JPH0211337A - Needle printer - Google Patents

Needle printer

Info

Publication number
JPH0211337A
JPH0211337A JP9766389A JP9766389A JPH0211337A JP H0211337 A JPH0211337 A JP H0211337A JP 9766389 A JP9766389 A JP 9766389A JP 9766389 A JP9766389 A JP 9766389A JP H0211337 A JPH0211337 A JP H0211337A
Authority
JP
Japan
Prior art keywords
needle
printing
conductor
magnetic field
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9766389A
Other languages
Japanese (ja)
Inventor
August Deis
アウグスト・ダイス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Philips Gloeilampenfabrieken NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Gloeilampenfabrieken NV filed Critical Philips Gloeilampenfabrieken NV
Publication of JPH0211337A publication Critical patent/JPH0211337A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/22Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of impact or pressure on a printing material or impression-transfer material
    • B41J2/23Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of impact or pressure on a printing material or impression-transfer material using print wires
    • B41J2/235Print head assemblies
    • B41J2/25Print wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/22Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of impact or pressure on a printing material or impression-transfer material
    • B41J2/23Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of impact or pressure on a printing material or impression-transfer material using print wires
    • B41J2/27Actuators for print wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J9/00Hammer-impression mechanisms
    • B41J9/26Means for operating hammers to effect impression
    • B41J9/38Electromagnetic means

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Impact Printers (AREA)

Abstract

PURPOSE: To simplify the constitution of an elastically deformable conductor element to clamp the same as an individual conductor and providing a printing needle at the max. displacing place of the conductor element. CONSTITUTION: A drawing is an oblique view of two permanent magnets 10, 11 forming a magnetic field 12 between poles and three bracket-shaped freely elastically deformable conductor elements are positioned within the magnetic field formed by these magnets and the respective one end parts of these conductor elements are clamped to the place shown by a numeral 14 and printing needles 15 are provided to the respective free ends of the conductor elements. When a current is supplied to the bracket-shaped conductor elements 13 through a transformer 16, these conductor elements are elastically deplaced immediately in the direction shown by an arrow 17 and, therefore, the printing needles 15 are moved in the direction of a printing drum (not shown in a drawing).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁界中にて導体に及ぼされる力を利用し、導体
に電流を流して印字針を差動させる二ドルプリンタに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a two-dollar printer that utilizes the force exerted on a conductor in a magnetic field to cause current to flow through the conductor to differentially move a printing needle.

〔従来の技術〕[Conventional technology]

斯種のニードルプリンタは、例えば西独国特許出願第2
406132号から既知である。この従来構成のものは
ダイナミックコイルを有するドツトプリンタ用の衝撃装
置を具えており、この装置はプリントハンマーに堅牢に
接続され、しかもその平面に対しほぼ直角に少なくとも
1つの磁界作用を受け、さらに弾性的に変形し得る懸垂
部によって固定ホルダーに接続されている。ダイナミッ
クコイルは薄い金属箔から切り出した少なくとも1個の
螺旋状そのもので構成し、又弾性懸垂部は小さな金属細
条で構成し、これらの金属細条を互いに、しかも前記螺
旋に対し同一平面を成すようにしている。金属箔から切
り出した螺旋は非磁性の側板に接続し、小さな金属細条
を介して固定軸のまわりを回転し得る衝撃装置を鉄床と
共働し得るプリントハンマーにしっかり接続している。
This type of needle printer is described, for example, in West German patent application no.
It is known from No. 406132. This conventional construction comprises an impact device for dot printers with a dynamic coil, which is rigidly connected to the print hammer and which is subjected to the action of at least one magnetic field approximately perpendicular to its plane, and which also has an elastic It is connected to the fixed holder by a suspension part that can be deformed into a shape. The dynamic coil consists of at least one helix cut out of a thin metal foil, and the elastic suspension consists of small metal strips, which are coplanar with each other and with respect to said helix. That's what I do. A helix cut from metal foil is connected to a non-magnetic side plate, and via a small metal strip a percussion device, which can rotate around a fixed axis, is firmly connected to a printing hammer, which can cooperate with an anvil.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来構成のものは構成が複雑であり、しかも多
数の可動部を有している。
The conventional structure described above is complex in structure and has a large number of movable parts.

