JPH02112456A - Nonwoven fabric made of polypropylene - Google Patents

Nonwoven fabric made of polypropylene

Info

Publication number
JPH02112456A
JPH02112456A JP63262072A JP26207288A JPH02112456A JP H02112456 A JPH02112456 A JP H02112456A JP 63262072 A JP63262072 A JP 63262072A JP 26207288 A JP26207288 A JP 26207288A JP H02112456 A JPH02112456 A JP H02112456A
Authority
JP
Japan
Prior art keywords
polypropylene
nonwoven fabric
tensile strength
fraction
boiling cyclohexane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63262072A
Other languages
Japanese (ja)
Other versions
JPH0672352B2 (en
Inventor
Masanori Ishikawa
真範 石川
Kunio Goda
郷田 邦雄
Jun Saito
純 齋藤
Masayasu Suzuki
正康 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP63262072A priority Critical patent/JPH0672352B2/en
Publication of JPH02112456A publication Critical patent/JPH02112456A/en
Publication of JPH0672352B2 publication Critical patent/JPH0672352B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain the subject nonwoven fabric resistant to hardening of feeling, having excellent tensile strength and suitable for operating gown, etc., by using a polypropylene having an isotactic pentad fraction falling within a specific range. CONSTITUTION:The objective nonwoven fabric is produced by using a polypropylene having an isotactic pentad fraction (abbreviated as I5) of 0.880-0.930 and an I5 difference between a boiling cyclohexane insoluble fraction and a boiling cyclohexane soluble fraction of >=0.050. The polypropylene is preferably a polypropylene mixture produced by mixing two or more kinds of polypropylenes having different I5 values of the resins and different I5 values between the boiling cyclohexane insoluble fraction and soluble fraction.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はポリプロピレン製不織布に関する。本発明のポ
リプロピレン製不織布は、従来より用いられているポリ
プロピレン樹脂やナイロンmK&、ポリエステル樹脂な
どを原料とする不織布と同様に、手術着、紙おむつの表
面材・生理用品などの医療・衛生資材、排水材、地磐改
良材などの土木資材、ハウス内張りカーテンなどのl業
資材、油吸着材などの工業資材などの分野で広く使用さ
れる。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a nonwoven fabric made of polypropylene. The polypropylene nonwoven fabric of the present invention can be used for medical and sanitary materials such as surgical gowns, surface materials for disposable diapers and sanitary products, as well as for wastewater drainage, as well as nonwoven fabrics made from conventionally used polypropylene resin, nylon mK&, polyester resin, etc. It is widely used in fields such as civil engineering materials such as lumber and ground improvement materials, industrial materials such as house lining curtains, and industrial materials such as oil adsorbents.

(従来9つ技術) 一般に、不織布は、繊維→ウェブ(繊維状熱可塑性樹脂
をシート状に分散させた繊維集合体)→結合という工程
によって製造される。
(Nine Conventional Technologies) Generally, nonwoven fabrics are manufactured through the process of fibers → web (fiber aggregate in which fibrous thermoplastic resin is dispersed in sheet form) → bonding.

熱可塑性樹脂を用いた、叡雑には、溶融紡出後、冷却固
化した未延伸紡出物を延伸してなる繊維と溶融紡出後直
ちに、溶融状態にある紡出物を高速気流で牽引して繊維
としたものとがある。溶融紡出後、冷却固化した未延伸
紡出物を延伸してなる熱可塑性樹脂製は維は、延伸によ
り強度および弾性が向上した繊維となり、必要に応じて
所望長の短繊維にカットしてステープルとしてもしくは
長繊維のままで不織布の原料に用いられている。
Fibers using thermoplastic resin are produced by drawing an undrawn spun product that is cooled and solidified after melt spinning. There are some that are made into fibers. After melt spinning, the thermoplastic resin fibers obtained by drawing the undrawn spun product that has been cooled and solidified become fibers with improved strength and elasticity. It is used as a raw material for nonwoven fabrics, either as staples or as long fibers.

ウェブの成形の方法には、紡績の初期工程?経てウェブ
にする方法と、紡糸ノズルより噴射した繊維状熱可塑性
樹脂をシート状に分散せしめてウェブとなす方法とがあ
る。ウェブに成形された繊維は、そののち適当な暗合物
5ちるいは物理的なエネルギーを、核゛、阪推に与える
ことによって繊維どうしを結合させる。
Is the web forming method the initial process of spinning? There are two methods: one method is to make a web by spinning, and the other is to make a web by dispersing the fibrous thermoplastic resin injected from a spinning nozzle into sheets. The fibers formed into a web are then bonded together by applying a suitable compound or physical energy to the core.

