JPH02113754A - Coding modulation demodulation circuit - Google Patents

Coding modulation demodulation circuit

Info

Publication number
JPH02113754A
JPH02113754A JP63266249A JP26624988A JPH02113754A JP H02113754 A JPH02113754 A JP H02113754A JP 63266249 A JP63266249 A JP 63266249A JP 26624988 A JP26624988 A JP 26624988A JP H02113754 A JPH02113754 A JP H02113754A
Authority
JP
Japan
Prior art keywords
circuit
signal
coding
modulation
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63266249A
Other languages
Japanese (ja)
Inventor
Yasuhisa Nakamura
康久 中村
Yoichi Saito
洋一 斉藤
Satoshi Aikawa
聡 相河
Hitoshi Takanashi
高梨 斉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63266249A priority Critical patent/JPH02113754A/en
Priority to US07/357,573 priority patent/US4993046A/en
Priority to CA000603849A priority patent/CA1297159C/en
Priority to DE68918010T priority patent/DE68918010T2/en
Priority to EP89401793A priority patent/EP0348305B1/en
Publication of JPH02113754A publication Critical patent/JPH02113754A/en
Pending legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

PURPOSE:To increase a coding gain by obtaining a redundant bit required for coding through increase in a transmission speed without increasing a modulation signal point. CONSTITUTION:The title circuit consists of a speed conversion circuit 1, a coding circuit 2, an arrangement circuit 3 to signal space, a modulation circuit 4, a demodulation circuit 5, a decoding circuit 6, a speed conversion circuit 7, clock speed conversion circuits 8, 9 and a clock recovery circuit 10. Then the increase in the required transmission speed due to the redundant bit added through the coding is compensated not by the increase in the multi-value number but by the transmission speed. Thus, a large coding gain is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は符号化変復調回路、特に多次元符号を用いた符
号化変復調回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an encoding modulation/demodulation circuit, and particularly to an encoding modulation/demodulation circuit using a multidimensional code.

(従来の技術) 従来、多次元符号化変調方式ではmビット(m]、2.
、、、)の人力は畳み込み符号回路によりnビットの(
n = 1.2.、、、)冗長ビットが付加され(ma
n)ビットに増加し、符号速度を変えずに2 manの
多値数の変調方式を用いていた(例えば、文献、山中、
海上:高速音声帯域モデムにおける多次元トレリスコー
デング装置化の検討、IT 87−23 、電子情報通
信学会情報理論研究会、pp97102)。この従来の
多次元符号化変調のブロック図を第2図に示す。この図
で、1は多次元符号化回路、2は信号空間への配置回路
、3は変調回路、4は復調回路、5は復号回路、6はク
ロックiTG生回路である。−例として、8次元トレリ
ス符号化用のたたみ込み符号化回路(状態数16、符号
化率3/4)の構成例を第3図に示す。
(Prior Art) Conventionally, in a multidimensional coded modulation system, m bits (m), 2.
, , ) can be converted into n bits (
n = 1.2. , , ) redundant bits are added (ma
n) bits, and a modulation method with a multilevel number of 2 man was used without changing the code speed (for example, in the literature, Yamanaka et al.
Maritime: Study of multidimensional trellis coding device in high-speed voice band modem, IT 87-23, Institute of Electronics, Information and Communication Engineers Information Theory Study Group, pp97102). A block diagram of this conventional multidimensional coded modulation is shown in FIG. In this figure, 1 is a multidimensional encoding circuit, 2 is a signal space placement circuit, 3 is a modulation circuit, 4 is a demodulation circuit, 5 is a decoding circuit, and 6 is a clock iTG generation circuit. - As an example, a configuration example of a convolutional encoding circuit (number of states: 16, encoding rate 3/4) for eight-dimensional trellis encoding is shown in FIG.

符号化変調方式は誤り訂正ど変復調技術を融合すること
により信号空間上のユークリッド距離が最大になるよう
にシンボル単位で符号化することにより、従来のハミン
ク距離が最大になるようにイ計号毎に符号化する誤り訂
正よりも大きな符号化利得を得ることができる。
The coded modulation method combines error correction and modulation/demodulation techniques to encode each symbol in a way that maximizes the Euclidean distance in the signal space. It is possible to obtain a larger coding gain than error correction that is coded as follows.

