JPH02112814A - Sheet thickness control method for continuous rolling of metallic material - Google Patents

Sheet thickness control method for continuous rolling of metallic material

Info

Publication number
JPH02112814A
JPH02112814A JP63263873A JP26387388A JPH02112814A JP H02112814 A JPH02112814 A JP H02112814A JP 63263873 A JP63263873 A JP 63263873A JP 26387388 A JP26387388 A JP 26387388A JP H02112814 A JPH02112814 A JP H02112814A
Authority
JP
Japan
Prior art keywords
rolling
roll
stand
speed
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63263873A
Other languages
Japanese (ja)
Inventor
Hiroshi Yoshida
博 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP63263873A priority Critical patent/JPH02112814A/en
Publication of JPH02112814A publication Critical patent/JPH02112814A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To obtain a sheet thickness with good accuracy by measuring a rolling load, rolling torque and forward slip at the time when the front end of a material to be rolled passes a stand, then by computing the deformation resistance of the material to be rolled and subjecting the roll gap of the downstream side to correction control. CONSTITUTION:The load Pi is actually measured by a load cell 3i, the torque Gi by a torque meter 49, the speed Vi by a speedometer 5i, the rotating speed Ni by a roll rotating meter 7i mounted to a rolling roll speed controller 6i, and the roll gap Si by a draft position detecting part 9i mounted to a draft position controller 8i and the measured values are inputted to a computer 10 for control at the time when the front end 1 of the material to be rolled passes along the rolling roll 2i of the i-th stand. The forward slip Fi is then calculated by the speed Vi and the deformation resistance Ki of the material to be rolled is computed by using these measured values and the rolling theory equations. The roll gap after the (i+1)th stand is subjected to the correction control by the results of these computations. The accurate sheet thickness in continuous rolling is obtd. in this way and the yield is improved.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、熱間もしくは冷間での鉄鋼、アルミニウムな
どの金属材料の連続圧延における仮17制御方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a temporary 17 control method in hot or cold continuous rolling of metal materials such as steel and aluminum.

〈従来の技術〉 連続圧延において、被圧延材のコイル先端から精度の良
い仮j7を得るためには、予め各圧延スタンドのロール
開度を適正な値に設定(セットアツプ)する必要がある
。ところが、コイル先端以外の部分では、圧延は安定し
ており、板厚および張力検出値を用いたフィードバック
型の通常のAGC(自動板厚制?11)が有効に働き、
板厚精度は保証される。したがって、通板時(被圧延材
の先端噛込時)に適正なセットアツプが行われていれば
、精度の良い板厚がコイル全長で得られることになる。
<Prior Art> In continuous rolling, in order to obtain a highly accurate provisional j7 from the tip of the coil of the material to be rolled, it is necessary to set up the roll opening of each rolling stand to an appropriate value in advance. However, in areas other than the tip of the coil, rolling is stable, and normal feedback-type AGC (automatic plate thickness control?11) using plate thickness and tension detection values works effectively.
Plate thickness accuracy is guaranteed. Therefore, if proper set-up is performed during sheet passing (when the tip of the material to be rolled is bitten), a highly accurate sheet thickness can be obtained over the entire length of the coil.

ところで、冷間連続圧延機(コールドストリップミル)
では、コイルがもともと長い上に、最近では圧延機前で
コイルを溶接して圧延する技術も開発されているので、
通板時の板厚不良部が全長に占める割合が非常に短く、
歩留りの点で大きな問題とはならない、したがって、以
下では、通板時の板厚不良が大きな問題となる熱間連続
圧延機(ホットストリップミル)を中心にして説明する
By the way, cold continuous rolling mill (cold strip mill)
So, not only are coils long to begin with, but technology has recently been developed to weld and roll the coils in front of the rolling mill.
The proportion of the thickness defects during sheet threading in the total length is very small.
This does not pose a major problem in terms of yield. Therefore, the following description will focus on a continuous hot rolling mill (hot strip mill) in which defective sheet thickness during sheet passing is a major problem.

iスタンドの目標出側板w−hrを得るためのロール開
度別は、下記(1)式のゲージメータ式で求まる。
The roll opening degree for obtaining the target exit side plate w-hr of the i-stand is determined by the gauge meter formula of the following formula (1).