現在、ポリプロピレン繊維から製造される不織布のほと
んどは、溶融紡出後、冷却固化した未延伸紡出物を、延
伸してなるQ維から得られるウェブを、埋立して散在さ
せた凸部を有する熱ロール(エンボスロール)と、熱平
滑ロール(フラットロール)の間で、熱圧着させる方法
で製造されている。したがって、得られたポリプロピレ
ン製不織布の表面は、熱圧着による凹部が形成され、該
凹部が互いに独立して間隔をおいて散在したものである
。かかる熱圧着による凹部は、不織布の物性、毛羽止め
ならび(て相間剥離の防止などの実質的な物性を得るた
めに不可欠なものである。
Currently, most of the nonwoven fabrics manufactured from polypropylene fibers have convex portions that are obtained by reclamation of a web obtained from Q fibers obtained by stretching an undrawn spun product that has been melt-spun, cooled, and solidified. It is manufactured by thermocompression bonding between a heat roll (emboss roll) and a heat smooth roll (flat roll). Therefore, on the surface of the obtained polypropylene nonwoven fabric, recesses were formed by thermocompression bonding, and the recesses were scattered independently and at intervals. Such recesses formed by thermocompression bonding are indispensable for obtaining substantial physical properties of the nonwoven fabric, such as prevention of fluffing and prevention of interphase peeling.

しかしながら、かかる熱圧着部分は、熱融着過度によっ
て繊維どうしが溶融してフィルム状となり、脆くて硬く
なり、不織布の風合硬化を起こすといった欠点を有して
いる。かかる不織布の風合硬化を回避するだめK、エン
ボスロールとフラットロール間の圧着温度を低くするこ
とが考えられるが、該圧着温度を低くすると、熱圧着部
分は、繊維どうしの熱融着が不足し、得られた不織布の
引張強度が向上せず実用に供し得ないといった欠点を有
している。熱圧着温度が低温で、しかも、実用に供し得
る程度に圧着させるだめに、たとえば、鞘成分の樹脂が
芯成分の樹脂よシ低融点である鞘成分樹脂と芯成分明脂
とよシなる、芯鞘構造をした繊維を原料とした不織布が
従来よシ製造されている。しかし、該芯鞘構造を有する
繊維はその製造方法が複雑であり、コストも高くなると
いつだ欠点を有している。
However, such thermocompression-bonded parts have the disadvantage that excessive heat fusion causes the fibers to melt and form a film, making it brittle and hard, and causing hardening of the texture of the nonwoven fabric. In order to avoid such hardening of the texture of the nonwoven fabric, it is possible to lower the pressure bonding temperature between the embossing roll and the flat roll, but if the pressure bonding temperature is lowered, the heat fusion bond between the fibers will be insufficient in the thermocompression bonded area. However, it has the disadvantage that the tensile strength of the obtained nonwoven fabric is not improved and cannot be put to practical use. In order to keep the thermocompression bonding temperature low and to achieve practical bonding, for example, the sheath component resin has a lower melting point than the core component resin. Nonwoven fabrics made from fibers with a core-sheath structure have conventionally been manufactured. However, fibers having a core-sheath structure have disadvantages in that the manufacturing method thereof is complicated and the cost is high.

(発明が解決しようとする課題) 本発明者等は、上述の繊維どうしの熱融着過度による不
織布の風合硬化もしくは繊維どうしの熱融着不足による
不織布の引張強度の低下を改善するべく、ポリプロピレ
ンのアイソタクチックペンタッド分率(以下、■、とい
う。)を立体規則性のパラメーターとして、立体規則性
の異なるポリプロピレンを用いだ似維の不織布性能につ
いて鋭意研究した。その結果、ポリプロピレンの■、が
0.880以上、0.930来講で、かつ沸騰シクロへ
千サン不溶部と沸騰シクロヘキサン可溶部との1、の差
が0.050以上のポリプロピレンを原料とした繊維を
用いることにより、原料繊維の構造を上述のような特別
な構造にすることなしに風合硬化を起こさずに引張強度
が向上した不織布が得られることを見いだし、この知見
に基づき本発明を完成した。
(Problems to be Solved by the Invention) In order to improve the above-mentioned hardening of the texture of a nonwoven fabric due to excessive heat fusion between fibers or the decrease in tensile strength of a nonwoven fabric due to insufficient heat fusion between fibers, Using the isotactic pentad fraction (hereinafter referred to as ■) of polypropylene as a stereoregularity parameter, we conducted intensive research on the performance of similar fiber nonwoven fabrics using polypropylenes with different stereoregularities. As a result, polypropylene with a value of 0.880 or more, 0.930, and a difference of 1 between the insoluble part in boiling cyclohexane and the soluble part in boiling cyclohexane of 0.050 or more was used as raw material. It was discovered that by using such fibers, it was possible to obtain a nonwoven fabric with improved tensile strength without causing texture hardening without changing the raw material fiber structure to the above-mentioned special structure.Based on this knowledge, the present invention was developed. completed.

以上の記述から明らかなよう・罠、本発明の目的は風合
硬化がなく、優れだ引張強度を有するポリプロピレン製
不織布を提供することである。
As is clear from the above description, an object of the present invention is to provide a polypropylene nonwoven fabric that is free from hand hardening and has excellent tensile strength.

(課題を解決するだめの手段) 本発明は下記の構成を有する。(Failure to solve the problem) The present invention has the following configuration.

(1)  アイソタクチックペンタッド分率が0.88
0以上、0.930以下で、かつ沸騰シクロヘキサン不
溶部のアイソタクチックペンタッド分率と沸騰シクロヘ
キサン可溶部のアイソタクチックペンタッド分率との差
が0050以上であるポリプロピレンを用いたことを特
徴とするポリプロピレン製不織布。
(1) Isotactic pentad fraction is 0.88
0 or more and 0.930 or less, and the difference between the isotactic pentad fraction of the boiling cyclohexane insoluble part and the isotactic pentad fraction of the boiling cyclohexane soluble part is 0050 or more. Characteristic polypropylene non-woven fabric.

