JPH02113264A - Three-color image recording method - Google Patents

Three-color image recording method

Info

Publication number
JPH02113264A
JPH02113264A JP63267349A JP26734988A JPH02113264A JP H02113264 A JPH02113264 A JP H02113264A JP 63267349 A JP63267349 A JP 63267349A JP 26734988 A JP26734988 A JP 26734988A JP H02113264 A JPH02113264 A JP H02113264A
Authority
JP
Japan
Prior art keywords
color
color light
electrostatic latent
light intensity
latent image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63267349A
Other languages
Japanese (ja)
Inventor
Toshio Sakai
捷夫 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP63267349A priority Critical patent/JPH02113264A/en
Publication of JPH02113264A publication Critical patent/JPH02113264A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/04Arrangements for exposing and producing an image
    • G03G2215/0495Plural charge levels of latent image produced, e.g. trilevel

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Color Electrophotography (AREA)

Abstract

PURPOSE:To record an excellent three-color image at low cost by forming and visualizing electrostatic latent images corresponding to alpha- and beta-color images in a light exposing process by using a composite photosensitive body, and then developing and visualizing an electrostatic latent image corresponding to a black image in a uniform exposing process. CONSTITUTION:The composite photosensitive body 10 is formed by laminating 1st and 2nd photoconductive layers 1A and 1B on a conductive substrate 1K in order; and the photosensitive layer 1A becomes a conductor when irradiated with A-color light and the photoconductor layer 1B becomes a conductor when irradiated with B-color light. The photoconductive layers 1A and 1B are charged in the opposite directions to nearly equal potentials, the A-color light is switched to high intensity, and the B-color light is switched to high intensity, low intensity, and 0. Exposure is combined by combining them to form the electrostatic latent images corresponding to an alpha color and a beta color, and those images are visualized with alpha-color and beta-color toner particles TR and TB. Then uniform exposure is carried out by using C-color light which is transmitted through the photoconductive layer 1B to make the photoconductive layer 1A conductive to form the electrostatic latent image corresponding to black picture elements, and the image is visualized with black toner TN. Consequently, the three-color image which has small dislocation is easily obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は3色画像記録方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a three-color image recording method.

[従来の技術] 光導電性の感光体に対し光による書込みを行い3色画像
を記録する方法は種々提案されている。
[Prior Art] Various methods have been proposed for writing on a photoconductive photoreceptor using light to record a three-color image.

[発明が解決しようとする課題] しかし、従来から提案されている方法は9例えば特開昭
60−15853号公報に開示された方法のように、ド
ラム状ないしベルト状の感光体が1回転する間に、帯電
、書込み、現像を続けて3回繰り返す方式のものであり
、書込み装置が3基必要になり実施装置のコストが高く
なったり、装置設計のレイアウトの自由度が少ないとい
う問題がある。
[Problems to be Solved by the Invention] However, conventionally proposed methods9, such as the method disclosed in Japanese Patent Application Laid-open No. 15853/1983, involve a drum-shaped or belt-shaped photoreceptor rotating once. During the process, charging, writing, and development are repeated three times in succession, which requires three writing devices, which increases the cost of the device and has problems such as less freedom in device design layout. .

また異なる色の画像の間で位置ずれが発生しやすく、ま
た書込み位置が異なるため画像のページメモリーが必要
となる問題もある。
There is also the problem that positional deviations tend to occur between images of different colors, and that a page memory for images is required because the writing positions are different.

本発明は、上述した事情に鑑みてなされたものであって
、その目的とするところは、低コストで実現でき、良好
な3色画像を記録できる新規な3色画像記録方法の提供
にある。
The present invention has been made in view of the above-mentioned circumstances, and its purpose is to provide a novel three-color image recording method that can be realized at low cost and that can record good three-color images.

[課題を解決するための手段] 以下、本発明を説明する。[Means to solve the problem] The present invention will be explained below.

本発明の3色画像記録方法は、黒、α色、β色の3色の
画像を記録する方法であり、請求項1゜2の方法とも複
合感光体を有する。
The three-color image recording method of the present invention is a method for recording three-color images of black, α color, and β color, and the method according to claim 1 and 2 also includes a composite photoreceptor.

この複合感光体は、導電性基体上に第1及び第2の光導
電層を有する。第2の光導電層は第1の光導電層の上に
設けられる。第1、第2の光導電眉間にキャリヤトラッ
プ用の中間層が設けられても良い、これら第1.第2の
光導電層及び必要に応じて設けられる中間層は、複合感
光体にA色光を照射するとき第1の光導電層が導電体化
し、B色光の照射に対しては第2の光導電層が導電体化
するようにfJ製される。
This composite photoreceptor has first and second photoconductive layers on a conductive substrate. A second photoconductive layer is provided over the first photoconductive layer. An intermediate layer for carrier trapping may be provided between the first and second photoconductive eyebrows. The second photoconductive layer and the intermediate layer provided as necessary are such that the first photoconductive layer becomes a conductor when the composite photoreceptor is irradiated with A color light, and the second photoconductive layer becomes a conductor when the composite photoreceptor is irradiated with B color light. fJ is made so that the conductive layer becomes a conductor.

請求項1.2の方法とも、充電工程、露光工程。The method of claim 1.2 also includes a charging step and an exposure step.

第1の現像工程、均一露光工程、第2の現像工程。A first development step, a uniform exposure step, and a second development step.

転写工程を有する。It has a transfer process.

これらの各工程は、上記順序に実行される。Each of these steps is performed in the above order.

先ず、請求項1の方法に付き説明すると、充電工程によ
り複合感光体の第1.第2の光導@暦を互いに逆向きに
、且つ略等電位に充電する。
First, to explain the method of claim 1, the first . The second light guides are charged in opposite directions and to approximately equal potentials.

光導電層を充電するとは、光導電層を介して電気2重層
を形成することを言う。この充電工程の結果、複合感光
体の表面電位は略0となる。
Charging the photoconductive layer refers to forming an electric double layer through the photoconductive layer. As a result of this charging step, the surface potential of the composite photoreceptor becomes approximately zero.

ついで露光工程は、複合感光体に対しA色光とB色光と
を用いて行われる。
Next, an exposure step is performed on the composite photoreceptor using A color light and B color light.

A色光はその光強度を強と0に切換え得るようにし、B
色光の方はその強度を強、弱、0に切り換え得るように
する。
The light intensity of A color light can be switched between strong and 0, and B
The intensity of the colored light can be switched between strong, weak, and zero.