5i=hj  fs (Pi、W、 Pat)+Soi
   −−−−(1)t、:ミル剛性(圧延時のミルの
伸びを計算する関数) P:圧延荷重 W:板幅 P、:ペンディング力 So:ロール開度の零点 l:スタンド番号 ここで、ミル剛性f、は弾性力学理論およびAI板等の
挟圧実験等で正確な関数化がなされており、人力値のB
、w、p□は既知であるため、PiとSL、Lを正確に
予測できれば正ciなSiを求めることができる。一方
、PIを予測するためには、圧延理論式から導かれる下
記(2)〜(4)式の圧延荷重式が必要となる。
5i=hj fs (Pi, W, Pat)+Soi
-----(1) t, : Mill rigidity (function to calculate mill elongation during rolling) P: Rolling load W: Plate width P, : Pending force So: Zero point of roll opening L: Stand number Here , mill stiffness f, has been accurately converted into a function through elastic mechanics theory and pinching experiments using AI plates, etc., and the human force value B
, w, and p□ are known, so if Pi, SL, and L can be predicted accurately, Si with positive ci can be obtained. On the other hand, in order to predict PI, the following rolling load formulas (2) to (4) derived from the rolling theoretical formula are required.

PI革ki・ QPI−W−T訂7T旧−〇肩下−−(
2)k :変形抵抗 口P :圧下力関数 R′ :偏平ロール半径 H:入側板厚 h :出側板厚 R:ロール半径 μ :摩擦係数 tb:入側張力 tf:出側張力 E :ロールのヤング率 ν :ロールのポアソン比 上記した(1)、 (2)、 (3)式より明らかなよ
うに、精度の良い板厚を得るには、高精度な圧下力関数
Q1、変形抵抗にと摩擦係数μの高精度な予測が必要と
なる。
PI leather ki・QPI-W-T revision 7T old-〇Below the shoulder--(
2) k: Deformation resistance port P: Rolling force function R': Flat roll radius H: Entry side plate thickness h: Output side plate thickness R: Roll radius μ: Friction coefficient tb: Input side tension tf: Output side tension E: Roll Young's modulus ν: Poisson's ratio of the roll As is clear from the above equations (1), (2), and (3), in order to obtain a highly accurate plate thickness, a highly accurate rolling force function Q1 and a high deformation resistance are required. Highly accurate prediction of the friction coefficient μ is required.

そうして、圧下力関数は圧延理論より導かれるものであ
り、厳密な圧延理論としては、0rovanの理論が有
名であり、この理論から導かれた圧下力関数の計算式が
玉野と柳本(日本機械学会論文集。
The rolling force function is derived from rolling theory, and Orovan's theory is famous as a strict rolling theory, and the formula for calculating the rolling force function derived from this theory was developed by Tamano and Yanagimoto (Japanese). Proceedings of the Japan Society of Mechanical Engineers.

42 (1978)、 P965)、本発明者(「塑性
と加工」。
42 (1978), P965), the present inventor (``Plasticity and Processing'').

27 (1982)、 P62)等によって既に提案さ
れており、圧下力関数としては十分高精度なものが得ら
れるようになったといえる。
27 (1982), p. 62), and it can be said that it has become possible to obtain a sufficiently high precision rolling force function.

本発明者による圧下力関数を(3)′式に示す、ただし
、ホットストリップ圧延では、無張力圧延が基準である
ため張力項は含まれていない。
The rolling force function according to the present inventor is shown in equation (3)'; however, in hot strip rolling, the tension term is not included because tensionless rolling is the standard.

μ己+3.35μi  −ri−2,75μm2・ri
l、3/7 i  −ri!−2,09βi  +1.
28β12一方、変形抵抗にの予測には計算式が、摩擦
係数μは各スタンドに固定された一定値が用いられる場
合が多い、変形抵抗式としては被圧延材温度。
μ self + 3.35 μi −ri −2,75 μm2・ri
l, 3/7 i-ri! −2,09βi +1.
28β12 On the other hand, a calculation formula is often used to predict the deformation resistance, and a constant value fixed to each stand is often used for the friction coefficient μ.The deformation resistance formula is the temperature of the rolled material.