(発明が解決しようとする課題) しかし第4図の信号空間を示したm=3.n=1の例の
ように、16QAMから、符3化32QAMに多値数が
増加し、信号点間隔が約172になり所要C/Nの3d
B程度の劣化につながり、符号化利得がその分たり減少
していた。また、多値数の増加にともない高精度のハー
ドウェアが要求されモデムの設計が困難になるという欠
点もあった。
(Problem to be Solved by the Invention) However, if m=3, which shows the signal space in FIG. As in the example of n=1, the number of multilevels increases from 16QAM to coded 32QAM, and the signal point interval becomes approximately 172, resulting in a required C/N of 3d.
This led to deterioration on the order of B, and the coding gain decreased accordingly. Another disadvantage is that as the number of multi-values increases, highly accurate hardware is required, making modem design difficult.

本発明の目的は、上述の多値数の増加にともなう符号化
利得の減少、ハードウェア実現の困難を解決し、大きな
符号化利得を得ることにある。
An object of the present invention is to solve the above-mentioned problem of the decrease in coding gain due to an increase in the number of multilevel values and the difficulty in realizing hardware, and to obtain a large coding gain.

(課題を解決するための手段) 前記目的を達成するための本発明の特徴は、mbit/
s(mは自然数)の伝送8星をイ1し、符号語間の信号
空間上でのユークリッド距離が最大になるようにシンボ
ル単位で符号化する多次元符号化変復調回路において、
送信側は、mビット系列(m = 1.2、...)か
らなる符号速度i/Tの信号を人力とし、(m−n)ピ
ッl−系列(nは自然数)て符号速度1/T’ (T’
 −(m −n ) /m・T)の信号を出力とするス
ピード変換回路と、(m−n)ビット系列の該スピード
変換回路出力をクロック速度1/T゛で符号化されたm
ピッ]・系列の信号を出力する多次元符号化回路と、該
符号化回路出力を符号語間の信号空間上でのユークリッ
ド距離が最大となるように配置する回路を有し、受信側
は、mビット系列の信号を人力してクロック速度1/T
゛で動作し(m−n )ピッ[・系列の復号信号を出力
する復号回路と、該復号出力である符号速度T°の(m
−n)ビット信号系列を符号速度1/Tのmヒツト信号
系列へ変換するスピード変換回路を有する符号化変復調
回路にある。
(Means for Solving the Problem) The feature of the present invention for achieving the above object is that mbit/
In a multidimensional coding modulation/demodulation circuit that divides the 8 transmission stars of s (m is a natural number) and codes each symbol so that the Euclidean distance on the signal space between code words is maximized,
On the transmitting side, a signal with a code rate i/T consisting of an m-bit sequence (m = 1.2,...) is manually transmitted, and a code rate 1/T is generated by a (m-n) bit sequence (n is a natural number). T'(T'
−(m −n )/m・T) as an output signal;
The receiving side includes a multidimensional encoding circuit that outputs a series of signals, and a circuit that arranges the output of the encoding circuit so that the Euclidean distance between code words is maximized on the signal space. Clock speed 1/T by manually generating m-bit series signals
A decoding circuit that operates at a speed of
-n) An encoding modulation/demodulation circuit having a speed conversion circuit for converting a bit signal sequence into an m-hit signal sequence with a code rate of 1/T.

(作用) 本発明は、多次元符号化変復調器において、変調多値数
を増大しないことにより信号点間隔の減少を防ぎ、その
結果として大きな符号化利得を得ることを特徴とする。
(Function) The present invention is characterized in that, in a multidimensional coding modulator/demodulator, a reduction in signal point spacing is prevented by not increasing the number of modulation levels, and as a result, a large coding gain is obtained.

本符号化変調回路においては、符号化を行なうことによ
り付加される冗長ビットによる必要伝送速度の増加を、
多値数の増加ではなく伝送速度をトげることによって補
う。従来技術ではこれを多値数の増加によって補ってい
たため、信号点間隔が挟まり所要CZN値が増大してい
た。
In this coding modulation circuit, the increase in required transmission speed due to redundant bits added by coding is
This is compensated for by increasing the transmission speed rather than increasing the number of multilevel values. In the prior art, this was compensated for by increasing the number of multi-values, resulting in an increase in the signal point interval and an increase in the required CZN value.

本発明によると伝送速度の増加にともない雑音帯域幅こ
そ拡大するが、それによる所要C7N値の劣化はごくわ
ずかであり、多値数を上げることによる劣化量より小さ
く結果として大きな符号化利得を得るものである。
According to the present invention, as the transmission speed increases, the noise bandwidth expands, but the deterioration of the required C7N value due to this is very slight, and is smaller than the amount of deterioration caused by increasing the number of multilevels, resulting in a large coding gain. It is something.