(2)前記1項記載のポリプロピレンとして、2種以上
のポリプロピレンの混合物を用いtことを特徴とするポ
リプロピレン製不織布。
(2) A nonwoven fabric made of polypropylene, characterized in that the polypropylene described in item 1 above is a mixture of two or more types of polypropylene.

本発明の不織布の製造に用いるポリプロピ1ノンは、そ
のアイソタクチックペンタッド分率(工、)が0.88
0以上、0.930以下で、かつ沸とうシクロヘキサン
不溶部のI、と沸とうシクロヘキサン可溶部のI、との
差が0.050以上のものである。
The polypropylene used for producing the nonwoven fabric of the present invention has an isotactic pentad fraction (mm) of 0.88.
0 or more and 0.930 or less, and the difference between I of the boiling cyclohexane insoluble part and I of the boiling cyclohexane soluble part is 0.050 or more.

該T、が0.930を超えるものを用いると2.5デニ
ール以下の未延伸糸を紡糸することが困難になり、まだ
、不織布製造時の熱圧着温度を高くしなければならない
ので、熱融着温度によυ得られた不織布が風合硬化を起
こし、風合良好な不織布が得られなくなるので好ましく
なく、また、該工、が0゜880未溝のものを用いると
、繊維自体の引張強度が低ぐなシ、さらに不織布製造時
の熱圧着温度の制御がむずかしくなシ、その結果、熱融
着温度(でよる風合硬化を起こしやすくなるので好まし
くない。
If T exceeds 0.930, it will be difficult to spin undrawn yarn of 2.5 denier or less, and the thermocompression bonding temperature must be high during nonwoven fabric production, so it is necessary to This is undesirable because the resulting nonwoven fabric will harden due to the wearing temperature, making it impossible to obtain a nonwoven fabric with good texture.Furthermore, if a non-woven fabric with a groove of 0°880 is used, the tensile strength of the fibers themselves will increase. It is not preferable because the strength is low, and furthermore, it is difficult to control the thermocompression bonding temperature during the production of the nonwoven fabric, and as a result, it is easy to cause texture hardening due to the heat fusion temperature.

また、沸とうシクロヘキサン不溶部の1.と沸とうシク
ロヘキサン可溶部の工、との差が0.050未満0ポリ
プロピレンを用いると、不織布製造時の熱圧着温度の制
御がむずかしく、熱融着不足による得られた不織布の引
張強度の低下や熱融着過度による風合硬化を起こしやす
くなるので好ましくない。
Also, 1. of the boiling cyclohexane insoluble part. When polypropylene is used, it is difficult to control the thermocompression bonding temperature during nonwoven fabric production, and the tensile strength of the resulting nonwoven fabric decreases due to insufficient thermal fusion. This is not preferable because it tends to cause texture hardening due to excessive heat fusion.

本発明に用いるポリプロピレンは、たとえば次の方法で
得ることができる。すなわち、チタン含有固体成分(三
塩化チタンを主成分とする固体化合物もしくは塩化マグ
ネシウム等の担体に四塩化チタンを担持せしめた固体化
合物)と有機アルミニウム化合物を組合せ、また場合に
よっては電子供与体成分を第3成分として組合せた。い
わゆるチーグラー・ナツタ触媒を用いて、不活性溶媒中
で行なうスラリー重合、プロピレン自身を溶媒とするバ
ルク重合もしくはプロピレンガスを主体とする気相重合
等によりプロピレンを2段階以上で重合させることによ
って得られる。沸とうシクロヘキサン可溶部の工、が高
目になるようにプロピレン重合時の重合温度を40°C
〜80°Cと比較的低い温度で、圧力を常圧〜50A:
9/iG、重合時間5分〜20時間でプロピレンを重合
させたのち、ついで、沸とうシクロヘキサン可溶部の■
、が低目になるように重合温度を70°C〜90°Cと
比較的高い温度で、圧力を常圧〜50kg/iG、重合
時間5分〜20時間でプロピレンを重合させるいわゆる
2段重合法によって得ることができる。
The polypropylene used in the present invention can be obtained, for example, by the following method. That is, a titanium-containing solid component (a solid compound mainly composed of titanium trichloride or a solid compound in which titanium tetrachloride is supported on a carrier such as magnesium chloride) is combined with an organoaluminium compound, and in some cases, an electron donor component is also added. Combined as the third component. It is obtained by polymerizing propylene in two or more stages using a so-called Ziegler-Natsuta catalyst, such as slurry polymerization in an inert solvent, bulk polymerization using propylene itself as a solvent, or gas phase polymerization using propylene gas as the main component. . The polymerization temperature during propylene polymerization was set at 40°C so that the temperature of the boiling cyclohexane soluble part was high.
At a relatively low temperature of ~80°C, the pressure is normal pressure ~50A:
9/iG, after polymerizing propylene for a polymerization time of 5 minutes to 20 hours,
So-called two-stage polymerization, in which propylene is polymerized at a relatively high polymerization temperature of 70°C to 90°C so that the Can be obtained legally.