本発明の目的は冒頭にて述べた種類のニードルプリンタ
の構成を簡単化することにある。
The object of the invention is to simplify the construction of a needle printer of the type mentioned at the outset.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記の目的を達成するために、少なくとも1個
の弾性的に変形し得る導体素子を設け、これらの各導体
素子を個別的な導体としてクランプさせると共に、各導
体素子の最大変位個所に印字針を設けたことを特徴とす
る。
In order to achieve the above object, the present invention provides at least one elastically deformable conductor element, each of these conductor elements is clamped as an individual conductor, and the point of maximum displacement of each conductor element is It is characterized by the provision of a printing needle.

このような構成とすれば可動部の質量が小さくなり、従
って印刷速度を速くすることができる。
With such a configuration, the mass of the movable part is reduced, and therefore the printing speed can be increased.

構成が簡単なために、妨害の影響も受は難くなる。Since the configuration is simple, it is less susceptible to interference.

個々の導体状の導体素子を弾性変形自在のものとするた
め、特定の復帰ばねが不要となる。印字針は、弾性変形
自在の導体素子に電流を流した際にその導体素子が最大
に変位する個所に設ける。印刷すべき紙は印字針の前方
に、この印字針が振動することができないような距離の
個所に配置する。
Since each conductive element is elastically deformable, a specific return spring is not required. The printing stylus is provided at a location where the elastically deformable conductor element is maximally displaced when a current is passed through the conductor element. The paper to be printed is placed in front of the printing stylus at such a distance that the printing stylus cannot vibrate.

本発明による構成によれば、従来のものに較べて動かす
べき素子の個数がごく僅かで済むため、雑音の発生も低
くなる。可動部が少ないために電力消費量も少なくて済
む。従って、従来構成のものに較べて全体的に寿命も長
くなる。弾性変形自在の導体素子の選定に当っては、電
流をこの弾性素子に流した際にこの素子を変位させ、従
って印刷するのに必要とされる力ができるだけ小さくて
済むような剛性のものを選定する。
According to the configuration according to the present invention, the number of elements to be moved is much smaller than that of the conventional configuration, so that noise generation is also reduced. Since there are few moving parts, power consumption is also low. Therefore, the overall lifespan is longer than that of the conventional structure. When selecting an elastically deformable conductor element, choose one that is rigid enough to displace the elastic element when a current is passed through it, thus requiring as little force as possible to print. Select.

本発明の好適例では、前記導体素子をワイヤブラケット
とし、このブラケットの一端をクランプさせ、該クラン
プ個所から延在するリムをそれぞれ異なる向きの磁界内
に位置させ、且つ印字針を前記2つのリムを相互接続す
るブラケット遊端に設けるようにする。このような構成
とすれば、比較的小さな力でも印字針を印刷すべき紙の
方へ比較的大きく変位させることができる。さらに本発
明の他の例では、前記導体素子を真直ぐのワイヤとし、
このワイヤの両端部をクランプさせ、該ワイヤをこのワ
イヤに対して直角の向きの磁界内に位置させ、前記ワイ
ヤの中央個所に印字針を設ける。このような個々のワイ
ヤはその両端部を簡単にクランプさせることができる。
In a preferred embodiment of the present invention, the conductive element is a wire bracket, one end of the bracket is clamped, the limbs extending from the clamping point are positioned in magnetic fields in different directions, and the printing needle is placed between the two limbs. be provided at the free ends of the interconnecting brackets. With such a configuration, even with a relatively small force, the printing needle can be relatively largely displaced toward the paper to be printed. Furthermore, in another example of the present invention, the conductor element is a straight wire,
The ends of the wire are clamped, the wire is placed in a magnetic field oriented perpendicular to the wire, and a printing needle is provided at the center of the wire. Such individual wires can easily be clamped at both ends.

さらに、最小の供給エネルギーで最大の変位を得るのに
必要なばね剛性も簡単に決めることができる。
Furthermore, the spring stiffness required to obtain maximum displacement with minimum supplied energy can be easily determined.

本発明の他の好適例では、前記導体素子を四角形のよう
なループ状のものとし、該ループを経て直角に磁界が流
れ、前記ループの1隅部が電流リード−イン及びリード
−アウト部として作用すると共に前記1隅部がクランプ
用にも仕え、前記ループの前記l隅部に対する反対側の
隅部に印字針を設ける。ループは電流を供給した場合に
、針を設けであるループの先端が変位するように構成す
る。
In another preferred embodiment of the invention, the conductor element is shaped like a square loop, through which the magnetic field flows at right angles, and one corner of the loop serves as a current lead-in and lead-out part. The one corner also serves as a clamp, and a printing needle is provided at the corner of the loop opposite to the l corner. The loop is configured such that the tip of the loop, which is provided with a needle, is displaced when a current is supplied.