(実施例) 第1図は本発明の実施例であフて1はスピード変換回路
、2は多次元畳み込み符号化回路、3は信号空間への配
置回路、4は変調回路、5は復調回路、6は復号回路、
7はスピード変換回路、8.9はスピード変換にともな
い必要になるクロック速度変換回路、10はクロック再
生回路である。例えばこの実施例において256QAM
の変調回路を用いてm=8、n=1としたとき、同図中
のTとT′はT’=7/8Tの関係がある。符号器に多
次元畳み込み符号器、復号器にビタビ復号器を用いると
きの例を考える。まず、送信側において8ビツト/Tを
7ビツト/T’ にスピード変換する(T’ −(m−
n)/m−T)。この信号系列は多次元畳み込み符号回
路により、冗長ビットが付加され8ピッl−/T’の出
力になる。この後256QAMの信号空間へユークリッ
ド距離と符号の関係を考慮したSet、−partit
ionとよばれる最適配置回路を通り、変調される。な
お、5et−partitionは文献’G、I]ng
erboeck、 ”(:hannej (:odin
g withMultjlevel/Phase Si
gnals” 、IEEE IT、 、jan1982
 pp 55−57」による。受信側ては2復調回路の
出力をヒタヒ復駕回路を通し、7ヒツト/T’の信号系
列を得る。これをスピード変換回路を通し8ヒツト/T
の復調化−号系列を得る。このようにこの実施例では8
ヒツト/Tの信号系列にトレリス符号化を施しても25
6QAM変調を用いて伝送できる。
(Embodiment) FIG. 1 shows an embodiment of the present invention, in which 1 is a speed conversion circuit, 2 is a multidimensional convolutional encoding circuit, 3 is a placement circuit in signal space, 4 is a modulation circuit, and 5 is a demodulation circuit. , 6 is a decoding circuit,
7 is a speed conversion circuit, 8.9 is a clock speed conversion circuit that becomes necessary due to speed conversion, and 10 is a clock regeneration circuit. For example, in this example 256QAM
When m=8 and n=1 using a modulation circuit, T and T' in the figure have a relationship of T'=7/8T. Consider an example in which a multidimensional convolutional encoder is used as an encoder and a Viterbi decoder is used as a decoder. First, on the transmitting side, the speed is converted from 8 bits/T to 7 bits/T'(T' - (m -
n)/m-T). Redundant bits are added to this signal sequence by a multidimensional convolutional code circuit, resulting in an output of 8 pins l-/T'. After this, Set, -partit, which takes into account the relationship between Euclidean distance and code, is added to the 256QAM signal space.
It passes through an optimal placement circuit called ion and is modulated. In addition, 5et-partition is the document 'G, I]ng
erboeck, ”(:hannej (:odin
g with Multjlevel/Phase Si
gnals”, IEEE IT, , jan1982
pp 55-57”. On the receiving side, the output of the two demodulation circuits is passed through a hitahi demodulation circuit to obtain a 7-hit/T' signal sequence. This is passed through a speed conversion circuit to 8 hits/T.
Obtain the demodulated code sequence. In this example, 8
Even if trellis coding is applied to the hit/T signal sequence, 25
It can be transmitted using 6QAM modulation.

(発明の効果) 以1説明したように本発明により変復調の多値数を増大
させずに符号化変復調か行なえるので、信号点間の距離
が減少しない。これはn=1のとき3dBの利得に相当
し、帯域拡大による劣化を考えても従来の符号化変調よ
り大きな符号化利得を得ることができる。またハードウ
ェアの実現も容易になる。
(Effects of the Invention) As explained above, according to the present invention, encoding modulation and demodulation can be performed without increasing the number of modulation and demodulation values, so the distance between signal points does not decrease. This corresponds to a gain of 3 dB when n=1, and even considering the deterioration due to band expansion, it is possible to obtain a larger coding gain than conventional coded modulation. It also becomes easier to implement in hardware.

例として、m=8.n=1の場合を考える。As an example, m=8. Consider the case where n=1.

この場合、信号空間配置は本発明によれば256QAM
であるが、従来の符号化変調によれば2”” QへM5
120AMとなる。この両者の符号化利得の比較(シミ
ュレーシElン計算結果)を表1に示す。
In this case, the signal spatial arrangement is 256QAM according to the invention.
However, according to conventional coded modulation, M5 to 2"" Q
It will be 120AM. Table 1 shows a comparison of the coding gains between the two (simulation calculation results).