まだ、本発明で用いるポリプロピレンは、■。However, the polypropylene used in the present invention is ■.

および沸とうシクロヘキサン不溶部と可溶部の1゜がそ
れぞれ異なる2種以上のポリプロピレンを混合したポリ
プロピレン混合物を用いることもできる。このとき該混
合物のI、が0.880以上、0.930以下で、かつ
沸とうシクロヘキサン不溶部の■。
It is also possible to use a polypropylene mixture obtained by mixing two or more types of polypropylene in which the insoluble and soluble portions of boiling cyclohexane differ by 1°. At this time, the I of the mixture is 0.880 or more and 0.930 or less, and the boiling cyclohexane insoluble portion is 2.

と沸とうシクロヘキサン可溶部の工、との差が0.05
0以上であればよい。
The difference between the cyclohexane soluble part and the boiling cyclohexane soluble part is 0.05.
It is sufficient if it is 0 or more.

2種以上のポリプロピレンの混合には、通常の混合装置
たとえばヘンセルミキサー(商品名)、スーパーミキサ
ー リボンブレンダーもしくはパンバリミキサーなどを
用いて混合すればよい。
Two or more types of polypropylene may be mixed using a conventional mixing device such as a Hensel mixer (trade name), a Super Mixer ribbon blender, or a Pan Bali mixer.

なお、本発明におけるシクロヘキサン不溶部およびシク
ロヘキサン可溶部とは、該ポリプロピレンをフェノール
系の熱安定剤を混合したキシレンで全溶解したのち、該
キシレン溶液にメタノールを加え、該ポリプロピレンを
全析出させ、ヂ過したのち、80℃で24時間真空乾燥
させたポリプロピレンを、フェノール系の熱安定剤を混
合したシクロヘキサンで8時間ソックスレー抽出器で抽
出したときのシクロヘキサン不溶部とシクロヘキサン可
溶部のことである。
In addition, the cyclohexane-insoluble part and the cyclohexane-soluble part in the present invention refer to the polypropylene that is completely dissolved in xylene mixed with a phenolic heat stabilizer, and then methanol is added to the xylene solution to completely precipitate the polypropylene. This is the cyclohexane-insoluble part and the cyclohexane-soluble part when polypropylene, which has been dried under vacuum at 80°C for 24 hours, is extracted with cyclohexane mixed with a phenolic heat stabilizer using a Soxhlet extractor for 8 hours. .

本発明におけるI、とは、エイザンベル(A、 Zam
belll)等によってマクロモレキュールズ(Mac
romolecules)、6.925 (1973)
に発表された方法、すなわち13C−NMRを使用して
測定されるポリプロピレン分子鎖中のペンタッド単位で
のアイソタクチック分率である。したがってI、とは、
ポリプロピレンモノマー単位が、5個連続してアイソタ
クチック結合したポリプロピレンモノマー単位の分率で
ある。上述のN M Rの測定に3けるピークの帰属決
定法は、マクロモレキュールズ(Macromolec
ules )、8.687 (1975)に基づいた。
In the present invention, I refers to A.
Macromolecules (Mac
romolecules), 6.925 (1973)
This is the isotactic fraction in pentad units in a polypropylene molecular chain measured using the method published in 13C-NMR. Therefore, I is
This is the fraction of polypropylene monomer units in which five consecutive polypropylene monomer units are isotactic bonded. The peak attribution determination method in the above-mentioned NMR measurement is based on Macromolecules.
ules), 8.687 (1975).

後述の実施例におけるNMRに:るy5:1定ば、日本
電子■製13C−N M R型名GX270を用い、0
〜DCB/C6D6のポリプロピレン21夜を用いて、
温度130℃、678MHzで行なった。
For NMR in the examples described later, if the ratio is 5:1, 13C-NMR type GX270 manufactured by JEOL Ltd. is used, and 0.
~ Using DCB/C6D6 polypropylene 21 night,
The test was carried out at a temperature of 130° C. and a frequency of 678 MHz.

本発明の不織布は、■、が0.880以上、0.930
以下で沸とうシクロヘキサン不溶部と沸とうシクロヘキ
サン可溶部の■、の差がo、oso以上であるポリプロ
ピレンもしくはポリプロピレン混合物に通常繊維用ポリ
プロピレンに添加される各種の酸化防止剤、中和剤、滑
剤の所定量を添加し、ヘンセルミキサー(商品名)、ス
ーパーミキサーなどの撹拌混合装置で3〜5分間撹拌混
合したのち、該混合物を単軸もしくは2軸の押出機を用
いて、溶融混線温度200°C〜300°Cで溶融混練
押出してペレット化し、得られたペレットを公知のポリ
プロピレン繊維の製造方法により溶融紡糸、延伸してi
VJ、維化し、該電離をウェブ状としたのち、エンボス
ロール、フラットロールがもなる熱融着装置で不織布に
することによって得ることができる。
The nonwoven fabric of the present invention has ■: 0.880 or more and 0.930
Various antioxidants, neutralizers, and lubricants that are usually added to polypropylene for textiles are added to polypropylene or polypropylene mixtures in which the difference between the boiling cyclohexane insoluble part and the boiling cyclohexane soluble part is at least o, oso. After stirring and mixing for 3 to 5 minutes using a stirring mixing device such as Hensel Mixer (trade name) or Super Mixer, the mixture is heated to the melt crosstalk temperature using a single-screw or twin-screw extruder. The pellets are formed by melt-kneading and extrusion at 200°C to 300°C, and the resulting pellets are melt-spun and stretched using a known method for producing polypropylene fibers.
It can be obtained by fibrosing VJ, forming the ionized material into a web, and then forming it into a nonwoven fabric using a heat-sealing device that also includes an embossing roll and a flat roll.