そして、黒、白、α色、β色の各画素に対応して、上記
複合感光体を、 黒: (A色光強度;0,B色光強度)O)白: (A
色光強度;強、B色光強度;強)α色= (A色光強度
;0,B色光強度;強)β色= (A色光強度;強、B
色光強度;弱)の強度組合せで露光して、α色画像に対
応する静電潜像とβ色画像に対応する静電潜像を形成す
るのである。
Then, the composite photoreceptor is connected to each pixel of black, white, α color, and β color, so that black: (A color light intensity; 0, B color light intensity) O) White: (A
Color light intensity; strong, B color light intensity; strong) α color = (A color light intensity; 0, B color light intensity; strong) β color = (A color light intensity; strong, B
By exposing with a combination of color light intensities (weak), an electrostatic latent image corresponding to the α-color image and an electrostatic latent image corresponding to the β-color image are formed.

第1の現像工程では、上記α色画像に対応する静電潜像
とβ色画像に対応する静電潜像とを、互いに逆の所定極
性に帯電したα色トナーとβ色トナーとで可視化する。
In the first development step, the electrostatic latent image corresponding to the α-color image and the electrostatic latent image corresponding to the β-color image are visualized using α-color toner and β-color toner that are charged to predetermined polarities opposite to each other. do.

続く均一露光工程で、第2の光導電層を透過し第1の光
導電層を導電体化させるC色光により複合感光体を均一
露光して、上記β色画像に対応する静電潜像と同極性で
、且つより大きい電位の分布により黒画素対応静電潜像
を形成する。
In the subsequent uniform exposure step, the composite photoreceptor is uniformly exposed to C color light that passes through the second photoconductive layer and turns the first photoconductive layer into a conductor, thereby forming an electrostatic latent image corresponding to the β color image. An electrostatic latent image corresponding to a black pixel is formed with the same polarity and larger potential distribution.

そして、この黒画素対応静電潜像を、第2の現像工程に
より上記β色画像に対応する静電潜像の電位よりも大き
な現像バイアス電位下で黒色トナーで可視化する。
Then, this electrostatic latent image corresponding to the black pixel is visualized with black toner in a second developing step under a development bias potential higher than the potential of the electrostatic latent image corresponding to the β color image.

かくして複合感光体上に得られた3色トナー画像は、続
く転写工程で転写紙上に転写され、定着される。
The three-color toner image thus obtained on the composite photoreceptor is transferred and fixed onto transfer paper in the subsequent transfer step.

請求項2の方法では、上記請求項1の充電工程と同一の
充電工程を行ったのち以下の如く露光工程を行う。
In the method of claim 2, after performing the same charging step as the charging step of claim 1, an exposure step is performed as follows.

即ち、光強度を強と弱とOに切換え得るA色光と、光強
度を強と0とに切換え得るB色光とを用い、黒、白、α
色、β色の各画素に対応して、上記複合感光体を、 黒= (A色光強度;0.B色光強度、0)白:(A色
光強度;強、B色光強度1強)α色: (A色光強度;
弱:B色光強度 強)β色: (A色光強度;強、B色
光強度 O)の強度組合せで露光し、α色画像に対応す
る静電潜像とβ色画像に対応する静電潜像を形成する。
That is, using A color light whose light intensity can be switched between strong, weak, and O, and B color light whose light intensity can be switched between strong and 0, black, white, α
The above composite photoreceptor is arranged in correspondence to each pixel of color and β color.Black = (A color light intensity; 0.B color light intensity, 0) White: (A color light intensity; strong, B color light intensity 1 strong) α color : (A color light intensity;
Weak: B color light intensity Strong) β color: (A color light intensity; strong, B color light intensity O) Exposure is performed to create an electrostatic latent image corresponding to the α color image and an electrostatic latent image corresponding to the β color image. form.

続いて、第1の現像工程により上記各静電潜像を、互い
に逆の所定極性に帯電したα色トナーとβ色トナーとで
可視化する。
Subsequently, in a first developing step, each of the electrostatic latent images is visualized using α color toner and β color toner that are charged to predetermined polarities opposite to each other.

続く均一露光工程は、第2の光導電層のみを導電体化さ
せるD色光により複合感光体を均一露光して、上記α色
画像に対応する静電潜像と同極性で、且つより大きい電
位の分布により黒画素対応静電潜像を形成する。
In the subsequent uniform exposure step, the composite photoreceptor is uniformly exposed to D color light that turns only the second photoconductive layer into a conductor, and the composite photoconductor is uniformly exposed to D color light that makes only the second photoconductive layer conductive, thereby forming an electrostatic latent image of the same polarity and higher potential than the electrostatic latent image corresponding to the α color image. An electrostatic latent image corresponding to a black pixel is formed by the distribution of .

こめ黒画素対応静電潜像を、第2の現像工程で上記α色
画像に対応する静電潜像の電位よりも大きな現像バイア
ス電位下で黒色トナーで可視化する。
The electrostatic latent image corresponding to the black pixel is visualized with black toner in a second development step under a development bias potential greater than the potential of the electrostatic latent image corresponding to the α color image.

かくして複合感光体上に得られた3色トナー画像を、転
写工程により転写紙上に転写し、定着するのである。
The three-color toner image thus obtained on the composite photoreceptor is transferred onto transfer paper in a transfer process and fixed.

[作  用] 本発明の3色画像記録方法は、上記の如く複合感光体を
用い、露光工程によりα、β色画像に対応する静電潜像
を互いに逆極性の感光体表面電位分布として形成し、こ
れらを第1の現像工程により可視化する。その後、均一
露光工程により露光工程の際に書き込まれている黒色画
像に対応する静電潜像を電位分布として顕在化し、これ
を第2の現像工程で可視化するが、その際、先に可視化
された画像の上にさらに黒トナーの付着を防ぐために現
像バイアス電圧が操作される。
[Function] The three-color image recording method of the present invention uses a composite photoreceptor as described above, and forms electrostatic latent images corresponding to α and β color images as photoreceptor surface potential distributions with opposite polarities through an exposure step. Then, these are visualized by the first developing step. After that, the electrostatic latent image corresponding to the black image written during the exposure process is made visible as a potential distribution by the uniform exposure process, and this is visualized in the second development process. The development bias voltage is manipulated to prevent further black toner from depositing on top of the image.