さらに本発明の他の例では、印刷ドラムの幅全体にわた
り延在すると共に断面がほぼ三日月状をしている永久磁
石を設け、該永久磁石の磁界中に弾性的に変形可能な導
体素子を多数個設ける。これらの導体素子は磁石の幅全
体にわたり延在するフレーム内に位置させ、これらの導
体素子をこれらが磁力線に対して斜めに延在するように
配置するのが好適である。電流を流した際に磁界と一緒
に発生する力は導体素子の傾斜配置角度によっても多少
は調整される。
In still another embodiment of the invention, a permanent magnet is provided which extends over the entire width of the printing drum and has a generally crescent-shaped cross section, and includes a number of elastically deformable conductive elements in the magnetic field of the permanent magnet. Provide one. Preferably, these conductor elements are located in a frame extending over the entire width of the magnet and are arranged in such a way that they extend obliquely to the magnetic field lines. The force generated along with the magnetic field when current is passed can be adjusted to some extent by the tilt angle of the conductive elements.

〔実施例〕〔Example〕

以下実施例について図面を参照して説明するに、第1図
は極間に磁界12を形成する2個の永久磁石10及び1
1の斜視図である。これらの磁石により形成される磁界
中に3個のブラケット状の弾性的に変形自在の導体素子
13を位置させ、これらの各導体素子のそれぞれ一端部
を14にて示す個所にクランプさせると共に、各導体素
子の各遊端に印字針(プリントニードル) 15を設け
る。ブラケット状の導体素子13に変圧器16を介して
電流を供給すると、これらの導体素子が直ちに矢印17
にて示す方向に弾性変位し、従って印字針15がプリン
トドラム(図示せず)の方向に動く。
An embodiment will be described below with reference to the drawings. FIG. 1 shows two permanent magnets 10 and 1 forming a magnetic field 12 between their poles.
1 is a perspective view of FIG. Three bracket-shaped elastically deformable conductor elements 13 are positioned in the magnetic field formed by these magnets, and one end of each of these conductor elements is clamped at a location indicated by 14. A printing needle 15 is provided at each free end of the conductor element. When a current is supplied to the bracket-shaped conductor elements 13 via the transformer 16, these conductor elements immediately move as shown by the arrow 17.
The printing needle 15 is elastically displaced in the direction shown by , and therefore the printing needle 15 moves in the direction of the printing drum (not shown).

第2図の例は弾性変形自在の導体素子をそれぞれワイヤ
18状のものとした例であり、この場合にはワイヤの両
端部をそれぞれ14にて示す個所にクランプさせ、これ
らのワイヤが最高に変位する個所に印字針15を設ける
。磁界12の延在方向はワイヤ18に対し直角であり、
これらのワイヤを矢印17にて示す方向にそらせる。
The example shown in Figure 2 is an example in which the elastically deformable conductor elements are shaped like wires 18. In this case, both ends of the wires are clamped at the points indicated by 14, so that these wires are A printing needle 15 is provided at a location where the printing needle 15 is displaced. The direction of extension of the magnetic field 12 is perpendicular to the wire 18;
These wires are deflected in the direction shown by arrow 17.

第3図に示すさらに他の例では、弾性変形自在の導体素
子を四角形のループ状に曲げ、このループの1隅部に印
字針15を設ける。このように形成したルーフ19は、
印字針15とは反対側に電流り一ドーイン及びリード−
アウト部を有している。ループ19に電流を供給すると
直ぐにこのループは矢印20で示す方向に収縮し、従っ
て印字針15が矢印17の方向に変位する。
In yet another example shown in FIG. 3, an elastically deformable conductive element is bent into a rectangular loop, and a printing needle 15 is provided at one corner of this loop. The roof 19 formed in this way is
On the opposite side of the printing needle 15, there is a current feed-in and a lead.
It has an out part. As soon as a current is applied to the loop 19, this loop contracts in the direction shown by the arrow 20, and the printing needle 15 is therefore displaced in the direction of the arrow 17.

