies depending on the surface condition of the cylindrical component, resulting in poor detection accuracy of the position and orientation of the cylindrical component, resulting in failure to detect the component. There was a problem.

この発明は、かかる問題点を解決するためにな
されたもので、円柱部品を確実に把持することの
できる円柱部品把持装置の制御方法を得ることを
目的とする。
The present invention was made to solve this problem, and an object of the present invention is to provide a method for controlling a cylindrical component gripping device that can reliably grip a cylindrical component.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る円柱部品把持装置の制御方法
は、各々3分力検出器を有する一対の指および該
指を対向して動作させる駆動部を有するハンド
と、前記ハンドの位置と姿勢を変える位置決め装
置と、前記3分力検出器からの出力を処理して前
記ハンドと位置決め装置を制御する制御装置とを
備えた円柱部品把持装置の制御方法において、円
柱部品の軸とほぼ垂直な方向から、円柱部品の直
径よりも狭い指間隔で該いずれかの指を該円柱部
品に接触させる第1段階と、前記ハンドが接近し
てくる方向へ円柱部品の軸からのばした線と、前
記指が接触している点から円柱部品の軸に下した
線とのなす角度θ1を前記3分力検出器の出力する
接触反力ベクトルの方向により求め、指と円柱部
品との摩擦角より大きい予め定められた基準角度
θcと大小比較して前記指の接触部分の角度θ1が角
度θc以下かどうかを判定すると共に、前記ハンド
の位置および姿勢状態を前記3分力検出器の出力
する接触反力ベクトルの2方向成分に基づいて、
前記角度θ1が角度θcより大きい部分に前記指の外
側が接触している場合と角度θ1が角度θcより大き
い部分に前記指の内側が接触している場合とを判
定する第2段階と、前記第2段階の判定により、
前記角度θ1が角度θc以下の部分に前記指が接触し
ている場合および角度θ1が角度θcより大きい部分
に該指の外側が接触している場合には、角度θ1が
角度θcより大きい部分に指の内側が接触する状態
が得られるように前記ハンドを前記位置決め装置
で移動させる第3段階と、前記第1段階〜第3段
階によつて角度θ1が角度θcより大きい部分に前記
指の内側が接触した状態で得られる前記接触反力
ベクトルの方向から指が接触している円柱部品外
周位置と円柱部品の軸方向に対するハンドとの相
対姿勢を求める第4段階と、前記円柱部品に合わ
せて前記ハンドの位置と姿勢を修正して把持する
第5段階との動作を順次に行うようにしたことを
特徴とする。
A method for controlling a cylindrical component gripping device according to the present invention includes a hand having a pair of fingers each having a three-component force detector and a drive unit that moves the fingers in opposition, and a positioning device that changes the position and posture of the hand. and a control device that processes the output from the three-component force detector to control the hand and the positioning device. A first step of bringing one of the fingers into contact with the cylindrical part with a finger interval narrower than the diameter of the part, and the finger comes into contact with a line extending from the axis of the cylindrical part in the direction in which the hand approaches. The angle θ1 formed between the point where the cylindrical part and the axis of the cylindrical part are drawn is determined by the direction of the contact reaction force vector output from the three-component force detector, and the angle θ1 is determined by the angle θ1, which is larger than the friction angle between the finger and the cylindrical part. The magnitude is compared with the reference angle θc to determine whether the angle θ1 of the contact portion of the finger is less than or equal to the angle θc, and the position and posture of the hand are determined based on the contact reaction force vector output from the three-component force detector. Based on the two-way components,
a second step of determining whether the outer side of the finger is in contact with a portion where the angle θ1 is larger than the angle θc, and the case where the inner side of the finger is in contact with a portion where the angle θ1 is larger than the angle θc; Based on the second stage judgment,
If the finger is in contact with a portion where the angle θ1 is less than or equal to the angle θc, and if the outside of the finger is in contact with a portion where the angle θ1 is greater than the angle θc, the finger is in contact with a portion where the angle θ1 is greater than the angle θc. a third step in which the hand is moved by the positioning device so that the inside of the fingers are in contact with each other; and the first to third steps result in the positioning of the inside of the finger in a portion where the angle θ1 is larger than the angle θc. a fourth step of determining the relative posture of the hand to the axial direction of the cylindrical component and the outer periphery position of the cylindrical component in contact with the finger from the direction of the contact reaction force vector obtained when the finger is in contact with the cylindrical component; It is characterized in that the operation of the fifth step of correcting the position and posture of the hand and grasping the hand is performed sequentially.