第1図を参照すると、この図に於いて符号10は複合感
光体を示している。
Referring to FIG. 1, reference numeral 10 indicates a composite photoreceptor.

複合感光体10は、導電性基体IKの上に第1の光導電
層IA、1Bをこの順序に積層してなっており、この複
合感光体10にA色光を照射すると光導電層IAが導電
体化し、B色光を照射すると光導電層1Bが導電体化す
るように調製されている。
The composite photoconductor 10 has first photoconductive layers IA and 1B laminated in this order on a conductive substrate IK, and when the composite photoconductor 10 is irradiated with A color light, the photoconductive layer IA becomes conductive. The photoconductive layer 1B is prepared so that it becomes a conductor when the photoconductive layer 1B is made into a conductor and irradiated with B color light.

請求項1の方法は以下のように行われる。The method of claim 1 is carried out as follows.

先ず、この複合感光体10にB色光を均一照射しつつ1
例えば正極性の帯電を行うと、B色光の照射により光導
電層1Bが導電体化しているので、この帯電により第1
図(1)に示すように光導電層IAを介して電気2重層
が形成される。この状態を称して光導電層IAが充電さ
れたと言う0次いで、今度は暗中に於いて、先の帯電と
逆の負極性の帯電を行うと、第1図(II)の如く光導
電層IA、IBが互いに逆向きに充電された状態が実現
する。光導電層IA、IBの境界部にトラップされた正
のキャリヤは、その一部が導電性基体IKと光導@JL
Aの境界部の負電荷と対をなし、他は光導電層18表面
の負電荷と対をなす、このように光導電層IA、1Bを
互いに逆向きに充電させる工程が充電工程であるが、こ
の充電工程は光導電層IA、IBの充電の向きが互いに
逆向き、即ち各光導電層を介して形成される電気2重層
の双極子モーメントが互いに逆向きになるように、且つ
各光導電層1^、1Bの充電電位が略等電位、即ち充電
電位の絶対値が略等しくなるように行われる。その結果
、充電工程後の複合感光体表面電位は略Oとなる。
First, while uniformly irradiating this composite photoreceptor 10 with B color light,
For example, when positive charging is performed, the photoconductive layer 1B has become a conductor due to the irradiation with B color light, so this charging causes the first
As shown in FIG. 1, an electric double layer is formed via the photoconductive layer IA. In this state, it is said that the photoconductive layer IA is charged. Next, in the dark, when charging is performed with a negative polarity opposite to the previous charging, the photoconductive layer IA is charged as shown in FIG. 1 (II). , IB are charged in opposite directions. Some of the positive carriers trapped at the boundary between the photoconductive layers IA and IB are connected to the conductive substrate IK and the photoconductor @JL.
The charging process is the process of charging the photoconductive layers IA and 1B in opposite directions, forming a pair with the negative charge at the boundary of A, and forming a pair with the other negative charge on the surface of the photoconductive layer 18. This charging step is performed so that the charging directions of the photoconductive layers IA and IB are opposite to each other, that is, the dipole moments of the electric double layer formed through each photoconductive layer are opposite to each other, and each light is The charging is performed so that the charging potentials of the conductive layers 1^ and 1B are approximately equal, that is, the absolute values of the charging potentials are approximately equal. As a result, the surface potential of the composite photoreceptor after the charging process becomes approximately O.

次に露光工程では、A、B色光による露光が行われる。Next, in the exposure step, exposure is performed using A and B color lights.

説明の具体性のために以下の説明に於いてはα色を赤、
β色を青とする。
In order to make the explanation more concrete, in the following explanation, the alpha color will be referred to as red,
Let the β color be blue.

第1図(III)に示すように、露光工程では黒、白、
赤、青の各色画素に対しA色光による露光とB色光によ
る露光を以下のように行う。
As shown in Figure 1 (III), in the exposure process black, white,
Exposure with A color light and exposure with B color light are performed for each color pixel of red and blue as follows.

即ち、黒画素に対しては何等の露光を行わない。That is, no exposure is performed on black pixels.

従って黒画素部分は露光工程後にも充電工程後の表面電
位即ち略O電位を保つ。
Therefore, even after the exposure process, the black pixel portion maintains the surface potential after the charging process, that is, approximately O potential.

白画素部分に対してはA、B色光をともにr強ノの強度
で露光する。この露光により光導電層l^、IBはそれ
ぞれA、B色光で導電体化し、それぞれ充電状態が解消
するので、この部分の表面電位は露光工程後はぼ0電位
となる。
A white pixel portion is exposed to both A and B color light at an intensity of r. Due to this exposure, the photoconductive layers l^ and IB are made conductive by the A and B color lights, respectively, and their charged states are eliminated, so that the surface potential of these portions becomes approximately 0 potential after the exposure process.

次に、赤画素に対応する部分は強度分布r強JのB色光
で露光し、A色光の強度は0とする。即ちA色光による
露光を行わない、従って、この部位では光導電層IBの
みが導電体化してその充電状態が解消し、光導電層IA
の充電電位が感光体表面電位として現れる。従って、こ
の部位の表面電位は露光工程後、正極性となる。
Next, the portion corresponding to the red pixel is exposed to B color light with an intensity distribution r strong J, and the intensity of A color light is set to 0. In other words, exposure to A color light is not performed. Therefore, in this region, only the photoconductive layer IB becomes a conductor and its charged state is eliminated, and the photoconductive layer IA
The charging potential appears as the photoreceptor surface potential. Therefore, the surface potential of this portion becomes positive after the exposure process.

また、青画素の部位は[強」のA色光と「弱JのB色光
で露光される。すると、この部位では光導電層IAの充
電状態が強のA色光で解消し、光導電層IBの充電状態
は「弱」のB色光で半ば解消するが、光導電層IBの充
電電位は0とは成らず、従ってこの部位での感光体表面
電位は、光導電層IBの充電電位の負極性となる。この
負極性の電位は、光導電層IBの当初の充電電位よりは
絶対値に於いて小さくなっている。
In addition, the blue pixel area is exposed to [strong] A color light and [weak J B color light. Then, in this part, the charged state of the photoconductive layer IA is canceled by the strong A color light, and the photoconductive layer IB The charged state of is partially resolved by "weak" B color light, but the charged potential of the photoconductive layer IB does not become 0, so the photoreceptor surface potential at this location is the negative electrode of the charged potential of the photoconductive layer IB. It becomes sex. This negative potential is smaller in absolute value than the initial charging potential of the photoconductive layer IB.