第4図は断面が三日月形をしており、その極間に磁界1
2を発生する永久磁石21の一部を斜視図にて示したも
のであり、この磁界中に位置させるフレーム22には弾
性的に変形自在の導体素子23(第5図)を斜めに配置
する。24はインクリボンを示し、又25は印刷すべき
紙を示す。導体23は弾性的に変形し得る個々のワイヤ
状のものとし、これらのワイヤをフレーム22にクラン
プさせて、これらのワイヤに回路26から電流を供給す
る。フレーム22は導体プレートとすることができ、こ
の場合には給電回路26への配線及び弾性ワイヤ23を
例えばエツチング処理によるような一度の処理工程にて
製造することができる。ワイヤ23に電流を矢印27に
て示す方向に流すと、この弾性ワイヤ23は図面の平面
に対し2て垂直の方向に変位する。この場合にはワイヤ
2:B:対して直角に延在する磁界12の成分12aが
作用する。従って、フレーム22に斜めに配置するワイ
ヤ23の傾斜角度28の程度によってワイヤ23に及ぶ
力の程度が決定される。
Figure 4 shows a crescent-shaped cross section, with a magnetic field of 1 between its poles.
This is a perspective view of a part of a permanent magnet 21 that generates magnetic field 2, and an elastically deformable conductor element 23 (FIG. 5) is disposed obliquely on a frame 22 that is positioned in this magnetic field. . 24 indicates an ink ribbon, and 25 indicates paper to be printed. The conductors 23 are in the form of individual elastically deformable wires which are clamped to the frame 22 and are supplied with current from the circuit 26. The frame 22 can be a conductive plate, in which case the wiring to the power supply circuit 26 and the elastic wire 23 can be manufactured in one processing step, for example by etching. When a current is passed through the wire 23 in the direction indicated by the arrow 27, the elastic wire 23 is displaced in a direction perpendicular to the plane of the drawing. In this case, a component 12a of the magnetic field 12, which extends at right angles to the wire 2:B, acts. Therefore, the degree of force exerted on the wire 23 is determined by the degree of the inclination angle 28 of the wire 23, which is disposed obliquely on the frame 22.

第6図は弾性的に変形し得る導体素子29を板ばね状の
ものとし、これらに個々のサブ磁石30を関連させる構
成とするプリンタの一部を斜視図にて示したものである
。31は軟鉄部を示す。導体29に矢印32にて示す方
向に電流を流すと、一端がクランプされている板ばね2
9が矢印17にて示す方向に変位するため、印字針15
も印刷すべき紙の方向に移動する。
FIG. 6 is a perspective view showing a part of a printer in which the elastically deformable conductive element 29 is shaped like a leaf spring, and each sub-magnet 30 is associated with the conductive element 29. 31 indicates a soft iron part. When a current is passed through the conductor 29 in the direction shown by the arrow 32, the leaf spring 2 whose one end is clamped
9 is displaced in the direction shown by the arrow 17, the printing needle 15
also moves in the direction of the paper to be printed.

第7図は導体素子の変位量Sを時間もの関数として示し
たものであり、33は印字針の最大スウィーブを示し、
34は電流過渡時間を示す。
FIG. 7 shows the displacement S of the conductor element as a function of time, and 33 indicates the maximum sweep of the printing needle;
34 indicates current transient time.

第8図は第4及び第5図に示した例による印刷ヘッドの
斜視図である。この印刷ヘッドはほぼ三日月状の永久磁
石21を具えており、これは印刷すべき祇25の幅全体
に延在し、この磁石の極間には第4図に示すような磁界
12が発生する。この磁界(第8図には図示せず)内に
前述した弾性変形自在の導体素子23を斜めに配置しで
あるフレーム22を位置させる。ワイヤ導体に対する衝
合部材35は、非磁性材料を三日月状永久磁石の凹所に
満たし、印刷すべき紙の方向の衝合部材の外側面を弯曲
させて形成する。36は紙を押さえるローラであり、3
7は給紙ローラであり、38は紙用のガイドである。
FIG. 8 is a perspective view of the print head according to the example shown in FIGS. 4 and 5. FIG. This printing head comprises a substantially crescent-shaped permanent magnet 21 which extends over the entire width of the ridge 25 to be printed, and between the poles of this magnet a magnetic field 12 as shown in FIG. 4 is generated. . In this magnetic field (not shown in FIG. 8), a frame 22 having the above-mentioned elastically deformable conductor elements 23 arranged obliquely is positioned. The abutment member 35 for the wire conductor is formed by filling the recess of the crescent-shaped permanent magnet with a non-magnetic material and curving the outer surface of the abutment member in the direction of the paper to be printed. 36 is a roller that presses the paper;
7 is a paper feed roller, and 38 is a paper guide.