圧延ひずみ、圧延ひずみ速度、化学成分の関数形で表現
された美仮の式([塑性と加工、 、8 (1967L
 PdI2)が有名である。
A beautiful equation expressed in the functional form of rolling strain, rolling strain rate, and chemical components ([Plasticity and Processing, 8 (1967L)
PdI2) is famous.

さらに、特開昭56−163017号、同60−150
10号公報では、変形抵抗式、摩擦係数の精度を向上さ
せる方法として圧延荷重と先進率を測定し、これらの測
定値からkとμを導出し、これを使って次コイルのセッ
トアツプに使用する変形抵抗式および摩擦係数を常時修
正していくことが提案されており、変形抵抗式、摩擦係
数に関しても十分高精度なものが得られるようになった
と言える。
Furthermore, JP-A-56-163017, JP-A No. 60-150
In Publication No. 10, as a method to improve the accuracy of the deformation resistance formula and friction coefficient, the rolling load and advance rate are measured, k and μ are derived from these measured values, and these are used to set up the next coil. It has been proposed to constantly modify the deformation resistance formula and friction coefficient, and it can be said that sufficiently high accuracy has been obtained for the deformation resistance formula and friction coefficient.

先進率Fiは、ロール周速V□と被圧延材出側速度vi
 (以下、板速と称す)とで次のように定義される。
The advance rate Fi is determined by the roll circumferential speed V□ and the rolled material exit speed vi
(hereinafter referred to as plate speed) is defined as follows.

βl =ム穐h  [(F + 1.5ri)u i 
 ]fil ここで、vlはロール回転数N+とロール径DIから容
易に求められるので、Viが測定できればFiは求まる
。この先進率よりμを逆算するには、先進率式をμを含
んだ形で表現する必要があり、種々の弐が提案されてい
る0本発明者は、0roHanの理論から導かれた次の
ような先進率の計算式を得ている。
βl = mu h [(F + 1.5ri) u i
]fil Here, vl can be easily determined from the roll rotation speed N+ and the roll diameter DI, so if Vi can be measured, Fi can be determined. In order to back-calculate μ from this advanced rate, it is necessary to express the advanced rate formula in a form that includes μ, and various methods have been proposed. We have obtained a formula for calculating the advanced rate.

〈発明が解決しようとする課題〉 しかしながら、変形抵抗を正確に予測するには、式の人
力条件である被圧延材温度、圧延ひずみなどの正も1な
値が必要であるが、この中で、被圧延材温度については
、正値な値を得ることが現状では困難である。その理由
は、各スタンドの被圧延材温度は仕上圧延機入側の放射
温度計などにより測定される表面温度を参考にして算出
されるが、被圧延材の表面性状あるいは水乗りなどの問
題により、温度測定値と実際値とが食い違うことが多々
あるからである。したがって、変形抵抗(被圧延材温度
)が正確に予測できないため、セットアツプだけでは良
好なりi厚をコイル先端から得ることは困難であった。
<Problem to be solved by the invention> However, in order to accurately predict the deformation resistance, positive values such as temperature of the rolled material and rolling strain, which are the manual conditions of the equation, are required. As for the temperature of the rolled material, it is currently difficult to obtain a positive value. The reason for this is that the temperature of the rolled material in each stand is calculated by referring to the surface temperature measured by a radiation thermometer at the entrance of the finishing mill, but due to problems such as the surface properties of the rolled material or water riding, etc. This is because there are often discrepancies between the measured temperature value and the actual temperature value. Therefore, since the deformation resistance (temperature of the rolled material) cannot be accurately predicted, it has been difficult to obtain a good thickness from the tip of the coil using only set-up.

このような問題を解決する方法として、例えば特開昭6
0−99410号公報では、被圧延材先端部が仕上圧延
機の第1スタンドに噛んだときに圧延荷重と先進率を測
定し、これらの測定値と圧延理論式を使って第1スタン
ドにおける摩擦係数と変形抵抗を演算し、この演算値に
より第2スタンド以降のロール開度を修正する方法が提
案されている。
As a method to solve such problems, for example,
0-99410, the rolling load and advance rate are measured when the tip of the material to be rolled is bitten by the first stand of the finishing rolling mill, and these measured values and the rolling theoretical formula are used to calculate the friction in the first stand. A method has been proposed in which the coefficient and deformation resistance are calculated, and the roll openings from the second stand onward are corrected based on the calculated values.