次には、第1図(rv)に示すように、負帯電させた赤
トナーTRで現像し赤画素対応静電潜像を可視化する。
Next, as shown in FIG. 1 (rv), development is performed using negatively charged red toner TR to visualize the electrostatic latent image corresponding to the red pixel.

さらに第1図(V)に示すように正TI電させた青トナ
ーTBにより青画素対応静電潜像を可視化する。第1図
(IV) 、 (V)に示す工程が、第1の現像工程で
ある。
Furthermore, as shown in FIG. 1(V), the electrostatic latent image corresponding to the blue pixel is visualized using the blue toner TB charged with a positive TI. The steps shown in FIGS. 1(IV) and 1(V) are the first developing step.

続いて、第1図(mに示すようにC色光による均一露光
工程が行われる。
Subsequently, as shown in FIG. 1(m), a uniform exposure process using C color light is performed.

このC色光は、光導電層IAを導電体化し、光導電41
Bは導電体化しない光を選択する。また、C色光は赤ト
ナーにより良く吸収される光であることが望ましい。
This C color light turns the photoconductive layer IA into a conductor, and the photoconductive layer IA becomes a conductor.
B selects light that does not become a conductor. Further, it is desirable that the C color light be light that is well absorbed by the red toner.

この均一露光工程により、光導電層IAの充電状態が解
消し、黒画素部位には光導電層IBの充電電位が表面電
位として現れる。この電位は充電工程の際に充電された
当初の充電電位である。従って黒画素対応静電潜像の電
位は、前述の青画素対応静電潜像の電位と同極性である
が、青画素部位の電位よりも絶対値にして大きい。
Through this uniform exposure step, the charged state of the photoconductive layer IA is released, and the charged potential of the photoconductive layer IB appears as a surface potential at the black pixel portion. This potential is the initial charging potential charged during the charging process. Therefore, the potential of the electrostatic latent image corresponding to the black pixel has the same polarity as the potential of the electrostatic latent image corresponding to the blue pixel described above, but is larger in absolute value than the potential of the blue pixel portion.

従って第1図(VII)に示すように、上記青画素部の
電位より高い現像バイアス電位下で、正帯電した黒トナ
ーτNによる現像を行えばこの黒画素対応静電潜像のみ
を可視化できる。即ち、第2の現像工程である。
Therefore, as shown in FIG. 1 (VII), by performing development with positively charged black toner τN under a developing bias potential higher than the potential of the blue pixel portion, only this electrostatic latent image corresponding to the black pixel can be visualized. That is, this is the second developing step.

かくして複合感光体10の表面に赤、青、黒の3種のト
ナーにより3色画像が形成される。しかし。
In this way, a three-color image is formed on the surface of the composite photoreceptor 10 using the three types of toner: red, blue, and black. but.

各トナーの内、赤トナーと他のトナーとは逆に帯電して
いるので、転写に先立ってまず各トナーの極性を例えば
正極性に揃える転写前帯電を行い、しかるのちに第1図
(Vlll)に示すように可視像を転写紙S上に転写し
、定着すれば所望の3色記録画像を得ることができる。
Among the toners, the red toner and the other toners are charged oppositely, so before transfer, pre-transfer charging is performed to align the polarity of each toner to, for example, positive polarity. ), a desired three-color recorded image can be obtained by transferring the visible image onto the transfer paper S and fixing it.

請求項2の方法は、上記請求項1の方法とは露光工程、
均一露光工程、第2の現像工程に差異がある。
The method of claim 2 differs from the method of claim 1 in that it includes an exposure step;
There are differences in the uniform exposure process and the second development process.

即ち、請求項2の方法では第1図(I)、 (II)に
即して説明した前述の充電工程の後、以下のように露光
工程を行う、即ち、黒画素に対しては何等の露光を行ず
、白画素部分に対してはA、B色光をともに1強」の強
度で露光する。即ち、これら黒画素、白画素での露光の
状況は請求項1の方法と同じである。
That is, in the method of claim 2, after the above-mentioned charging process explained with reference to FIGS. 1(I) and (II), an exposure process is performed as follows. Exposure is performed, and the white pixel portion is exposed to both A and B color light at an intensity of just over 1. That is, the exposure conditions for these black pixels and white pixels are the same as in the method of claim 1.

次に、赤画素に対応する部分は強度分布r強」のB色光
で露光し、A色光の強度は「弱」とする。
Next, the portion corresponding to the red pixel is exposed to B color light with an intensity distribution r of "strong", and the intensity of the A color light is set to "weak".

すると、この部位では光導電層IBの充電状態が強のB
色光で解消し、光導電層IAの充電状態は1弱」のA色
光で半ば解消するが、先導’H−/11 Aの充電電位
は0とは成らず、従ってこの部位での感光体表面電位は
、光導電層IAの充電電位の正極性となる。
Then, in this part, the state of charge of the photoconductive layer IB is strong B.
The charge state of the photoconductive layer IA is partially resolved by the A color light of 1 level, but the charge potential of the lead 'H-/11 A does not reach 0, and therefore the photoreceptor surface at this location is The potential has the positive polarity of the charging potential of the photoconductive layer IA.

この正極性の電位は、光導電層IAの当初の充電電位よ
りは絶対値に於いて小さくなっている。 また、青画素
の部位は1強」のA色光で露光され、この部位では光導
電層1^のみが導電体化してその充電状態が解消し、光
導電層IBの充電電位が感光体表面電位として現れる。
This positive potential is smaller in absolute value than the initial charging potential of the photoconductive layer IA. In addition, the blue pixel area is exposed to A color light of 1 strong, and in this area, only the photoconductive layer 1^ becomes a conductor and its charged state is eliminated, and the charged potential of the photoconductive layer IB becomes the photoreceptor surface potential. Appears as.

従って、この部位の表面電位は露光工程後、負極性とな
る。
Therefore, the surface potential of this portion becomes negative after the exposure process.

かくして赤画素対応静電潜像と青画素対応静電潜像とが
互いに逆極性の感光体表面電位として形成されるので5
次には、請求項1の第1の現像工程と同様にしてこれら
を赤トナーTR1青トナーTBで可視化する。
In this way, the electrostatic latent image corresponding to the red pixel and the electrostatic latent image corresponding to the blue pixel are formed as photoreceptor surface potentials of opposite polarity.
Next, these are visualized using red toner TR1 and blue toner TB in the same manner as in the first developing step.