〔作 用〕[Effect]

この発明においては、第1段階で、円柱部品の
軸とほぼ垂直な方向から該円柱部品の直径よりも
狭い間隔で、1対の指のいずれかを該円柱部品に
接触させ、次いで第2段階で、ハンドが接近して
くる方向へ円柱部品の軸からのばした線と前記指
が接触している点から円柱部品の軸に下した線と
のなす角度θ1を前記3分力検出器の出力する接触
反力ベクトルの方向より求め、指と円柱部品との
摩擦角によりやや大きい予め定められた基準角度
θcと大小比較して、角度θ1が角度θc以下の部分に
接触しているか、角度θ1が角度θcより大きい部分
に前記指の外側が接触しているか、角度θ1が角度
θcより大きい部分に前記指の内側が接触している
かの前記ハンドの位置及び姿勢状態を前記3分力
検出器の出力する接触反力ベクトルの2方向成分
に基づいて判定し、次いで第3段階で、角度θ1
角度θc以下の部分に前記指が接触している場合お
よび角度θ1が角度θcより大きい部分に該指の外側
が接触している場合には、角度θ1が角度θcより大
きい部分に指の内側が接触する状態が得られるよ
うに前記ハンドを前記位置決め装置で移動し、次
いで第4段階では前記第1段階〜第3段階によつ
て角度θ1が角度θcより大きい部分に前記指の内側
が接触した状態で得られる前記接触反力ベクトル
の方向から指が接触している前記円柱部品の位置
とハンドとの相対姿勢を求め、第5段階で前記円
柱部品に合わせて前記ハンドの位置と姿勢を修正
して把持する動作を順次に行なうようにしたもの
で、前記一対の指で円柱部品を確実に把持するこ
とができる。
In this invention, in the first step, one of the fingers of a pair is brought into contact with the cylindrical component from a direction substantially perpendicular to the axis of the cylindrical component at an interval narrower than the diameter of the cylindrical component, and then in the second step Then, the angle θ1 between the line extended from the axis of the cylindrical part in the direction in which the hand approaches and the line drawn from the point where the finger is in contact with the axis of the cylindrical part is determined by the three-component force detector. Determined from the direction of the contact reaction force vector to be output, and compared with a predetermined reference angle θc, which is slightly larger due to the friction angle between the finger and the cylindrical part, it is determined whether the angle θ1 is in contact with a portion less than the angle θc . The position and posture state of the hand, such as whether the outside of the finger is in contact with a portion where angle θ 1 is larger than angle θ c or the inside of the finger is in contact with a portion where angle θ 1 is larger than angle θ c. Judgment is made based on the two-directional components of the contact reaction force vector output from the three-component force detector, and then in the third step, if the finger is in contact with a portion where the angle θ 1 is less than or equal to the angle θ c and the angle When the outside of the finger is in contact with a portion where θ 1 is larger than the angle θ c , the hand is positioned so that the inside of the finger is in contact with a portion where the angle θ 1 is larger than the angle θ c. Then, in the fourth step, the direction of the contact reaction force vector obtained when the inside of the finger is in contact with the part where the angle θ 1 is larger than the angle θ c in the first to third steps. The position of the cylindrical part that the fingers are in contact with and the relative posture of the hand are determined from the cylindrical part, and in the fifth step, the position and posture of the hand are corrected according to the cylindrical part, and gripping operations are sequentially performed. With this, the cylindrical part can be reliably gripped with the pair of fingers.

〔実施例〕〔Example〕

第1図はこの発明の制御方法を適用する円柱部
品把持装置の概要図であり、1は把持される円柱
部品、2a,2bは円柱部品1を把持する爪部
分、3a,3bはそれぞれ爪部分2a,2bに作
用する3方向の力を検出する3分力検出器であ
り、一般的には、例えばX、Y、Z成分の方向に
加重センサあるいはロードセンサ等が設けられて
おり、これによつて各成分の力が検出される。4
a,4bは上記爪部分2a,2bと3分力検出器
3a,3bとで構成される一対の指、5は一対の
指4a,4bを対向させて駆動する指駆動部、6
は一対の指4a,4bと指駆動部5とで構成され
るハンド、7はハンド6の位置と姿勢を変えるロ
ボツトのアームの位置決め装置、8は制御装置で
ある。
FIG. 1 is a schematic diagram of a cylindrical component gripping device to which the control method of the present invention is applied, in which 1 is a cylindrical component to be gripped, 2a and 2b are claw portions that grip the cylindrical component 1, and 3a and 3b are claw portions, respectively. This is a three-component force detector that detects forces in three directions acting on 2a and 2b, and generally, for example, a weight sensor or a load sensor is provided in the X, Y, and Z component directions, and Thus, the force of each component is detected. 4
a, 4b are a pair of fingers composed of the claw portions 2a, 2b and three-component force detectors 3a, 3b; 5 is a finger drive unit that drives the pair of fingers 4a, 4b in opposition; 6;
Reference numeral 8 indicates a hand consisting of a pair of fingers 4a and 4b and a finger drive unit 5, 7 a robot arm positioning device for changing the position and attitude of the hand 6, and 8 a control device.