表1 符号化利得の比較 8次元、16STATE、3/4畳み込み符号この表で
、従来の符号化5]2QAMではビタビ復号による利得
6.3dBに対し、信号点間隔の半減による劣化量3d
Bにより、結局トータルで3.3dB(BER= 10
−’点)の利得となる。
Table 1 Comparison of coding gain 8-dimensional, 16STATE, 3/4 convolutional code In this table, conventional coding 5]2QAM has a gain of 6.3dB due to Viterbi decoding, but the amount of deterioration due to halving the signal point spacing is 3d
B, the total is 3.3dB (BER=10
−' point).

−力木発明では伝送速度が877倍になるため雑音帯域
拡大による劣化量0.6dBは生じるものの、信号点間
隔の減少による劣化が無いため、結局5.7dBの利得
が得られる。この結果、従来の符号化5]2QAM方式
に比べ2.4dB大きな利得が得られる。
- In Rikiki's invention, the transmission speed is increased 877 times, so although there is a deterioration of 0.6 dB due to the expansion of the noise band, there is no deterioration due to the reduction in the signal point interval, so a gain of 5.7 dB can be obtained in the end. As a result, a 2.4 dB larger gain can be obtained compared to the conventional encoding 5]2QAM method.

なお、以上説明した符号化利得効果は、符号化に必要な
冗長ビット・を変調信号点を増加することではなく、伝
送速度を上昇することによって得られるものてあり、変
調信号点の大小(絶対値)や信号空間配置の其体的な形
状には依存しないことはいうまでもない。
The coding gain effect explained above is obtained by increasing the transmission speed, not by increasing the redundant bits and modulation signal points necessary for encoding, and it depends on the size (absolute) of the modulation signal points. Needless to say, it does not depend on the value) or the physical shape of the signal space arrangement.

したがって本技術は、−数的に2 ’−QAM(k:整
数)はもちろん、2 k−FSXや、いわゆるSS−Q
AM(Stepped Square−QAM :文献
T、Ryu、et al、、  Astepped 5
quare 256QAM for digital 
radi。
Therefore, this technology is applicable not only to numerically 2'-QAM (k: integer), but also to 2k-FSX and so-called SS-Q
AM (Stepped Square-QAM: Reference T, Ryu, et al., Astepped 5
square 256QAM for digital
radi.

system、  、ICC86,pp46.6.1−
46.6.5.June 1986.)等の信号空間配
置を有するすべての多次元符号化変調方式に拡張して使
用できることは、いうまでもない。
system, , ICC86, pp46.6.1-
46.6.5. June 1986. It goes without saying that the present invention can be extended and used for all multidimensional coding modulation systems having a signal space arrangement such as ).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による符号化変復調回路のブロック図、
第2図は従来の多次元符号化変調のブロック図、第3図
は多次元畳み込み符号器の構成例、第4図は変調信号空
間配置図で、従来の符号化変調を施したときに信号点の
間隔が減少することを示した図(非符号化+60AMと
符号化32QAM)である。 I;スピード変換回路、   2;符号化回路、3:信
号空間への配置回路、4;変調回路、5:復調回路、 
     6:復号回路、7:スピード変換回路、 8.9:クロック速度変換回路、 10;クロック再生回路。
FIG. 1 is a block diagram of an encoding modulation/demodulation circuit according to the present invention;
Fig. 2 is a block diagram of conventional multidimensional coded modulation, Fig. 3 is a configuration example of a multidimensional convolutional encoder, and Fig. 4 is a modulated signal space layout diagram. FIG. 6 is a diagram showing that the interval between points decreases (uncoded +60AM and encoded 32QAM). I: speed conversion circuit, 2: encoding circuit, 3: placement circuit in signal space, 4: modulation circuit, 5: demodulation circuit,
6: Decoding circuit, 7: Speed conversion circuit, 8.9: Clock speed conversion circuit, 10: Clock regeneration circuit.