(実施例) 以下、実施グjおよび比取グ1]に基づいて不発明を具
体的に説明するが、本発明はこれらに限定されるもので
はない。なお、本発明の実施例および比較例で用いたポ
リプロピレンの製造方法および不織布の評価方法は次の
方法によった。
(Example) Hereinafter, non-invention will be specifically explained based on Example 1 and Example 1], but the present invention is not limited thereto. In addition, the method for producing polypropylene and the evaluation method for the nonwoven fabric used in the examples and comparative examples of the present invention were as follows.

(1)  ポリプロピレンの製造方法 ■、が0.883のポリプロピレンおよび該I5が0.
900のポリプロピレンは特公昭59−28573号公
報に記載の三項チタン組成物すなわち、四塩化チタン0
.4モルを35°Cに加熱し、これにn−ヘキサン60
ミリリツトル、ジエチルアルミニウムモノクロライド0
.05モル、ジイソアミルエーテル0.12モルを25
℃で1分間で混合し5分間同温度で反応させ、得られた
反応生成液の全量を30分間で滴下した後、同温度に3
0分間保ち、75°Cに昇温して更に11時間反応させ
、室温迄冷却し上澄液を除き、n−ヘキサン400 ミ
IJ IJットルを加えてデカンテーションで上澄液を
除く操作分4回繰シ返し、得られた固体生成物(1)全
量をn−へキサン300ミリリツトル中して召;蜀させ
た状態で、20’Cでジイソアミルエーテル16グラム
と四塩化チタン35グラムを室温にて約1分間で加え6
5℃で1時間反応させた後、400ミリリツトルのn−
ヘキサンを加え10分間撹拌し静置して上澄液を除く操
作を5回縁シ返し、その後、減圧下で乾燥させて得られ
た固体生成物とジエチルアルミニウムモノクロライドと
を組み合せた触媒の存在下に、重合圧力10 kF! 
f /c7IG、1段目の重合器の重合温度を70℃、
2段目の重合温度を85°Cとした条件下で重合時間を
調整してプロピレンを2段階で重合させることによシ得
た。
(1) Method for producing polypropylene Polypropylene with a value of 0.883 and I5 of 0.
The polypropylene No. 900 is a three-term titanium composition described in Japanese Patent Publication No. 59-28573, that is, titanium tetrachloride 0
.. 4 moles were heated to 35°C and added with 60 mol of n-hexane.
Milliliter, diethylaluminum monochloride 0
.. 05 mol, diisoamyl ether 0.12 mol 25
℃ for 1 minute, reacted at the same temperature for 5 minutes, added the entire amount of the reaction product solution dropwise over 30 minutes, and then heated to the same temperature for 3 minutes.
The temperature was raised to 75°C and reacted for an additional 11 hours, cooled to room temperature, the supernatant liquid was removed, 400 mIJ IJ liter of n-hexane was added, and the supernatant liquid was removed by decantation.Step 4 The entire amount of the obtained solid product (1) was dissolved in 300 ml of n-hexane. Add for about 1 minute at 6
After reacting for 1 hour at 5°C, 400 ml of n-
Presence of a catalyst consisting of a combination of a solid product obtained by adding hexane, stirring for 10 minutes, standing still, removing the supernatant liquid, and removing the supernatant liquid five times, and then drying the solid product under reduced pressure and diethylaluminum monochloride. Below, the polymerization pressure is 10 kF!
f/c7IG, the polymerization temperature of the first stage polymerization vessel was 70℃,
It was obtained by polymerizing propylene in two stages by adjusting the polymerization time under conditions where the second stage polymerization temperature was 85°C.

また、■、が0.928.0.887および0.872
のポリプロピレンは上述の三塩化チタン組成物とジエチ
ルアルミニウムモノクロライドとを組み合せた触媒の存
在下に重合温度を70’C582°Cおよび85°Cと
し、圧力10 kgf/cdGの条件下でプロピレンを
1段階で重合させて得た。
Also, ■, is 0.928, 0.887 and 0.872
The polypropylene was prepared by polymerizing at 70°C, 582°C and 85°C in the presence of a catalyst combining the titanium trichloride composition and diethylaluminium monochloride, and propylene was polymerized at 10 kgf/cdG under a pressure of 10 kgf/cdG. It was obtained by polymerization in stages.