続く均一露光工程では、複合感光体に対してD色光を均
一照射する。D色光は、光導電層IBのみを導電体化す
る光であるが、青トナーに良く吸収される光であること
が望ましい、この均一露光工程により光導電層IBの充
電状態が解消し、正極性の表面電位として黒画素対応静
電潜像が顕在化される。この静電潜像の電位は、充電工
程側の光導電層IAの充電電位であり、赤画素対応静電
潜像の電位より大きい。
In the subsequent uniform exposure step, the composite photoreceptor is uniformly irradiated with D color light. The D color light is light that only makes the photoconductive layer IB conductive, but it is desirable that the light is well absorbed by the blue toner. Through this uniform exposure step, the charged state of the photoconductive layer IB is released, and the positive electrode The electrostatic latent image corresponding to the black pixel becomes apparent as the surface potential of the black pixel. The potential of this electrostatic latent image is the charging potential of the photoconductive layer IA on the side of the charging process, and is higher than the potential of the electrostatic latent image corresponding to the red pixel.

従って、赤画素対応静電潜像以上の電位を現像バイアス
として印加しつつ、黒トナーTNによる現像を行えば黒
画素対応静電潜像のみを可視化できる。あとは請求項1
の転写工程と同一の転写工程を行うことによって、所望
の3色画像を得ることができる。
Therefore, by performing development with the black toner TN while applying a potential higher than the electrostatic latent image corresponding to the red pixel as a developing bias, only the electrostatic latent image corresponding to the black pixel can be visualized. The rest is claim 1
A desired three-color image can be obtained by performing the same transfer process as the one described above.

[実施例] 以下、具体的な実施例に即して説明する。[Example] Hereinafter, description will be given based on specific examples.

複合感光体と(て、第2図(1)に示す如きものを試作
した。混同の恐れは無いと思ねれるので第1図に於ける
と同じ符号を用いて説明する。
A composite photoreceptor as shown in FIG. 2 (1) was prototyped. Since there is no risk of confusion, the same reference numerals as in FIG. 1 will be used in the explanation.

導電性基体IKの上に形成された第1の光導電層IAは
機能分離型のものであって、キャリヤ輸送層IAIとキ
ャリヤ発生層IA2とを積層してなっている。
The first photoconductive layer IA formed on the conductive substrate IK is of a functionally separated type, and is composed of a layered carrier transport layer IAI and a carrier generation layer IA2.

また、第1の光導電層IAと第2の光導電層IBとの間
には中間層ICが形成されている。
Further, an intermediate layer IC is formed between the first photoconductive layer IA and the second photoconductive layer IB.

この複合感光体は以下のように形成された。導電性基体
IKとして、樹脂フィルムの表面にA1層を蒸着したも
のを用いた。この導電性基体1にの上に先ず、キャリヤ
発生層IAIを形成した。このキャリヤ発生層は、第2
図(II)に示す如き構造式を有するフェニルスチルベ
ン化合物をドナーとし、ポリカーボネイトをバインダー
とし、これらをテトラヒドロフランに溶解させたものを
スプレーにより導電性基体IK上にスプレーし、乾燥さ
せることにより厚さ20μに形成した。
This composite photoreceptor was formed as follows. As the conductive substrate IK, a resin film with an A1 layer deposited on the surface was used. First, a carrier generation layer IAI was formed on this conductive substrate 1. This carrier generation layer
A phenylstilbene compound having the structural formula as shown in Figure (II) is used as a donor, polycarbonate is used as a binder, and a solution of these dissolved in tetrahydrofuran is sprayed onto the conductive substrate IK and dried to a thickness of 20 μm. was formed.

次に、このキャリヤ輸送層の上に、キャリヤ発生層IA
2として、第1図(III)に示す如き構造式の顔料を
バインダーとともにテトラヒドロフランに溶解させたも
のをスプレー乾燥することにより厚さ0.1μに形成し
た。
Next, a carrier generation layer IA is placed on this carrier transport layer.
2, a pigment having the structural formula as shown in FIG. 1 (III) was dissolved in tetrahydrofuran together with a binder, and the mixture was spray-dried to a thickness of 0.1 μm.

その上に、中間層ICとしてポリアミドの層を厚さ0.
3μにスプレー法で形成した。
On top of that, a layer of polyamide with a thickness of 0.5 mm is applied as an intermediate layer IC.
It was formed to a thickness of 3μ by a spray method.

最後に、第2の光導電層IBとして、共晶OPcの層を
厚さ20μに形成した。共晶OPCは、染料としてチア
ピリリウム塩をバインダーとしてのポリカーボネイト、
ドナーとして上記フェニルスチルベン化合物とともに共
晶OPCとともに溶液に溶解させ、スプレー法により形
成したものである。
Finally, a layer of eutectic OPc was formed to a thickness of 20 μm as the second photoconductive layer IB. Eutectic OPC consists of polycarbonate as binder, thiapyrylium salt as dye,
The above phenylstilbene compound and eutectic OPC were dissolved in a solution as a donor and formed by a spray method.

第2図(rv)は、第1の光導電層IAの分光感度であ
り、第2図(V)は、第2の光導電層IBと中間層IC
とを合わせた分光透過率、第2図(VI)は第2の光導
電層IBの分光感度を示している。
FIG. 2(rv) shows the spectral sensitivity of the first photoconductive layer IA, and FIG. 2(V) shows the spectral sensitivity of the second photoconductive layer IB and the intermediate layer IC.
FIG. 2 (VI) shows the spectral sensitivity of the second photoconductive layer IB.

これらの図から明らかなように試作の複合感光体10の
光導電層IBは780nmの波長の光を9錦透過させ、
 878nmの波長の光を97%吸収する。また、光導
電/IIAは、光導電層IB及び中間層1Cを透過する
波長780nmの光に対して、高感度を有する。従って
、波長780nmの光は前述のA色光として使用でき、
また波長678nraの光はB色光として使用できるま
た波長460nr@の光は、光導電層IBと中間層IC
とを良く透過し、且つ光導電層IAを良く導電体化する
。従って、この波長460nmの光は前述のC色光とし
て使用できる。
As is clear from these figures, the photoconductive layer IB of the prototype composite photoreceptor 10 allows light with a wavelength of 780 nm to pass through nine layers,
Absorbs 97% of light with a wavelength of 878 nm. Furthermore, the photoconductive layer IIA has high sensitivity to light having a wavelength of 780 nm that passes through the photoconductive layer IB and the intermediate layer 1C. Therefore, light with a wavelength of 780 nm can be used as the above-mentioned A color light,
In addition, the light with a wavelength of 678nra can be used as B color light, and the light with a wavelength of 460nr@ can be used for the photoconductive layer IB and the intermediate layer IC.
and makes the photoconductive layer IA a good conductor. Therefore, this light with a wavelength of 460 nm can be used as the above-mentioned C color light.