この制御装置8は上記3分力検出器3a,3b
の出力を増幅するアンプ91〜9n、このアンプ
1〜9nからのアナログ出力を順次選択するア
ナログマルチプレクサ10、このアナログマルチ
プレクサ10で選択された出力をデジタル量に変
換するA/D変換器11、このA/D変換器11
からのデジタル量を入力する入力回路12、この
入力回路12の出力および後述する制御方法のプ
ログラムあるいは前記3分力検出器3a,3bか
らのデータを記憶する補助記憶装置13の出力を
入力するCPU(中央処理部)14、このCPU14
からの指令を出力回路15を介して受けて該指令
に従い前記位置決め装置7の各軸のアクチエータ
を駆動する位置決め装置制御回路16、前記ハン
ド6の指駆動部5を前記CPU14からの指令に
従つて駆動するハンド制御回路17により構成さ
れている。
This control device 8 includes the three component force detectors 3a and 3b.
An analog multiplexer 10 that sequentially selects analog outputs from the amplifiers 9 1 to 9n, and an A/D converter 11 that converts the output selected by the analog multiplexer 10 into a digital quantity. , this A/D converter 11
an input circuit 12 that inputs digital quantities from the input circuit 12; a CPU that inputs the output of this input circuit 12 and the output of an auxiliary storage device 13 that stores a program for a control method described later or data from the three component force detectors 3a and 3b; (Central processing unit) 14, this CPU14
A positioning device control circuit 16 that receives commands from the CPU 14 via an output circuit 15 and drives the actuators of each axis of the positioning device 7 according to the commands, and a positioning device control circuit 16 that receives commands from the CPU 14 via an output circuit 15 and drives the actuators of each axis of the positioning device 7 according to the commands. It is composed of a driving hand control circuit 17.

以下、上記のように構成された円柱部品把持装
置を前提としたこの発明の制御方法を第2図乃至
第5図について説明する。説明の都合上、ハンド
6を基準として該ハンドが円柱部品1に接近する
方向をz方向とし、指4a,4bが開閉する方向
をx方向とし、x、z方向に垂直な方向をy方向
とする。
Hereinafter, a control method of the present invention based on the cylindrical component gripping device configured as described above will be explained with reference to FIGS. 2 to 5. For convenience of explanation, the direction in which the hand approaches the cylindrical component 1 with respect to the hand 6 is defined as the z direction, the direction in which the fingers 4a and 4b open and close is defined as the x direction, and the direction perpendicular to the x and z directions is defined as the y direction. do.

先ず、第2図に示すフローチヤートのステツプ
(22)〜(25)からなる第1段階の接触動作が行
なわれる。ステツプ(22)において、指4a,4
bの間を円柱部品1が通り抜けないように該指の
間隔を該円柱部品の直径より狭くする。ステツプ
(23)で位置決め装置7の最小移動距離分だけハ
ンド6をz方向へ移動し、前記いずれかの指を円
柱部品に接触させる。次いで、ステツプ(24)で
3分力検出器3a,3bの出力を読取る。ステツ
プ(25)で指4a,4bのそれぞれx、y、z方
向の力のいずれかが、あらかじめ補助記憶装置1
3に記憶されている値より小さい場合は、ステツ
プ(23)に戻つてステツプ(23)〜(25)を繰り
返し、大きい場合には次の第2段階へ進む。
First, a first-stage contact operation consisting of steps (22) to (25) in the flowchart shown in FIG. 2 is performed. At step (22), fingers 4a, 4
The interval between the fingers is made narrower than the diameter of the cylindrical part so that the cylindrical part 1 does not pass between the spaces b. In step (23), the hand 6 is moved in the z direction by the minimum movement distance of the positioning device 7, and one of the fingers is brought into contact with the cylindrical part. Next, in step (24), the outputs of the three component force detectors 3a and 3b are read. In step (25), any of the forces in the x, y, and z directions of the fingers 4a and 4b are stored in advance in the auxiliary storage device 1.
If the value is smaller than the value stored in step 3, return to step (23) and repeat steps (23) to (25); if larger, proceed to the next second step.