■、が0.919のポリプロピレンは塩化マグネシウム
に四項イヒチタンを担持した面体化合物すなわち、デカ
ン30ミリリツトノベm7に4化マグネシウム4.8グ
ラム、オルトチタンan−ブチル17グラムおよび2−
エチル−1−ヘキサノール19.5グラムを混合し、撹
拌しながら1300Cに1時間加熱して均一な溶液とし
だ後、該均一溶液を7゜0Cとし、フタル酸ジイソブチ
ル1.8グラムを加え1時間経過後、四塩化ケイ素52
グラムを2.5時間かけて滴下して固体を析出させ、更
に700G。
(2) Polypropylene with a value of 0.919 is a hedral compound in which four-term titanium is supported on magnesium chloride, that is, 30 milliliters of decane, 4.8 grams of magnesium tetrachloride, 17 grams of orthotitanium an-butyl, and 2-
19.5 g of ethyl-1-hexanol was mixed and heated to 1300C for 1 hour with stirring to obtain a homogeneous solution.The homogeneous solution was heated to 7°C, and 1.8 g of diisobutyl phthalate was added for 1 hour. After lapse of time, silicon tetrachloride 52
gram over 2.5 hours to precipitate a solid, and then 700G.

1時間加熱し、その後、固体を(餐液から分離し、n−
へキサンで洗浄して得た固体生成物(1)全量を1.2
−ジクロルエタン50ミリリツトルに溶がした四塩化チ
タン50ミリリツトルと混合し、続いて、フタル酸ジイ
ソブチル1.8グラムを加え、撹拌しなから100’C
に2時間反応させた後、同温度においてデカンテーショ
ンによシ上澄液を除き、再び、1,2−ジクロルエタン
50ミリリツトルおよび四塩化チタン50ミリリツトル
を加え、100℃に2時間撹拌し、ヘキサンで洗浄して
得られた面体生成物とトリエチルアルミニウムおよびジ
フェニルメト干ジシランとを組み合せたPAWの存在下
に、重合温度70℃、圧カフん9 f /ciGのす注
下でプロピレンを1段階で重合さぞて得た。
Heat for 1 hour, then separate the solid (from the liquid and n-
The total amount of solid product (1) obtained by washing with hexane was 1.2
- mixed with 50 ml of titanium tetrachloride dissolved in 50 ml of dichloroethane, followed by the addition of 1.8 grams of diisobutyl phthalate and heated to 100° C. without stirring.
After reacting for 2 hours at the same temperature, the supernatant was removed by decantation, 50 ml of 1,2-dichloroethane and 50 ml of titanium tetrachloride were added again, stirred at 100°C for 2 hours, and diluted with hexane. Propylene was polymerized in one step at a polymerization temperature of 70° C. under a pressure cuff of 9 f/ciG in the presence of a PAW in which the washed facepiece product was combined with triethylaluminum and diphenylmethodisilane. I really got it.

(2)  評価方法 (1)  剛軟度 風合硬化の程度は剛軟度を測定CJISL 1018゜
6.21Aに準拠)することにより評価した。
(2) Evaluation method (1) Bending resistance The degree of hand hardening was evaluated by measuring bending resistance (based on CJISL 1018°6.21A).

剛軟度測定用試験片は、作成した不1熾布の両端の耳部
から30譚以上、長手方向の末端から50C7!L以上
を除いた部分の不織布から縦50mm、横100 yn
xの試験片を各10枚切シ出して調製した。
The test piece for measuring bending resistance was 30 or more from the edges of both ends of the fabric made, and 50C7 from the end in the longitudinal direction. Length 50 mm, width 100 yn from the nonwoven fabric excluding L and above
Ten x test pieces were cut out and prepared.

該試験片を用いて一辺が45度の傾斜をもつ表面が滑ら
かでスケールが目盛られている水平台(カンチレバー型
試験機)の上に、試験片をスケール基線に合わせて置く
。測定は手動によシ試験片を斜面の方向に緩やかに滑ら
せて試、9片の一端の中央が斜面と接したとき他端の位
置をスケールによって読む。剛軟度は、スケールの長さ
をミリメートル(=)で示し、それぞれの平均値を整数
で表わし7C値を測定値とした。
Using the test piece, place the test piece on a horizontal table (cantilever type testing machine) with a smooth surface and a graduated scale having one side inclined at 45 degrees, aligned with the scale base line. Measurements were made by manually sliding the test piece gently in the direction of the slope, and when the center of one end of the nine pieces touched the slope, the position of the other end was read on the scale. For bending resistance, the length of the scale was expressed in millimeters (=), each average value was expressed as an integer, and the 7C value was taken as the measured value.

すなわち、剛軟度の測定1直が高いほど風合硬化が進ん
でいることを示している。剛軟度の触感での分類は、 剛軟度が30朋以下であると柔らかくソフト感がある、 剛軟度が30朋を超えると硬くなりボアボア感がする、 と大まかに分類できる。
In other words, the higher the first measurement of bending resistance, the more the hand hardening progresses. The tactile sensation of bending resistance can be broadly classified as follows: If the bending resistance is 30 or less, it feels soft and soft, and if the bending resistance is over 30, it becomes hard and has a boa-boa feel.