さて、上記の複合感光体10をベルト状に構成し。Now, the above-mentioned composite photoreceptor 10 is constructed in the form of a belt.

第3図の如き装置を構成した。A device as shown in FIG. 3 was constructed.

第3図に於いて、 ′PJ合感光感光体10計方向へ回
転させつつ、先ずクエンチングランプ30による白色光
で均一照射して光除電を行い、続いてチャージャー12
により880nnより長波長のの光を均一照射しつつ正
極性の帯電を行う、なお波長680na以上の光はラン
プ12Bからの光をフィルター12ムで漉して得る。な
お、この帯電は複合感光体10の表面電位が+1600
Vとなるように行う。
In FIG. 3, while rotating the PJ combined photoreceptor 10 in the 10 meter direction, first uniformly irradiate the photoreceptor with white light from the quenching lamp 30 to perform optical static elimination, and then the charger 12
Positive charging is performed while uniformly irradiating light with a wavelength longer than 880 nm. Light with a wavelength of 680 nm or more is obtained by filtering the light from the lamp 12B with a filter 12. Note that this charging occurs when the surface potential of the composite photoreceptor 10 is +1600
Do this so that it forms a V.

次いでチャージャー14による負極性の帯電を行って表
面電位が0となるようにすると、光導電層IAは+5o
ovt:、光導電層IBは一800vニ充電される。
Next, when the charger 14 performs negative charging so that the surface potential becomes 0, the photoconductive layer IA becomes +5o.
ovt: The photoconductive layer IB is charged with -800V.

続いて、光書送装置1Bにより露光工程を行う。Subsequently, an exposure process is performed using the optical writing device 1B.

光書送装置16は、第4図に示すように波長678nm
、780n鵬のレーザー光を放射する半導体レーザーと
コリメートレンズ系とを組み合おせた光源装置161.
162から平行ビームを得、これらをダイクロイックミ
ラー163で合成し1回転多面鏡164、fθレンズ1
65を介して複合感光体10の光走査書込を行いうるよ
うにしたものである。なお、書込むべき、黒、白、赤、
青の画像信号は、白地に赤、青、黒の3色画像を有する
原稿を読み取って得られたものである。
The optical sending device 16 has a wavelength of 678 nm as shown in FIG.
, a light source device 161 that combines a semiconductor laser that emits laser light of 780 nm and a collimating lens system.
A parallel beam is obtained from 162, which is combined by a dichroic mirror 163, a one-rotation polygon mirror 164, and an fθ lens 1.
65, the composite photoreceptor 10 can be optically scanned and written. In addition, you should write black, white, red,
The blue image signal is obtained by reading a document having three-color images of red, blue, and black on a white background.

波長780nm、678nmの各波長のレーザービーム
は。
The laser beams have wavelengths of 780 nm and 678 nm.

その強度をそれぞれ以下のように切り替え得るようにし
た。
The strength can be changed as shown below.

画素   780nm    678n+*黒    
   OO 白       強       強 赤       O強 青       強       弱 但し、1強」とは、光導電層の充電電位を±800vか
ら±50v以下にできる光強度であり、1弱」とは上記
充電電位を±800vから約400vにする強度である
Pixel 780nm 678n+*Black
OO White Strong Strong Red O Strong Blue Strong Weak However, 1 strong is the light intensity that can reduce the charging potential of the photoconductive layer from ±800v to ±50v, and 1 weak is the light intensity that can reduce the charging potential of the photoconductive layer from ±800v to ±50v. The intensity is approximately 400v.

この結果、露光工程後の感光体表面電位は赤画素対応静
電潜像部位で+aoov、青画素対応静電潜像部位で一
400V、他の部位で略0である。
As a result, the surface potential of the photoreceptor after the exposure step is +aoov at the electrostatic latent image area corresponding to the red pixel, -400 V at the electrostatic latent image area corresponding to the blue pixel, and approximately 0 at other areas.

かくして形成された静電潜像の内、赤画素対応静電潜像
を赤トナーを用いる現像装置18で現像する。現像装置
18は公知のNSP現像装置であり。
Among the electrostatic latent images thus formed, the electrostatic latent image corresponding to the red pixel is developed by a developing device 18 using red toner. The developing device 18 is a known NSP developing device.

接触現像である。This is contact development.

続いて青画素対応静電潜像を、青トナーを用いる現像装
置20で現像する。
Subsequently, the electrostatic latent image corresponding to the blue pixel is developed by a developing device 20 using blue toner.

次に、ランプ22からの白色光をフィルター221によ
り漉すことにより460±1oneの波長の光で複合感
光体10を均一露光する。これにより黒画素対応静電潜
像が一800vの表面電位として顕在化される。この電
位は光導電層18の充電電位である。
Next, the white light from the lamp 22 is filtered by a filter 221 to uniformly expose the composite photoreceptor 10 to light having a wavelength of 460±1 one. As a result, the electrostatic latent image corresponding to the black pixel is manifested as a surface potential of 1800V. This potential is the charging potential of the photoconductive layer 18.

この黒画素対応静電潜像は、現像装置24により黒トナ
ーで可視化される。このとき現像バイアス電位として一
400vを現像部に印加する。これにより青画素対応静
電潜像が黒トナーでさらに現像されることが無い。
This electrostatic latent image corresponding to the black pixel is visualized with black toner by the developing device 24. At this time, -400V is applied to the developing section as a developing bias potential. This prevents the electrostatic latent image corresponding to the blue pixel from being further developed with black toner.

なお、現像装置20,24はNSP現像装置であるがス
ペーサーを用いて現像ギャップを50±10μに制御し
た。これにより先の現像で得られたトナー画像に影響を
与えることなく、後続の現像を行うことができる。
Although the developing devices 20 and 24 were NSP developing devices, the developing gap was controlled to 50±10 μm using a spacer. Thereby, subsequent development can be performed without affecting the toner image obtained in the previous development.

かくして複合感光体10に3色画像が形成される。A three-color image is thus formed on the composite photoreceptor 10.