第2段階は円柱部品1に接触しているいずれか
の指4a,4bの円柱部品1の位置関係を判定す
る動作であり、ステツプ(26)、(27)からなつて
いる。ステツプ(26)は第3図に示すように円柱
部品1の軸を基準にハンド6の接近方向へとつた
z方向軸および指4a,4bの接触位置Pから円
柱部品1の軸への垂線のなす角度θ1と補助記憶装
置13に記憶されている所定の角度θcとの大小比
較を行なう。
The second stage is an operation for determining the positional relationship between the fingers 4a and 4b that are in contact with the cylindrical part 1, and consists of steps (26) and (27). As shown in FIG. 3, the step (26) is based on the axis of the cylindrical part 1 and the perpendicular line from the z-direction axis in the approach direction of the hand 6 and the contact position P of the fingers 4a, 4b to the axis of the cylindrical part 1. A comparison is made between the angle θ 1 and a predetermined angle θ c stored in the auxiliary storage device 13.

すなわち、ステツプ(26)においては、角度θ1
を前記3分力検出器の出力する接触反力ベクトル
の方向により求め、指と円柱部品との摩擦角より
大きい予め定められた前記基準角度θcと大小比較
して前記指の接触部分の角度θ1が角度θc以下かど
うかを判定する。
That is, in step (26), the angle θ1
is determined by the direction of the contact reaction force vector output from the three-component force detector, and compared with the predetermined reference angle θc, which is larger than the friction angle between the finger and the cylindrical part, to determine the angle θ1 of the contact portion of the finger. Determine whether or not is less than or equal to the angle θc.

第3図において、角度θ1が摩擦角θf(≦θc)より
大きい場合には、指4a,4bに接触位置での法
線方向の反力Nと摩擦力μ|N|の合力Fが作用
し、次式で与えられるx、y、zの3方向の力が
3分力検出器3で検出される。
In FIG. 3, when the angle θ 1 is larger than the friction angle θ f (≦θ c ), the resultant force F of the reaction force N in the normal direction and the frictional force μ |N | acts, and the three-component force detector 3 detects forces in the three directions of x, y, and z given by the following equations.

Fx=(|N→|sinθ1−μ|N→|cosθ1) cosθ2 Fy=(|N→|sinθ1−μ|N→|cosθ1) cosθ2 Fz=(|N→|cosθ1+μ|N→|sinθ1 (1) μは摩擦係数で、θf=tan-1μであるから、x、
y、zの3方向の力Fx、Fy、Fzからz軸まわり
の姿勢角θ2とx、z方向の接触点のθ1が次式で与
えられる。
F x = (|N→|sinθ 1 −μ|N→|cosθ 1 ) cosθ 2 F y = (|N→|sinθ 1 −μ|N→|cosθ 1 ) cosθ 2 F z = (|N→| cosθ 1 +μ|N→|sinθ 1 (1) μ is the friction coefficient and θ f = tan -1 μ, so x,
From the forces F x , F y , and F z in the three directions of y and z, the attitude angle θ 2 around the z-axis and θ 1 of the contact point in the x and z directions are given by the following equation.

一方、角度θ1が摩擦角θf以下の場合は指4a,
4bにx、y方向の力が作用せず、3方向の力
Fx、Fy、Fzは次式で与えられるため、円柱部品
1の位置と姿勢が得られない。
On the other hand, if the angle θ 1 is less than the friction angle θ f , the finger 4a,
No forces in the x and y directions act on 4b, and forces in three directions
Since F x , F y , and F z are given by the following equations, the position and orientation of the cylindrical part 1 cannot be obtained.

Fx=0 Fy=0 Fz=|N→|cosθ1 また、角度θ1>摩擦角θfであつたとしても該θ1
の値が該θfよりわずかに大きい程度ならば位置と
姿勢の検出誤差は大きい。従つて、位置と姿勢の
検出精度をそこなわない角度θ2をあらかじめ設定
しておき、角度θ1と角度θcの大小比較を行なう。
角度θ1が角度θcより大きい状態にあるならば、ス
テツプ(27)に進む。
F x =0 F y =0 F z = |N→|cosθ 1Also , even if the angle θ 1 >friction angle θ f , the θ 1
If the value of is slightly larger than the θ f , the position and orientation detection error is large. Therefore, the angle θ 2 that does not impair the detection accuracy of position and orientation is set in advance, and the magnitudes of the angle θ 1 and the angle θ c are compared.
If the angle θ 1 is larger than the angle θ c , proceed to step (27).