((1)  引張強度 剛軟度測定用の試験片と同様にして調製した2 50 
ym、横100ytrvの試験片をそれぞれ10枚用い
、引張試験機で引張速度10 Q mm7m1n、試料
つかみ間隔5αで測定した時の、引張破断強度で表わし
た。後述の実施例に示した引張強度は、不織布1ぜあた
シのグラム数(以下、単に目付重量という)を209で
あるとして換算した値、すなわち引張破断強度を目付重
量で除し20を剰じた(直を用いた。巣立はグラム15
センチメートル(g/ 5 cTL)である。
((1) 2 50 prepared in the same manner as the test piece for measuring tensile strength and bending resistance.
Ten test pieces of ym and width of 100 ytrv were used, and the tensile strength was measured using a tensile tester at a tensile speed of 10 Q mm, 7 ml, and a sample gripping interval of 5α. The tensile strength shown in the examples below is the value obtained by converting the number of grams (hereinafter simply referred to as the basis weight) of one piece of nonwoven fabric as 209, that is, the tensile strength at break divided by the basis weight and the remainder of 20. Jita (I used direct. The fledgling was gram 15.
centimeter (g/5 cTL).

(iii )  剛軟度25のときの引張強度1直剛軟
度を横軸に引張強度をα粕にとったグラフから閂11軟
度25=ユのときの引張強度の1画を読みとり、剛軟度
25−のときの引張強度匝とした。この値が高いほど不
織布としての性能が向上していることになる。
(iii) Tensile strength when bending resistance is 25 1 Read one stroke of the tensile strength when bending resistance is 25 = Y from the graph where the horizontal axis is tensile strength The tensile strength was measured at 25 degrees. The higher this value is, the better the performance as a nonwoven fabric is.

実施例1.2、比較例1〜4 後述の第1表に示しだI5、シクロヘキサン不溶部およ
びシクロヘキサン可溶部の15を有するポリプロピレン
にステアリン酸カルシウムo、1重量係、安定剤として
チバ・ガイギー製のイルガノックス(IRGANOX)
1425WL 0.05重量%ヲ配合シヘンセルミキサ
ー(商品名)で3分間撹拌混合したのち、口径40iz
の単軸押出機を用いて、溶融混線押出250’Cで溶融
混線押出してペレタイズした。
Example 1.2, Comparative Examples 1 to 4 As shown in Table 1 below, polypropylene having I5, a cyclohexane-insoluble part and a cyclohexane-soluble part of 15, calcium stearate O, 1 weight part, and Ciba Geigy as a stabilizer were added. IRGANOX
1425WL 0.05% by weight After stirring and mixing with a Schiffensel mixer (trade name) for 3 minutes,
Using a single-screw extruder, the mixture was melt-cross-extruded at 250'C and pelletized.

得られたペレットを、従来公知の口金の内部に300メ
ツシユの金網でできたスクリーンノぐツクを有し、ノズ
ル孔径0.5 rtx %ノズル数450個を有する並
列型溶融紡糸機を用いて溶融紡糸した。
The obtained pellets were melted using a conventionally known parallel melt spinning machine having a screen nozzle made of 300 mesh wire mesh inside the nozzle and 450 nozzles with a nozzle hole diameter of 0.5 rtx%. spun.

紡糸は得られる未延伸糸のデニールが2.5〜2,6デ
ニール(でなるように300’Cで紡糸し、吐呂量’f
i 110 g/ mq、紡糸糸引取返XF: 880
 m /mjrで行った。得られた未延伸糸をロール回
転比が1.5、ロール温度50℃の弧伸ロールKかけて
、延伸糸を得た。
The spinning process was performed at 300'C so that the undrawn yarn had a denier of 2.5 to 2.6 denier, and
i 110 g/mq, spinning yarn take-back XF: 880
It was performed at m/mjr. The obtained undrawn yarn was passed through an arc stretching roll K having a roll rotation ratio of 1.5 and a roll temperature of 50° C. to obtain a drawn yarn.

さらに、得られた該延伸糸を捲、薄様Kかけたのち、5
0mmにカットし、巻取速度7.5 m /min ノ
カード機にかけてウェブを得、該ウェブを第1表に記載
の温度に加熱したエンボスロールおよびフラットロール
の間に、エンボスロール通過速度6m/iで通過させポ
リプロピレン製の不織布を得た。
Furthermore, after winding the obtained drawn yarn and applying a thin K,
The web was cut to 0 mm and passed through a card machine at a winding speed of 7.5 m/min to obtain a web, and the web was heated to the temperature listed in Table 1 between an embossing roll and a flat roll at an embossing roll passing speed of 6 m/min. A nonwoven fabric made of polypropylene was obtained.

得られた該不織布を用いて、剛軟度測定用試験片および
引張強度測定用試験片を調製し、剛軟度、引張強度を測
定した。また剛軟度25のときの引張強度値を算出した
Using the obtained nonwoven fabric, a test piece for measuring bending resistance and a test piece for measuring tensile strength were prepared, and the bending resistance and tensile strength were measured. Further, the tensile strength value at a bending resistance of 25 was calculated.

結果を第1表に示した。The results are shown in Table 1.

実施例3〜5、比較例5 後述の第2表:て示した■、を頁する21項のポリプロ
ピレンを同表肥散の温合割合に温合した混合物(シクロ
ヘモサン不呂部お:びシクロへ牛すン可溶邪の1.がそ
れぞれ周侵7て記載された数・Iのもの)を用いる以外
は実施例1〜2:て】スしてペレットを得た。
Examples 3 to 5, Comparative Example 5 A mixture prepared by heating the polypropylene of item 21 shown in Table 2 below to the heating ratio of fertilizer in the same table (cyclohemosan furobe o: and cyclo Pellets were obtained as in Examples 1 and 2, except that 1. of the soluble powder was used, respectively.