その際、板速Vを求める方法として、(1)例えばレー
ザ速度計などの板速計により直接側室する方法、(2)
検出器2台の一定設置間隔の間を被圧延材先端が通過す
る時間を測定して求める方法を開示している。
At that time, methods for determining the plate speed V include (1) a method of directly measuring the plate speed using a plate speed meter such as a laser speed meter, (2)
A method is disclosed in which the time taken for the tip of the rolled material to pass between two detectors installed at a fixed interval is measured and determined.

しかしながら、圧延荷重P、板速Vの実測値は以下に述
べる種りの原因により常に正しいとは限らず、そのため
演算されるkとμも必ずしも正しい値とは限らない、し
たがって、この演算値k。
However, the actual measured values of rolling load P and plate speed V are not always correct due to various reasons described below, and therefore the calculated k and μ are not necessarily correct values. Therefore, the calculated value k .

μに基づいて第2スタンド以降のロール1m度の修正制
f21を(テうと、逆にコイル先端厚み精度が悪くなる
場合があった。
If the correction system f21 of 1 m degree for the rolls from the second stand onwards was made based on μ, the accuracy of the coil tip thickness might deteriorate.

なお、上記した圧延荷重Pの実測値の誤差原因としては
、■ロードセルの温度変化ないしは劣化、■ロードセル
の受圧面の荷重の受は方の相違(偏荷重等)によるロー
ドセルの出力変化、■チぢツクとハウジングとの摩擦力
などが考えられる。
The causes of errors in the actual measured value of the rolling load P mentioned above include: ■ temperature changes or deterioration of the load cell, ■ changes in the output of the load cell due to differences in the way the pressure receiving surface of the load cell receives the load (unbalanced load, etc.); Possible causes include frictional force between the jacket and the housing.

また、上記板速■の実測値の誤差原因としては、■レー
ザ速度計等の板速計については、実機での水蒸気、ダス
ト等の悪環境、被圧延材の弛みによる速度計と被圧延材
との距離変化、■2台の検出器間の通過時間測定法につ
いては、通板時に発生する被圧延材の弛みなどが考えら
れる。
In addition, the causes of errors in the actual measured value of the plate speed (■) mentioned above are: (1) When the plate speed meter such as a laser speed meter is used, the speed meter and the rolled material may be affected by an adverse environment such as water vapor and dust in the actual machine, or by loosening of the rolled material. (1) Regarding the method of measuring the transit time between two detectors, possible causes include slack in the rolled material that occurs during sheet passing.

本発明は、上記のような課題を解決すべくなされたもの
であって、被圧延材のコイル先端から安定圧延にてt/
F度の良い板厚を連続圧延し得る板厚側in方法を提供
することを目的とする。
The present invention has been made to solve the above-mentioned problems, and is aimed at stably rolling t/w from the tip of the coil of a material to be rolled.
It is an object of the present invention to provide a thickness side in method that allows continuous rolling of a thick plate with a good F degree.

く課題を解決するための手段〉 本発明は、圧延荷重、先進率だけでなく圧延トルクも圧
延ロールと被圧延材間の摩擦係数μおよび被圧延材の変
形抵抗kに依存することに着目してなされたものであり
、金属材料の連続圧延において、被圧延材先端部がiス
タンドを通過する際、圧延荷重、圧延トルクおよび先進
率を測定し、これらの測定値と圧延理論式を用いて被圧
延材の変形抵抗を演算し、この演算結果に基づいて(i
+1)スタンド以降の圧延時のロール開度を修正制御す
るようにしたものである。
Means for Solving the Problems> The present invention focuses on the fact that not only the rolling load and rolling rate but also the rolling torque depend on the friction coefficient μ between the rolling rolls and the rolled material and the deformation resistance k of the rolled material. In continuous rolling of metal materials, when the tip of the rolled material passes through the i-stand, the rolling load, rolling torque, and advance rate are measured, and these measured values and the rolling theoretical formula are used to calculate the The deformation resistance of the rolled material is calculated, and based on this calculation result (i
+1) The roll opening degree during rolling after the stand is corrected and controlled.