ステツプ(27)では、指4a,4bの内と外の
いずれの部分が円柱部品1に接触しているかを判
定する。すなわち、第2段階においては、更にス
テツプ(27)では、前記ハンドの位置及び姿勢状
態を前記3分力検出器の出力する接触反力ベクト
ルの2方向成分に基づいて、前記角度θ1が角度θc
より大きい部分に前記指の外側が接触している場
合と角度θ1が角度θcより大きい部分に前記指の内
側が接触している場合とを判定している。
In step (27), it is determined whether the inner or outer parts of the fingers 4a, 4b are in contact with the cylindrical part 1. That is, in the second step, further in step (27), the angle θ1 is changed to the angle θc based on the two-directional components of the contact reaction force vector output from the three-component force detector to determine the position and posture state of the hand.
It is determined whether the outside of the finger is in contact with a larger portion or the inside of the finger is in contact with a portion where the angle θ1 is larger than the angle θc.

これは、具体的には、第6図に示すように、前
記3分力検出器3は、一般に前記接触反力ベクト
ルのxy2方向とその力の大きさとを検出できるも
のであり、この3分力検出器3を備えた一方の指
4aが円柱部品1に接触点Pで接触した場合、そ
の指に対してどの方向から力を受けたかを検出で
きる。
Specifically, as shown in FIG. 6, the three-component force detector 3 is generally capable of detecting the xy2 direction of the contact reaction force vector and the magnitude of the force. When one finger 4a equipped with the force detector 3 contacts the cylindrical component 1 at the contact point P, it is possible to detect from which direction a force is applied to the finger.

例えば、第6図aの指4aが閉じる方向に力を
受けた場合は、その指の外側が接触した場合であ
り、また第6図bの指4aが開く方向に力を受け
た場合は、その指の内側が接触した場合であるこ
とが理解できる。
For example, if the finger 4a in FIG. 6a receives a force in the closing direction, this means that the outside of the finger is in contact with the finger, and if the finger 4a in FIG. 6b receives a force in the opening direction, It can be understood that this is the case when the inside of the finger touches.

これは、図に示すようにaとbとでは、その指
に作用する接触反力ベクトルのxy成分の方向が
逆向きになるので前記3分力検出器のxy成分の
方向(図示の接触反力ベクトルFx、Fy)をみれ
ば、そのaとbとの違い、すなわち、指4aの内
側が該部品に接触したのか、指4aの外側が接触
したのかを判別できる。
As shown in the figure, the directions of the xy components of the contact reaction force vector acting on fingers a and b are opposite, so the direction of the xy components of the three-component force detector (the contact reaction force vector shown in the figure) is By looking at the force vectors Fx, Fy), it is possible to determine the difference between a and b, that is, whether the inside of the finger 4a or the outside of the finger 4a has contacted the component.

もちろん、ここで、一対の指4aと指4bの接
触においては、両指は全く逆の異なる判別結果と
なるが、この一対の指4aと4bとの区別は、例
えば、図示しない別の制御系により行われる。
Of course, here, when the pair of fingers 4a and 4b come into contact, the two fingers will have completely opposite different discrimination results, but the distinction between the pair of fingers 4a and 4b is determined by, for example, another control system (not shown). This is done by

以上のようにして3分力検出器3により指の接
触点位置ならびにその指の内側か外側かの状態が
検出できる。なお、指4a,4bの外側が接触し
ていれば、第4図a,bに示すように力の作用状
態が同じであつても、ハンド6と円柱部品1の相
対位置が異なる場合がある。
As described above, the three-component force detector 3 can detect the contact point position of the finger and the state of the finger on the inside or outside. Note that if the outsides of the fingers 4a and 4b are in contact, the relative positions of the hand 6 and the cylindrical part 1 may differ even if the force is in the same state as shown in FIGS. 4a and 4b. .

また、接触したときの力の作用によつて円柱部
品1が動いてしまう場合は、ハンド6と円柱部品
1の正確な相対位置が得られない。
Furthermore, if the cylindrical component 1 moves due to the force exerted upon contact, an accurate relative position between the hand 6 and the cylindrical component 1 cannot be obtained.