この3色画像を構成するトナーは転写前チャージャー2
6で正極性に極性を揃えられる。
The toner that makes up this three-color image is transferred to the pre-transfer charger 2.
6 allows you to align the polarity to positive polarity.

転写紙Sは転写ベルト32にチャージャー34で吸着さ
れて搬送さ九、転写チャージャー33でトナー画像を転
写され1分離チャージャー40により転写ベルト32か
ら分離し、定着装置42で3色画像を定着されたのち、
装置外へ排出される。
The transfer paper S is attracted to the transfer belt 32 by the charger 34 and conveyed, the toner image is transferred by the transfer charger 33, it is separated from the transfer belt 32 by the 1-separation charger 40, and the three-color image is fixed by the fixing device 42. after,
Expelled from the device.

可視像転写後の複合感光体10はクリーニング装置28
により残留トナーを除去される。
After the visible image has been transferred, the composite photoreceptor 10 is cleaned by a cleaning device 28.
The residual toner is removed.

また転写ベルト32は除電器36で除電されクリーナー
38によりクリーニングされる。
Further, the transfer belt 32 is neutralized by a static eliminator 36 and cleaned by a cleaner 38 .

上記のプロセスを実行して良好な3色画像を得ることか
できた。
I was able to obtain a good three-color image by implementing the above process.

露光工程で赤画素部位で780nmの波長の光を1弱」
で並行書込して潜像電位を+400■とし、青画素部位
では678止の波長の光による露光を行わず、均一露光
工程では680±10nmの波長の光による均一露光を
行い、黒画素対応静電潜像を十aoovの電位分布とし
て形成し、+400vのバイアス電圧で現像する請求項
2の方法によっても良好な3色画像を得ることが出来た
During the exposure process, a little less than 1 ounce of light with a wavelength of 780 nm is applied to the red pixel area.
The latent image potential is set to +400■ by parallel writing, and the blue pixel area is not exposed to light with a wavelength of 678 nm, and the uniform exposure process is uniformly exposed to light with a wavelength of 680±10 nm, so that it corresponds to black pixels. A good three-color image could also be obtained by the method of claim 2, in which an electrostatic latent image is formed as a potential distribution of 10 aoov and developed with a bias voltage of +400V.

なお、転写ベルト32により転写紙Sの搬送をスイッチ
バックして、転写を複数回繰り返すことができ、これを
利用すると、赤と青の混色画像などの記録が可能になる
Note that the conveyance of the transfer paper S can be switched back by the transfer belt 32 to repeat transfer a plurality of times, and by utilizing this, it is possible to record a mixed color image of red and blue.

[発明の効果] 以上、本発明によれば新規な3色画像記録方法を提供で
きる。この発明の方法は、上記の如き構成となっている
から、露光工程が簡単であり、色画像の位置ずれの少な
い3色画像が容易且つ確実に得られる。
[Effects of the Invention] As described above, according to the present invention, a novel three-color image recording method can be provided. Since the method of the present invention has the above-described configuration, the exposure process is simple and a three-color image with little positional shift of color images can be easily and reliably obtained.

なおA色光、B色光による書込は、実施例の方法の他、
これらの光を発するLDもしくはLEDのアレイを近接
させて配備し、A色光による書込とB色光による書込を
時間的に若干ずらせて行っても良い。
Note that writing using A color light and B color light can be done using the method described in the example,
Arrays of LDs or LEDs that emit these lights may be arranged close to each other, and writing using A color light and writing using B color light may be performed with a slight temporal shift.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明を説明するための図、第2図は実施例
に使用した複合感光体を説明するため図、第3図は1本
発明を実施するための装置の1例を要部のみ示す図、第
4図は、光書送装置を説明するための図である。 10、、、複合感光体、lに60.導電性基体、IA、
、、第1の光導電層、 IB、、、第2の光導電層、T
R,、、赤トナー、TB、、、青トナー、TN、、、黒
トナー、S90.転写紙 序/z、図 (V) 3(Cm悴J)
FIG. 1 is a diagram for explaining the present invention, FIG. 2 is a diagram for explaining a composite photoreceptor used in an example, and FIG. 3 is a diagram showing an example of an apparatus for carrying out the present invention. FIG. 4 is a diagram for explaining the optical writing device. 10. Composite photoreceptor, 60. conductive substrate, IA,
,,first photoconductive layer, IB,,second photoconductive layer,T
R, Red toner, TB, Blue toner, TN, Black toner, S90. Transfer paper introduction/z, figure (V) 3 (Cm Sae J)

Claims (1)