〈作 用〉 圧延トルクは、周知の如く圧延ロールのスピンドル軸に
歪ゲージを張り付けたトルクメータにより容易に測定で
き、ロードセルによる圧延荷重測定と同程度の応答性を
有している。ただし、ロードセルと同様、トルクメータ
の場合もストレーンゲージの温度上昇、劣化等の原因に
より常に正しい実測値が得られるとは限らない、圧延ト
ルクGiは、圧延理論より(7)、 (8)式で表され
る。
<Function> As is well known, rolling torque can be easily measured using a torque meter with a strain gauge attached to the spindle shaft of a rolling roll, and has a responsiveness comparable to rolling load measurement using a load cell. However, like with a load cell, a torque meter does not always provide accurate measured values due to factors such as temperature rise and deterioration of the strain gauge.Rolling torque Gi can be calculated using equations (7) and (8) from rolling theory. It is expressed as

Gi=Ri (IIL−hi)  ・ki−Qe+・W
 −−−−−−−(7)QG:)ルク関数 トルク関数QGiは圧延理論から導かれるもので、Or
owanの理論から導かれた計算式が玉野と神木(日本
機械学会論文集、 42 (1978)、 P965)
によって提案されており、本発明者はさらにOrowa
nの理論に近い計算式として(8)′式を開発している
Gi=Ri (IIL-hi) ・ki-Qe+・W
−−−−−−−(7) QG:) The torque function QGi is derived from the rolling theory, and Or
The calculation formula derived from OWAN's theory was published by Tamano and Kamiki (Proceedings of the Japan Society of Mechanical Engineers, 42 (1978), P965).
The present inventor further proposed Orowa
Formula (8)' has been developed as a calculation formula close to the theory of n.

0.2524 F−0,7033ri ・αi +0.
05534  μl ・αi  +0.00869  
αiα1−ri−、E−r百0.8886 !FT ・
a i・βi−0.683αiFπ丁=■・β10.9
966ri”  ・ki     −−−−一−−−−
−−(8)’ただし、ホットストリップ圧延では、無張
力圧延が基準であるため、(8)′式には張力項は含ま
れていない。
0.2524 F-0,7033ri ・αi +0.
05534 μl ・αi +0.00869
αiα1-ri-,E-r100.8886! FT・
a i・βi−0.683αiFπd=■・β10.9
966ri"・ki ------1----
--(8)' However, since tensionless rolling is the standard for hot strip rolling, the tension term is not included in equation (8)'.

そうして、本発明者は、圧延荷重Piと先進率Piの両
者のみの測定値から変形抵抗kiと摩擦係数μiを演算
すると、kiとkiが正しく予測されない場合があるた
め、圧延トルクの実測値もkiとkiの予測に使うこと
を考えた。
Then, the present inventor calculated the deformation resistance ki and the friction coefficient μi from only the measured values of both the rolling load Pi and the advance rate Pi, since ki and ki may not be predicted correctly, so the actual measurement of the rolling torque I thought about using the value to predict ki and ki.

本発明の詳細手順を第1図を参照して説明する。The detailed procedure of the present invention will be explained with reference to FIG.

■ 被圧延材先端部1がiスタンドの圧延ロール21を
通過する時に、ロードセル31より荷重r’i、  )
ルクメータ41よりトルクGi、仮速計51より板速V
i、圧延ロール速度制御n装置61に取付けたロール回
転計71により回転数Ni、圧下位置制御装置81に取
付けた圧下位置検出器9Iよりロール開度Siをそれぞ
れ実測し、制御Ta用計算機10に入力する。ただし、
板速の実測は、この図ではレーザ速度計を用いているが
、所定の2点間(例えば圧延ロール間)の先端部通過時
間を測定する方法によってもよい。
■ When the tip end 1 of the rolled material passes the rolling roll 21 of the i-stand, the load r'i, ) is applied by the load cell 31.
Torque Gi from the luxmeter 41, plate speed V from the temporary speedometer 51
i. The rotation speed Ni is measured by a roll tachometer 71 attached to the rolling roll speed control device 61, and the roll opening degree Si is measured by the rolling position detector 9I attached to the rolling position control device 81. input. however,
Although the plate speed is actually measured using a laser velocimeter in this figure, a method may also be used in which the tip passage time between two predetermined points (for example, between rolling rolls) is measured.