印字針15を付けである導体23を斜めに配置したフレ
ーム22は固定キャリヤ39によって保持する。印字針
15と印刷すべき紙との間に延在させるインクリボン2
4はインクリボン移送ローラ40から送給する。磁石2
1を有すると共に印字針15を設けである導体23を有
している印刷ヘッドは印刷すべき紙の幅全体に延在させ
るため、本例では印刷ヘッドを長手方向には動かさない
A frame 22 on which a conductor 23 with a printing needle 15 is arranged obliquely is held by a fixed carrier 39. An ink ribbon 2 extending between the printing needle 15 and the paper to be printed
4 is fed from an ink ribbon transport roller 40. magnet 2
1 and a conductor 23 provided with a printing needle 15, the printing head is not moved longitudinally in this example, since it extends over the entire width of the paper to be printed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は2つの逆向きの磁界中にブラケット状の導体素
子を設けたニードルプリンタの一部の構成を示す斜視図
; 第2図はワイヤの両端部を、これらワイヤに対して直角
に向けた磁界中にてクランプさせる例を示す説明図; 第3図はループ状の導体素子をこのループの平面に対し
て直角に向けた磁界内に設ける例を示す説明図; 第4図はライン幅全体に延在する永久磁石を存している
例を示す斜視図; 第5図は第4図の構成に対する導体素子の配置構成を示
す平面図; 第6図は個々の磁石及び板ばね状の導体素子を有してい
る例を示す斜視図; 第7図は本発明による導体素子の時間の関数としての変
位特性を示す特性図; 第8図は第4及び第5図に示す例の実際の印刷ヘッドの
一部を示す斜視図である。 10、11・・・永久磁石   12・・・磁界13・
・・ブラケット状導体素子 14・・・クランプ個所   15・・・印字針16・
・・変圧器      17・・・印字針変位方向18
・・・ワイヤ状導体素子 19・・・ループ状導体素子
20・・・ループ収縮方向  21・・・永久磁石22
・・・フレーム     23・・・ワイヤ状導体素子
24・・・インクリボン   25・・・祇26・・・
給電回路     27・・・電流方向28・・・ワイ
ヤ傾斜角度  29・・・板ばね状導体素子30・・・
サブ磁石     31・・・軟鉄部32・・・電流方
向     35・・・衝合部材36・・・紙押えロー
ラ   37・・・給紙ローラ38・・・ガイド   
   39・・・固定キャリヤ40・・・インクリボン
移送ローラ
Figure 1 is a perspective view showing a partial configuration of a needle printer with bracket-like conductive elements in two oppositely oriented magnetic fields; Figure 2 shows the ends of the wires oriented at right angles to these wires; Figure 3 is an explanatory diagram showing an example of clamping a loop-shaped conductor element in a magnetic field oriented perpendicular to the plane of the loop; A perspective view showing an example with permanent magnets extending throughout; Figure 5 is a plan view showing the arrangement of conductor elements for the configuration of Figure 4; Figure 6 shows individual magnets and leaf spring-like A perspective view showing an example having a conductive element; FIG. 7 is a characteristic diagram showing the displacement characteristics as a function of time of the conductive element according to the invention; FIG. 8 is an actual diagram of the example shown in FIGS. 4 and 5. FIG. 3 is a perspective view showing a part of the print head of FIG. 10, 11... Permanent magnet 12... Magnetic field 13.
... Bracket-shaped conductor element 14 ... Clamp point 15 ... Printing needle 16 ...
...Transformer 17...Print needle displacement direction 18
...Wire-shaped conductor element 19...Loop-shaped conductor element 20...Loop contraction direction 21...Permanent magnet 22
...Frame 23...Wire-shaped conductor element 24...Ink ribbon 25...Gi 26...
Power supply circuit 27... Current direction 28... Wire inclination angle 29... Leaf spring-like conductor element 30...
Sub-magnet 31...Soft iron portion 32...Current direction 35...Abutting member 36...Paper presser roller 37...Paper feed roller 38...Guide
39... Fixed carrier 40... Ink ribbon transfer roller