従つて、第2段階のステツプ(26)で角度θ1
角度θc以下の接触状態とステツプ(27)で指4
a,4bの外側が接触している状態と判定された
場合は、それぞれ第3段階のステツプ(28)、
(29)へ進み、角度θ1が角度θcより大きいところ
へ指4a,4bの内側が接触するようにハンド6
の位置・姿勢を移動する。
Therefore, in step (26) of the second stage, the contact state is such that angle θ 1 is less than angle θ c , and in step (27), finger 4 is
If it is determined that the outsides of a and 4b are in contact, the third step (28),
Proceed to (29), and move the hand 6 so that the inside of fingers 4a and 4b touch where the angle θ 1 is larger than the angle θ c .
Move the position/posture of.

ステツプ(28)ではたとえば第5図aに示すよ
うに指4aが円柱部品1に接触していれば、ハン
ド6を上昇した後、xの正の方向にあらかじめ補
助記憶装置13に記憶されている所定量Δx1(>
2r sinθc)だけ移動させる。
In step (28), if the finger 4a is in contact with the cylindrical part 1 as shown in FIG. Predetermined amount Δx 1 (>
2r sinθ c ).

ステツプ(29)ではたとえば第5図bに示すよ
うに指4aが円柱部品1に接触していれば、ハン
ド6を上昇した後、xの正の方向へ予じめ補助記
憶装置13に記憶されている所定量Δx2だけ移動
させる。
In step (29), if the finger 4a is in contact with the cylindrical part 1 as shown in FIG. move by a predetermined amount Δx 2 .

次の第4段階は、前記第1段階〜第3段階によ
つて角度θ1が角度θcより大きい部分に前記指の内
側が接触した状態で得られる前記接触反力ベクト
ルの方向から指が接触している円柱部品外周位置
と円柱部品の軸方向に対するハンドとの相対姿勢
を求めている。
In the next fourth step, the finger makes contact from the direction of the contact reaction force vector obtained when the inside of the finger is in contact with a portion where the angle θ 1 is larger than the angle θc in the first to third steps. The relative posture of the hand with respect to the outer peripheral position of the cylindrical part and the axial direction of the cylindrical part is determined.

すなわち、角度θ1が角度θcより大きいところへ
指4a,4bの内側が円柱部品1に接触した状態
となつたところで、接触時に円柱部品1が動いて
いないか確認して、指4a,4bに作用する力の
状態から前記式(2)を用いて円柱部品1の位置と姿
勢を演算する動作であり、ステツプ(30)、(31)
からなつている。
That is, when the inside of the fingers 4a, 4b is in contact with the cylindrical part 1 at a point where the angle θ 1 is larger than the angle θ c , check whether the cylindrical part 1 is moving at the time of contact, and then remove the fingers 4a, 4b. This is an operation to calculate the position and orientation of the cylindrical part 1 using the above equation (2) from the state of the force acting on the cylindrical part 1, and steps (30) and (31)
It is made up of

ステツプ(30)ではステツプ(27)で指4a,
4bの内側が円柱部品1に接触したと判定された
後、少し時間を置いて再び3分力検出器3a,3
bの出力を取込んで、6つの出力のいずれか1つ
が所定の値以上になつているかどうかで、円柱部
品1がハンド6の接触によつて動いたかどうかを
判定する。いずれの出力も所定の値より小さく、
ハンド6が接触したことによつて、円柱部品1が
動いたと判定された場合にはステツプ(23)に戻
る。
At step (30), at step (27) finger 4a,
After it is determined that the inside of 4b has contacted the cylindrical part 1, the 3-component force detectors 3a, 3 are activated again after a while.
The output of b is taken in, and it is determined whether the cylindrical part 1 has moved due to contact with the hand 6, based on whether any one of the six outputs is greater than a predetermined value. Both outputs are less than the given value,
If it is determined that the cylindrical part 1 has moved due to contact with the hand 6, the process returns to step (23).

円柱部品1が動いていない場合はステツプ
(31)に進み、取込んだ力の情報から円柱部品1
の位置と姿勢をCPU14で演算する。
If the cylindrical part 1 is not moving, proceed to step (31) and change the cylindrical part 1 from the captured force information.
The position and orientation of are calculated by the CPU 14.