■ 前記(4)式より偏平ロール半径Ri’を、前記(
5〕式より先進率Fiを、前記(6)式よりkiを計算
する。ただし、板厚hiはPiとSiの実測値を使って
、ゲージメータ式(前記(1)式参照)より計算する。
■ From the above formula (4), the flat roll radius Ri' is calculated from the above (
5] Calculate the advanced rate Fi from the formula and ki from the formula (6) above. However, the plate thickness hi is calculated using the gauge meter formula (see formula (1) above) using the measured values of Pi and Si.

■ 変形抵抗kiを前記(2)、 (3)’式、および
前記(7)。
(2) Deformation resistance ki is expressed by equations (2), (3)', and (7) above.

(8)′式よりそれぞれ求め、それをk jG’)およ
びki(G)とする。
(8)', and let them be k jG') and ki (G).

■ kiG’)とki (G)がほぼ等しい(例えば5
%以内で一敗している)場合には、iスタンドの変形抵
抗kiをその平均値((ki(P)−1−ki(G))
 / 21とし、(i+1)スタンド以降の変形抵抗k
j(j>i+1)、圧延荷重Pjを次式により予測する
■ kiG') and ki (G) are almost equal (for example, 5
%), the deformation resistance ki of the i stand is its average value ((ki (P) - 1 - ki (G))
/21, and the deformation resistance k after the (i+1) stand
j (j>i+1) and rolling load Pj are predicted by the following formula.

ko:セットアツプ時の変形抵抗 po:セットアツプ時の圧延荷重 ■ (i+l)スタンド以降のロール開度Siを前記(
1)、 (2)、 (4)、 (3)’式より計算する
。ただし、その時に使用する摩擦係数μjは前コイルで
の圧延実績から算出された学習値を使用する。
ko: Deformation resistance at set-up po: Rolling load at set-up■ (i+l) The roll opening degree Si after the stand is defined as (
Calculate from formulas 1), (2), (4), and (3)'. However, the friction coefficient μj used at that time is a learned value calculated from the rolling results of the previous coil.

■ Sjの1旨令値Sj0を制御用計算機8より圧下位
置制御装置9に出力する。
(2) Output the 1 command value Sj0 of Sj from the control computer 8 to the reduction position control device 9.

〈実施例〉 7スタンド熱間連続仕上圧延機で普通鋼を圧延する際、
本発明法を実施した場合の効果と従来法(無料?II)
を実施した場合の効果との比較をコイル先端の板厚精度
(最終出側板厚偏差の標阜偏差)を評価項目として行っ
た。その結果を第1表に示す。
<Example> When rolling ordinary steel with a 7-stand continuous hot finishing mill,
Effects of implementing the method of the present invention and conventional method (free? II)
A comparison was made with the effect of implementing this method using the plate thickness accuracy at the tip of the coil (standard deviation of the final exit side plate thickness deviation) as an evaluation item. The results are shown in Table 1.

第1表 一方、kiψ)とk i (G)が等しくない(例えば
、5%以上の誤差がある)場合には、kj、 Pjはセ
ットアツプ値と等しいとする。すなわち、kj=に7゜
pj= p7とする。
Table 1 On the other hand, if kiψ) and k i (G) are not equal (for example, there is an error of 5% or more), kj and Pj are assumed to be equal to the set-up value. That is, let kj=7°pj=p7.

第1表より明らかなように、本発明法は従来法に比べて
、コイル先端の板厚精度を大幅に改善できることがわか
る。
As is clear from Table 1, it can be seen that the method of the present invention can significantly improve the plate thickness accuracy at the tip of the coil compared to the conventional method.