Claims (1)

【特許請求の範囲】 1、磁界中にて導体に及ぼされる力を利用し、導体に電
流を流して印字針を作動させるニードルプリンタにおい
て、少なくとも1個の弾性的に変形し得る導体素子(1
3、18、23、29)を設け、これらの各導体素子を
個別的な導体としてクランプさせると共に、各導体素子
の最大変位個所に印字針(15)を設けたことを特徴と
するニードルプリンタ 2、前記導体素子をワイヤブラケット(13)とし、こ
のブラケットの一端をクランプさせ、該クランプ個所(
14)から延在するリム(13′、13″)をそれぞれ
異なる向きの磁界(12)内に位置させ、且つ印字針(
15)を前記2つのリム(13′、13″)を相互接続
するブラケット遊端に設けたことを特徴とする請求項1
に記載のニードルプリンタ。 3、前記導体素子を真直ぐのワイヤ(18)とし、この
ワイヤの両端部をクランプさせ、該ワイヤをこのワイヤ
に対して直角の向きの磁界 (12)内に位置させ、前記ワイヤの中央個所に印字針
(15)を設けたことを特徴とする請求項1に記載のニ
ードルプリンタ。 4、前記導体素子を四角形のようなループ状のもの(1
9)とし、該ループを経て直角に磁界が流れ、前記ルー
プの1隅部が電流リード−イン及びリード−アウト部と
して作用すると共に前記1隅部がクランプ用にも仕え、
前記ループの前記1隅部に対する反対側の隅部に印字針
(15)を設けたことを特徴とする請求項1に記載のリ
ードルプリンタ。 5、前記弾性的に変形し得る導体素子(13、18、1
9、23)をプリンタの幅全体にわたり固定的に分配さ
れるように配置したことを特徴とする請求項1に記載の
ニードルプリンタ。 6、印刷ドラムの幅全体にわたり延在すると共に断面が
ほぼ三日月状をしている永久磁石 (21)を設け、該永久磁石の磁界(12)中に弾性的
に変形可能な導体素子(23)を多数個設けたことを特
徴とする請求項1〜5のいずれか一項に記載のニードル
プリンタ。 7、前記永久磁石の幅全体に延在させるフレームに、前
記磁界に対して傾斜して延在する導体素子(23)を設
けたことを特徴とする請求項6に記載のニードルプリン
タ。 8、前記弾性的に変形可能な導体素子(13、18、1
9)を長手方向に変形自在の印刷ヘッド内に配置したこ
とを特徴とする請求項1〜4のいずれか一項に記載のニ
ードルプリンタ。 9、長手方向に変位し得る印刷ヘッド内に配置されるか
、プリンタの幅全体にわたり固定的に配置される永久磁
石(30)の間にそれぞれ板ばね状の弾性的に変形し得
る導体素子(29)を設けたことを特徴とする請求項1
に記載のニードルプリンタ。 10、前記三日月状の永久磁石(21)によって形成さ
れる凹所を印字針(15)用の鉄床として作用する非磁
性材料(35)で充填させたことを特徴とする請求項6
又は7のいずれか一項に記載のニードルプリンタ。
[Claims] 1. A needle printer that operates a printing needle by applying a current to the conductor by utilizing the force exerted on the conductor in a magnetic field, which includes at least one elastically deformable conductor element (1).
3, 18, 23, 29), each of these conductor elements is clamped as an individual conductor, and a printing needle (15) is provided at the maximum displacement point of each conductor element. , the conductor element is a wire bracket (13), one end of this bracket is clamped, and the clamping point (
The rims (13', 13'') extending from the printing needle (14) are positioned within the magnetic field (12) in different directions, and the printing needle (
15) is provided at the free end of the bracket that interconnects the two rims (13', 13'').
The needle printer described in . 3. The conductor element is a straight wire (18), both ends of the wire are clamped, the wire is placed in a magnetic field (12) oriented perpendicular to the wire, and the wire is placed in the center of the wire. 2. A needle printer according to claim 1, further comprising a printing needle (15). 4. The conductive element is shaped like a rectangular loop (1
9), a magnetic field flows through the loop at right angles, one corner of the loop acts as a current lead-in and lead-out, and the one corner also serves as a clamp;
The lead printer according to claim 1, characterized in that a printing needle (15) is provided at a corner of the loop opposite to the one corner. 5. The elastically deformable conductive element (13, 18, 1
A needle printer according to claim 1, characterized in that the needles (9, 23) are arranged in a fixed manner distributed over the entire width of the printer. 6. A permanent magnet (21) extending over the entire width of the printing drum and having an approximately crescent-shaped cross section is provided, and a conductive element (23) is elastically deformable in the magnetic field (12) of the permanent magnet. 6. The needle printer according to claim 1, wherein a large number of needle printers are provided. 7. The needle printer according to claim 6, wherein the frame extending over the entire width of the permanent magnet is provided with a conductive element (23) extending at an angle with respect to the magnetic field. 8. The elastically deformable conductive element (13, 18, 1
5. The needle printer according to claim 1, wherein the needle printer 9) is arranged in a longitudinally deformable printing head. 9. Elastically deformable conductor elements (in the form of leaf springs) between permanent magnets (30) arranged in the longitudinally displaceable printing head or fixedly arranged over the entire width of the printer ( Claim 1 characterized in that 29) is provided.
The needle printer described in . 10. Claim 6, characterized in that the recess formed by the crescent-shaped permanent magnet (21) is filled with a non-magnetic material (35) that acts as an anvil for the printing needle (15).
or 7. The needle printer according to any one of 7.
JP9766389A 1988-04-21 1989-04-19 Needle printer Pending JPH0211337A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3813420.9 1988-04-21
DE19883813420 DE3813420A1 (en) 1988-04-21 1988-04-21 NEEDLE PRINTER