第5段階では第4段階で得られた円柱部品1の
位置と姿勢の演算結果に基づいて、一対の指4
a,4bの間隔を円柱部品1の直径より拡げ、ハ
ンド6の位置と姿勢を位置決め装置7で移動し
(ステツプ(32))、指4a,4bを閉じて(ステ
ツプ(33))、円柱部品1の把持を完了する。
In the fifth step, based on the calculation results of the position and orientation of the cylindrical part 1 obtained in the fourth step,
The distance between a and 4b is made larger than the diameter of the cylindrical part 1, the position and posture of the hand 6 is moved by the positioning device 7 (step (32)), the fingers 4a and 4b are closed (step (33)), and the cylindrical part Complete the grip of 1.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、3分力検出器
を備えた指を、円柱部品の位置と姿勢を精度よく
検出できるところへ接触させた後に該円柱部品の
位置と姿勢を検出する方法により、位置と姿勢の
定まつていない円柱部品を一対の指で確実に把持
することができるという効果が得られる。
As explained above, this invention detects the position and orientation of a cylindrical part by bringing a finger equipped with a three-component force detector into contact with a place where the position and orientation of the cylindrical part can be detected with high accuracy. This provides the effect that a cylindrical part whose posture is not fixed can be reliably gripped with a pair of fingers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明を適用する円柱部品把持装置
の概要図、第2図はフローチヤート図、第3図
a,b,cはハンドの指が円柱部品に接触したと
きに作用する力の状態の説明図、第4図a,bは
指の外側が接触したときのハンドと円柱部品の相
対位置に関する説明図、第5図a,bはハンドの
動作を示す説明図、第6図a,bは、3分力検出
器により指の接触接触状態の判定動作を示す説明
図である。 図において、1は円柱部品、3a,3bは3分
力検出器、4a,4bは指、6はハンド、7は位
置決め装置、8は制御装置である。なお、図中、
同一符号は同一又は相当部分を示す。
Fig. 1 is a schematic diagram of a cylindrical part gripping device to which this invention is applied, Fig. 2 is a flowchart, and Figs. 3 a, b, and c are states of the force that acts when the fingers of the hand contact the cylindrical part. FIGS. 4a and 4b are explanatory diagrams regarding the relative positions of the hand and the cylindrical part when the outsides of the fingers touch each other. FIGS. 5a and b are explanatory diagrams showing the operation of the hand, and FIGS. b is an explanatory diagram showing the operation of determining the contact state of a finger using a three-component force detector; In the figure, 1 is a cylindrical part, 3a and 3b are three-component force detectors, 4a and 4b are fingers, 6 is a hand, 7 is a positioning device, and 8 is a control device. In addition, in the figure,
The same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 1 各々3分力検出器を有する一対の指および該
指を対向して動作させる駆動部を有するハンド
と、前記ハンドの位置と姿勢を変える位置決め装
置と、前記3分力検出器からの出力を処理して前
記ハンドと位置決め装置を制御する制御装置とを
備えた円柱部品把持装置の制御方法において、 円柱部品の軸とほぼ垂直な方向から、円柱部品
の直径よりも狭い指間隔で該いずれかの指を該円
柱部品に接触させる第1段階と、 前記ハンドが接近してくる方向へ円柱部品の軸
からのばした線と、前記指が接触している点から
円柱部品の軸に下した線とのなす角度θ1を前記3
分力検出器の出力する接触反力ベクトルの方向に
より求め、指と円柱部品との摩擦角より大きい予
め定められた基準角度θcと大小比較して前記指の
接触部分の角度θ1が角度θc以下かどうかを判定す
ると共に、前記ハンドの位置および姿勢状態を前
記3分力検出器の出力する接触反力ベクトルの2
方向成分に基づいて、前記角度θ1が角度θcより大
きい部分に前記指の外側が接触している場合と、
角度θ1が角度θcより大きい部分に前記指の内側が
接触している場合とを判定する第2段階と、 前記第2段階の判定により、前記角度θ1が角度
θc以下の部分に前記指が接触している場合および
角度θ1が角度θcより大きい部分に該指の外側が接
触している場合には、角度θ1が角度θcより大きい
部分に指の内側が接触する状態が得られるように
前記ハンドを前記位置決め装置で移動させる第3
段階と、 前記第1段階〜第3段階によつて角度θ1が角度
θcより大きい部分に前記指の内側が接触した状態
で得られる前記接触反力ベクトルの方向から指が
接触している円柱部品外周位置と円柱部品の軸方
向に対するハンドとの相対姿勢を求める第4段階
と、 前記円柱部品に合わせて前記ハンドの位置と姿
勢を修正して把持する第5段階との動作を順次に
行うようにしたことを特徴とする円柱部品把持装
置の制御方法。
[Scope of Claims] 1. A hand having a pair of fingers each having a 3-component force detector and a drive unit that moves the fingers in opposition, a positioning device that changes the position and posture of the hand, and the 3-component force. A control method for a cylindrical component gripping device comprising a control device that processes output from a detector to control the hand and a positioning device, wherein the cylindrical component is narrower than the diameter of the cylindrical component from a direction substantially perpendicular to the axis of the cylindrical component. a first step of bringing one of the fingers into contact with the cylindrical part at finger intervals; a line extending from the axis of the cylindrical part in the direction in which the hand approaches; and a line extending from the axis of the cylindrical part in the direction in which the hand approaches, The angle θ1 made with the line drawn to the axis of the part is
Obtained from the direction of the contact reaction force vector output by the component force detector, and compared with a predetermined reference angle θc that is larger than the friction angle between the finger and the cylindrical part, the angle θ1 of the contact part of the finger is less than or equal to the angle θc. In addition to determining whether the position and posture of the hand are
Based on the directional component, the outside of the finger is in contact with a portion where the angle θ1 is larger than the angle θc;
a second step of determining whether the inner side of the finger is in contact with a portion where the angle θ1 is greater than the angle θc; and as a result of the determination in the second step, whether the finger is in contact with a portion where the angle θ1 is less than or equal to the angle θc; If the outside of the finger is in contact with the part where the angle θ1 is larger than the angle θc, the hand should be adjusted so that the inside of the finger is in contact with the part where the angle θ1 is larger than the angle θc. a third unit in which the positioning device moves the
and a cylindrical part that the finger is in contact with from the direction of the contact reaction force vector obtained when the inner side of the finger is in contact with a portion where the angle θ1 is larger than the angle θc in the first to third steps. A fourth step in which the relative posture of the hand with respect to the outer circumferential position and the axial direction of the cylindrical part is determined, and a fifth step in which the position and posture of the hand are corrected and gripped according to the cylindrical part are sequentially performed. A method for controlling a cylindrical part gripping device, characterized in that:
JP22841384A 1984-10-30 1984-10-30 Method of controlling columnar-part gripper Granted JPS61109684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22841384A JPS61109684A (en) 1984-10-30 1984-10-30 Method of controlling columnar-part gripper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22841384A JPS61109684A (en) 1984-10-30 1984-10-30 Method of controlling columnar-part gripper