〈発明の効果〉 以上説明したように、本発明によれば、連続圧延におい
て被圧延材の先端部分から精度の良い板厚が得られるこ
とになり、歩留り向上に大いに寄与することができる。
<Effects of the Invention> As explained above, according to the present invention, a highly accurate plate thickness can be obtained from the tip portion of the rolled material during continuous rolling, and this can greatly contribute to improving the yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一例を示す制御ブロック図である。 1・・・被圧延材先端部、  2・・・圧延ロール。 3・・・ロードセル、    4・・・トルクメータ1
5・・・板速計、   6・・・圧延ロール速度制御装
置。 7・・・ロール回転計、   8・・・圧下位置制御n
装置。 9・・・圧下位置検出器、  10・・・制御用計算機
FIG. 1 is a control block diagram showing an example of the present invention. 1... Tip of the material to be rolled, 2... Roll. 3...Load cell, 4...Torque meter 1
5... Plate speed meter, 6... Roll speed control device. 7... Roll tachometer, 8... Roll down position control n
Device. 9... Roll down position detector, 10... Control computer.

Claims (1)

【特許請求の範囲】[Claims] 金属材料の連続圧延において、被圧延材先端部が1スタ
ンドを通過する際、圧延荷重、圧延トルクおよび先進率
を測定し、これらの測定値と圧延理論式を用いて被圧延
材の変形抵抗を演算し、この演算結果に基づいて(i+
1)スタンド以降のロール開度を修正制御することを特
徴とする金属材料の連続圧延における板厚制御方法。
In continuous rolling of metal materials, when the tip of the rolled material passes through one stand, the rolling load, rolling torque, and advance ratio are measured, and these measured values and the rolling theoretical formula are used to calculate the deformation resistance of the rolled material. Based on the result of this calculation, (i+
1) A method for controlling plate thickness in continuous rolling of metal materials, which comprises corrective control of the roll opening after the stand.
JP63263873A 1988-10-21 1988-10-21 Sheet thickness control method for continuous rolling of metallic material Pending JPH02112814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63263873A JPH02112814A (en) 1988-10-21 1988-10-21 Sheet thickness control method for continuous rolling of metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63263873A JPH02112814A (en) 1988-10-21 1988-10-21 Sheet thickness control method for continuous rolling of metallic material

Publications (1)

Publication Number Publication Date
JPH02112814A true JPH02112814A (en) 1990-04-25

Family

ID=17395428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63263873A Pending JPH02112814A (en) 1988-10-21 1988-10-21 Sheet thickness control method for continuous rolling of metallic material

Country Status (1)

Country Link
JP (1) JPH02112814A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6216504B1 (en) * 1997-09-05 2001-04-17 Kawasaki Steel Corporation Traveling sheet thickness changing method for cold tandem roller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6216504B1 (en) * 1997-09-05 2001-04-17 Kawasaki Steel Corporation Traveling sheet thickness changing method for cold tandem roller

Similar Documents

Publication Publication Date Title
JPH02112814A (en) Sheet thickness control method for continuous rolling of metallic material
JPH0545325B2 (en)
JPH0569021A (en) Method and device for controlling rolling mill
JPH0413411A (en) Method for controlling strip thickness when strip is passed through in hot continuous mill
JPS63137510A (en) Strip thickness control method for hot continuous rolling mill
JP3205130B2 (en) Strip width control method in hot rolling
JP3284948B2 (en) Strip meandering control method
JPS5916527B2 (en) How to correct meandering strips
JPS631124B2 (en)
JPS6150047B2 (en)
JP2751275B2 (en) How to determine rolling parameters
JPH05104123A (en) Hot continuous rolling method
JPS6264414A (en) Method for measuring deformation resistance of rolling plate
JP2540666B2 (en) Hot rolled sheet thickness control method using inter-stand thickness gauge
JPH0929316A (en) Setup method in hot finish rolling
JPS6320604B2 (en)
JPS6225447B2 (en)
JPH0585249B2 (en)
AU2004320913B2 (en) Method of setting/controlling wedge in plate material rolling
JPH0610055A (en) Annealing temperature controller of continuous annealing equipment
JP3152524B2 (en) Method of controlling thickness of rolled material in hot continuous rolling
JPH0390207A (en) Meandering control method of plate rolling time
JPS63207408A (en) Rolling method for preventing sheet form bending in hot rough rolling stage
JPS61262413A (en) Sheet temperature control device for rolling sheet material taking sheet thickness change
JPH02268915A (en) Method of controlling thickness of steel plate passing through hot continuous finish rolling mill