Publications (1)

Publication Number Publication Date
JPH0211337A true JPH0211337A (en) 1990-01-16

Family

ID=6352556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9766389A Pending JPH0211337A (en) 1988-04-21 1989-04-19 Needle printer

Country Status (3)

Country Link
EP (1) EP0338638A1 (en)
JP (1) JPH0211337A (en)
DE (1) DE3813420A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8908600D0 (en) * 1989-04-15 1989-06-01 Woodward William H Linear actuator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3606834A (en) * 1969-06-24 1971-09-21 Mohawk Data Sciences Corp Printer having a permanent magnet hammer mechanism
DE2039973A1 (en) * 1970-08-12 1972-02-17 Ibm Deutschland Print hammer unit
GB1423518A (en) * 1972-03-02 1976-02-04 Emi Ltd Print heads
US4493568A (en) * 1983-02-22 1985-01-15 Estabrooks David A Dot matrix printhead employing moving coils
CH658627A5 (en) * 1984-03-07 1986-11-28 Battelle Memorial Institute NEEDLE MATRIX PRINTER.
CH661687A5 (en) * 1984-12-19 1987-08-14 Battelle Memorial Institute NEEDLE MATRIX PRINTER.

Also Published As

Publication number Publication date
EP0338638A1 (en) 1989-10-25
DE3813420A1 (en) 1989-11-02

Similar Documents

Publication Publication Date Title
CA1093381A (en) Stacked blade matrix printer heads
EP0348516B1 (en) Wire dot impact printer
JPH0211337A (en) Needle printer
JPS5833825B2 (en) dot print head
US4218150A (en) Matrix printer
EP0350258A2 (en) Dot matrix printing heads
US4936210A (en) Arrangement of printing pins in a serial type dot printer
US4600322A (en) Needle matrix printer
EP0006166A1 (en) Print mechanism for use in printing apparatus and printing apparatus including such mechanisms
US4768892A (en) Electromagnetic hammer actuator for impact printer
JPH09170934A (en) Electro-magnetic induction-type rotary encoder
JPS59140074A (en) Electrically transfer type printer head
US4590853A (en) Modular print head
JP2667396B2 (en) Magnetic heads array
US4859095A (en) Printing head with current passing through the print wire
JP3008628B2 (en) Dot line printer
KR0121784B1 (en) Wire dot print head
JPH0230291Y2 (en)
US4188133A (en) Dot matrix impact printer employing magnetic dot elements
JPS629033B2 (en)
US4430660A (en) Pen driving mechanism
US2927227A (en) Electrodynamic driving devices and recording apparatus incorporating such devices
EP2263883A2 (en) Line printer with staggered magnetics
JPS6024960A (en) Printing head of impact-dot printer
JPH0346918Y2 (en)