Claims (1)

【特許請求の範囲】 mbit/s(mは自然数)の伝送容量を有し、符号語
間の信号空間上でのユークリッド距離が最大になるよう
にシンボル単位で符号化する多次元符号化変復調回路に
おいて、 送信側は、mビット系列(m=1、2、...)からな
る符号速度1/Tの信号を入力とし、(m−n)ビット
系列(nは自然数)で符号速度1/T′(T′=(m−
n)/m・T)の信号を出力とするスピード変換回路と
、(m−n)ビット系列の該スピード変換回路出力をク
ロック速度1/T′で符号化されたmビット系列の信号
を出力する多次元符号化回路と、該符号化回路出力を符
号語間の信号空間上でのユークリッド距離が最大となる
ように配置する回路を有し、 受信側は、mビット系列の信号を入力してクロック速度
1/T′で動作し(m−n)ビット系列の復号信号を出
力する復号回路と、該復号出力である符号速度T′の(
m−n)ビット信号系列を符号速度1/Tのmビット信
号系列へ変換するスピード変換回路を有することを特徴
とする符号化変復調回路。
[Claims] A multidimensional coding modulation/demodulation circuit that has a transmission capacity of mbit/s (m is a natural number) and performs coding in symbol units so that the Euclidean distance on the signal space between code words is maximized. In the above, the transmitting side inputs a signal with a code rate of 1/T consisting of an m-bit sequence (m = 1, 2, ...), and a signal with a code rate of 1/T with an (m-n) bit sequence (n is a natural number). T'(T'=(m-
A speed conversion circuit that outputs a signal of n)/m・T), and outputs an m-bit sequence signal encoded by the speed conversion circuit output of an (m-n) bit sequence at a clock speed of 1/T'. The receiving side receives an m-bit sequence signal as input. a decoding circuit that operates at a clock speed of 1/T' and outputs a decoded signal of an (m-n) bit sequence;
An encoding modulation/demodulation circuit comprising a speed conversion circuit that converts an m-n) bit signal sequence into an m-bit signal sequence with a code rate of 1/T.
JP63266249A 1988-06-24 1988-10-24 Coding modulation demodulation circuit Pending JPH02113754A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63266249A JPH02113754A (en) 1988-10-24 1988-10-24 Coding modulation demodulation circuit
US07/357,573 US4993046A (en) 1988-06-24 1989-05-26 Coded modulation communication system
CA000603849A CA1297159C (en) 1988-06-24 1989-06-23 Coded modulation communication system
DE68918010T DE68918010T2 (en) 1988-06-24 1989-06-23 Coded modulation transmission system.
EP89401793A EP0348305B1 (en) 1988-06-24 1989-06-23 Coded modulation communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63266249A JPH02113754A (en) 1988-10-24 1988-10-24 Coding modulation demodulation circuit

Publications (1)

Publication Number Publication Date
JPH02113754A true JPH02113754A (en) 1990-04-25

Family

ID=17428347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63266249A Pending JPH02113754A (en) 1988-06-24 1988-10-24 Coding modulation demodulation circuit

Country Status (1)

Country Link
JP (1) JPH02113754A (en)

Similar Documents

Publication Publication Date Title
US5548615A (en) Methods and apparatus for rotationally invariant multilevel coding
Imai et al. A new multilevel coding method using error-correcting codes
Lin et al. Error Control
JP4669026B2 (en) Digital signal transmission by orthogonal frequency division multiplexing
US4713817A (en) Multidimensional, convolutionally coded communication systems
US6578173B2 (en) Cyclic trellis-coded modulation
US5535228A (en) Device and method for achieving rotational invariance in a multi-level trellis coding system
US4805174A (en) Error correcting coder/decoder
JPH028503B2 (en)
US4993046A (en) Coded modulation communication system
US4700349A (en) Coded modulation system
JPH05335972A (en) Viterbi decoder
JPH0630056A (en) Apparatus and method for transmission and reception of data
JPH0642682B2 (en) Error correction multilevel encoding / decoding device
JPH02270442A (en) Qam communication system
US4755998A (en) Coded modulation system
US5570391A (en) Trellis coding method using a multilevel delay device
KR100195177B1 (en) Trellis coded modulation system
US5502736A (en) Viterbi decoder for decoding error-correcting encoded information symbol string
JP2654321B2 (en) Trellis coding method and apparatus
US5841818A (en) Decoding method for trellis codes employing a convolutional processor
US5115438A (en) Method for redundancy-saving, error-correcting coding in digital radio link systems having multi-level modulation
US5703911A (en) Decoding method for trellis codes with large free distances
US4831635A (en) Trellis codes with spectral nulls
WO2003017500A1 (en) Coded modulation scheme for a wireless communication system and methods thereof