Publications (2)

Publication Number Publication Date
JPS61109684A JPS61109684A (en) 1986-05-28
JPH0211395B2 true JPH0211395B2 (en) 1990-03-14

Family

ID=16876080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22841384A Granted JPS61109684A (en) 1984-10-30 1984-10-30 Method of controlling columnar-part gripper

Country Status (1)

Country Link
JP (1) JPS61109684A (en)

Also Published As

Publication number Publication date
JPS61109684A (en) 1986-05-28

Similar Documents

Publication Publication Date Title
US11090814B2 (en) Robot control method
JP5505138B2 (en) Robot apparatus and gripping method using robot apparatus
JP3876234B2 (en) Connector gripping device, connector inspection system and connector connection system equipped with the same
Liu et al. A base force/torque sensor approach to robot manipulator inertial parameter estimation
US10195744B2 (en) Control device, robot, and robot system
JP2007098501A (en) Robot system
JP2009066683A (en) Robot hand, control method, and program
US20210387336A1 (en) Method Of Setting Target Force Upper Limit And Robot System
JP7052917B2 (en) Robot hand, robot hand control method and program
CN111531533A (en) Zero point correction and gravity compensation method for six-dimensional force sensor
Kitagaki et al. Methods to detect contact state by force sensing in an edge mating task
JP6003312B2 (en) Robot system
JP5218540B2 (en) Assembly robot and its control method
JPH04240087A (en) Gripping method and device
US20150224647A1 (en) Method and system for assisting in robot control, having a function for detecting the intention of an operator
JP7458818B2 (en) Robot device, interface device, control device, end effector, control method, method for manufacturing articles using robot device, program, and recording medium
JPH0211395B2 (en)
JP4137601B2 (en) Robot hand control method, robot hand
JP2838582B2 (en) Robot hand grip control method
JPS60217089A (en) Body gripper
JP3187191B2 (en) Robot finger grip force detection device
JP3439935B2 (en) Work holding device
Al-Gaifi et al. Reactive grasping using high-resolution tactile sensors
Kitagaki et al. Contact state detection by force sensing for assembly tasks
Choi et al. Kinesthetic sensing of hole position by 3-finger gripper