【特許請求の範囲】 1、導電性基体上に第1及び第2の光導電層を、第2の
光導電層を上側にして配し、A色光の照射によっては第
1の光導電層が導電体化し、B色光の照射によっては第
2の光導電層が導電体化するように調製された複合感光
体を用い、 上記第1及び第2の光導電層を互いに逆向きに、且つ略
同電位に充電する充電工程と、 光強度を強と0に切換え得るA色光と、光強度を強と弱
と0とに切換え得るB色光とを用い、黒、白、α色、β
色の各画素に対応して、上記複合感光体を、 黒:(A色光強度;0,B色光強度;0) 白:(A色光強度;強,B色光強度;強) α色:(A色光強度;0,B色光強度;強)β色:(A
色光強度:強,B色光強度;弱)の強度組合せで露光し
て、α色画像に対応する静電潜像とβ色画像に対応する
静電潜像を形成する露光工程と、 上記各静電潜像を、互いに逆の所定極性に帯電したα色
トナーとβ色トナーとで可視化する、第1の現像工程と
、 第1の現像工程後、第2の光導電層を透過し第1の光導
電層を導電体化させるC色光により複合感光体を均一露
光して、上記β色画像に対応する静電潜像と同極性で、
且つより大きい電位の分布により黒画素対応静電潜像を
形成する均一露光工程と、 この黒画素対応静電潜像を、上記β色画像に対応する静
電潜像の電位よりも大きな現像バイアス電位下で黒色ト
ナーで可視化する第2の現像工程と、 複合感光体上に得られた3色トナー画像を転写紙上に転
写・定着する工程とを有する、3色画像記録方法。 2、導電性基体上に第1及び第2の光導電層を、第2の
光導電層を上側にして配し、A色光の照射によっては第
1の光導電層が導電体化し、B色光の照射によっては第
2の光導電層が導電体化するように調製された複合感光
体を用い、 上記第1及び第2の光導電層を互いに逆向きに、且つ略
同電位に充電する充電工程と、 光強度を強と弱と0に切換え得るA色光と、光強度を強
と0とに切換え得るB色光とを用い、黒、白、α色、β
色の各画素に対応して、上記複合感光体を、 黒:(A色光強度;0,B色光強度;0) 白:(A色光強度;強,B色光強度;強) α色:(A色光強度;弱:B色光強度;強)β色:(A
色光強度;強,B色光強度;0)の強度組合せで露光し
て、α色画像に対応する静電潜像とβ色画像に対応する
静電潜像を形成する露光工程と、 上記各静電潜像を、互いに逆の所定極性に帯電したα色
トナーとβ色トナーとで可視化する、第1の現像工程と
、 第1の現像工程後、第2の光導電層のみを導電体化させ
るD色光により複合感光体を均一露光して、上記α色画
像に対応する静電潜像と同極性で、且つより大きい電位
の分布により黒画素対応静電潜像を形成する均一露光工
程と、 この黒画素対応静電潜像を、上記α色画像に対応する静
電潜像の電位よりも大きな現像バイアス電位下で黒色ト
ナーで可視化する第2の現像工程と、 複合感光体上に得られた3色トナー画像を転写紙上に転
写・定着する工程とを有する、3色画像記録方法。
[Claims] 1. First and second photoconductive layers are disposed on a conductive substrate with the second photoconductive layer facing upward, and the first photoconductive layer is irradiated with A color light. Using a composite photoreceptor prepared such that the second photoconductive layer becomes a conductor when irradiated with B-color light, the first and second photoconductive layers are oriented in opposite directions to each other and approximately Using a charging process to charge to the same potential, A color light whose light intensity can be switched between strong and 0, and B color light whose light intensity can be switched between strong, weak and 0, black, white, α color, β color, etc.
The above composite photoreceptor is arranged corresponding to each color pixel: Black: (A color light intensity; 0, B color light intensity; 0) White: (A color light intensity; strong, B color light intensity: strong) α color: (A Color light intensity; 0, B color light intensity; strong) β color: (A
an exposure step of forming an electrostatic latent image corresponding to the α-color image and an electrostatic latent image corresponding to the β-color image by exposing with a combination of intensity of color light intensity: strong, B color light intensity: weak; A first developing step in which the electrostatic latent image is visualized using α color toner and β color toner charged to opposite predetermined polarities; The composite photoreceptor is uniformly exposed to C-color light that makes the photoconductive layer of the image conductive, and has the same polarity as the electrostatic latent image corresponding to the β-color image.
A uniform exposure step of forming an electrostatic latent image corresponding to a black pixel using a larger potential distribution, and a developing bias that is larger than the potential of the electrostatic latent image corresponding to the β-color image to form an electrostatic latent image corresponding to the black pixel. A three-color image recording method comprising: a second developing step of visualizing with black toner under a potential; and a step of transferring and fixing the three-color toner image obtained on the composite photoreceptor onto transfer paper. 2. Dispose the first and second photoconductive layers on a conductive substrate with the second photoconductive layer on the upper side, and when irradiated with A color light, the first photoconductive layer becomes a conductor and becomes a B color light. Charging in which the first and second photoconductive layers are charged in opposite directions and to approximately the same potential using a composite photoreceptor prepared such that the second photoconductive layer becomes a conductor when irradiated with Using A color light whose light intensity can be switched between strong, weak and 0, and B color light whose light intensity can be switched between strong and 0, black, white, α color, β color
The above composite photoreceptor is arranged corresponding to each color pixel: Black: (A color light intensity; 0, B color light intensity; 0) White: (A color light intensity; strong, B color light intensity: strong) α color: (A Color light intensity; weak: B color light intensity; strong) β color: (A
an exposure step of forming an electrostatic latent image corresponding to an α-color image and an electrostatic latent image corresponding to a β-color image by exposing with an intensity combination of color light intensity: strong, B color light intensity: 0; A first developing step in which the latent image is visualized with α color toner and β color toner charged to predetermined polarities opposite to each other; and After the first developing step, only the second photoconductive layer is made into a conductor. a uniform exposure step of uniformly exposing the composite photoreceptor to D-color light to form an electrostatic latent image corresponding to black pixels with the same polarity as the electrostatic latent image corresponding to the α-color image and with a larger potential distribution; , a second development step in which the electrostatic latent image corresponding to the black pixel is visualized with black toner under a development bias potential greater than the potential of the electrostatic latent image corresponding to the α-color image; A three-color image recording method, comprising the step of transferring and fixing the three-color toner image onto a transfer paper.
JP63267349A 1988-10-24 1988-10-24 Three-color image recording method Pending JPH02113264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63267349A JPH02113264A (en) 1988-10-24 1988-10-24 Three-color image recording method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63267349A JPH02113264A (en) 1988-10-24 1988-10-24 Three-color image recording method

Publications (1)

Publication Number Publication Date
JPH02113264A true JPH02113264A (en) 1990-04-25

Family

ID=17443577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63267349A Pending JPH02113264A (en) 1988-10-24 1988-10-24 Three-color image recording method

Country Status (1)

Country Link
JP (1) JPH02113264A (en)

Similar Documents

Publication Publication Date Title
US3692519A (en) Electrophotographic color process
US4384033A (en) Process of synthesizing and recording images
JPH02113264A (en) Three-color image recording method
JPH02113265A (en) Three-color image recording method
JPS58111952A (en) Multicolor printing method
JPS5890651A (en) Electrophotographic method
JPH0418584A (en) Electrophoretic image pick-up device
JPS6148872A (en) Formation of color image
US3649515A (en) Photographic masking system
JPS59223466A (en) Recording method of color picture
JPH04296773A (en) Method and device for three-color image recording
JPH05197252A (en) Three-color image recording method and recorder therefor
JPS6098465A (en) Developing method
JPH11194577A (en) Method for forming process color image
JPS6333759A (en) Three-color electrophotographic method
JPH04338763A (en) Full color image forming method
JPH05100445A (en) Image synthesizing and recording method and device
JPH03202868A (en) Full-color image forming method
JPH05289533A (en) Color image recorder
JPS6326665A (en) Copying method for plural colors
JPS5880671A (en) Picture forming method
JPS6378177A (en) Color image forming method using photosensitive body having color separation function
JPH05150608A (en) Full-color image forming method
JPS606955A (en) Recording method of color image
JPH0290174A (en) Three color electrophotographic copying method