得られたペレットを用いて実施例1〜2に準拠して、不
織布の製造、剛軟度、引張強度の測定および剛軟度25
のときの引張強度値を算出した。
Using the obtained pellets, manufacturing a nonwoven fabric, measuring bending resistance and tensile strength, and measuring bending resistance 25 according to Examples 1 and 2.
The tensile strength value at the time was calculated.

結果を第2表に示した。The results are shown in Table 2.

第1表および第2表から明らかなように、本発明の不織
布は同一ロ11軟度での引張強度が比較各側にくらべて
高くなっておシ、本発明の不織布は風合硬化を2さえて
、引張強度が改善されてい己ことがわかる。
As is clear from Tables 1 and 2, the tensile strength of the nonwoven fabric of the present invention at the same softness is higher than that of each comparison side. It can be seen that the tensile strength has been improved.

(発明の効果) 本発明の不織布、:、機種どうしの熱融着過度による風
合硬化また(・:熱融着不足、C:る弓[張強度の低下
といった従来のポリプロピレン製不輩布の欠点を改善し
た不織布であ)、風合よイヒテ起こさずに引張強度が改
善されているので、手術着・紙おむつの衰面材などの医
療・衛生資材、排水材・地盤改良材などの土木資材、農
業資材、油吸着剤などの工業資材を始め各種の用途に好
適に使用することができる。
(Effects of the invention) The nonwoven fabric of the present invention has hardening of the texture due to excessive heat fusion between models (・: Insufficient heat fusion, It is a non-woven fabric that has improved its shortcomings) and has improved tensile strength without causing any problems in texture or texture, so it can be used for medical and sanitary materials such as fading materials for surgical gowns and disposable diapers, and civil engineering materials such as drainage materials and ground improvement materials. It can be suitably used for various purposes including agricultural materials and industrial materials such as oil adsorbents.

以上that's all

Claims (2)

【特許請求の範囲】[Claims] (1)アイソタクチツクペンタツド分率が0.880以
上、0.930以下で、かつ沸とうシクロヘキサン不溶
部のアイソタクチツクペンタツド分率と沸とうシクロヘ
キサン可溶部のアイソタクチツクペンタツド分率との差
が0.050以上であるポリプロピレンを用いたことを
特徴とするポリプロピレン製不織布。
(1) The isotactic pentad fraction is 0.880 or more and 0.930 or less, and the isotactic pentad fraction of the boiling cyclohexane insoluble part and the isotactic pentad fraction of the boiling cyclohexane soluble part A polypropylene nonwoven fabric characterized by using polypropylene having a difference of 0.050 or more.
(2)請求項1記載のポリプロピレンとして、2種以上
のポリプロピレンの混合物を用いたことを特徴とするポ
リプロピレン製不織布。
(2) A nonwoven fabric made of polypropylene, characterized in that the polypropylene according to claim 1 is a mixture of two or more types of polypropylene.
JP63262072A 1988-10-18 1988-10-18 Non-woven polypropylene Expired - Fee Related JPH0672352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63262072A JPH0672352B2 (en) 1988-10-18 1988-10-18 Non-woven polypropylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63262072A JPH0672352B2 (en) 1988-10-18 1988-10-18 Non-woven polypropylene

Publications (2)

Publication Number Publication Date
JPH02112456A true JPH02112456A (en) 1990-04-25
JPH0672352B2 JPH0672352B2 (en) 1994-09-14

Family

ID=17370640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63262072A Expired - Fee Related JPH0672352B2 (en) 1988-10-18 1988-10-18 Non-woven polypropylene

Country Status (1)

Country Link
JP (1) JPH0672352B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997021856A1 (en) * 1995-12-14 1997-06-19 Chisso Corporation Polypropylene fiber, a method for manufacture thereof, and a non-woven fabric made of the same
US5981068A (en) * 1995-02-02 1999-11-09 Chisso Corporation Modified polyolefin fibers and a non-woven fabric using the same
JP2009541529A (en) * 2006-06-20 2009-11-26 ダウ グローバル テクノロジーズ インコーポレイティド Neutralization of non-activated polymerization catalysts using phosphoric acid or phosphonate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102317015B1 (en) 2017-11-08 2021-10-26 주식회사 엘지화학 Homo polypropylene resin for non-woven fabric and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128511A (en) * 1984-07-20 1986-02-08 Tokuyama Soda Co Ltd Production of polypropylene

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128511A (en) * 1984-07-20 1986-02-08 Tokuyama Soda Co Ltd Production of polypropylene

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5981068A (en) * 1995-02-02 1999-11-09 Chisso Corporation Modified polyolefin fibers and a non-woven fabric using the same
WO1997021856A1 (en) * 1995-12-14 1997-06-19 Chisso Corporation Polypropylene fiber, a method for manufacture thereof, and a non-woven fabric made of the same
US5906890A (en) * 1995-12-14 1999-05-25 Chisso Corporation Polypropylene fiber, a method for manufacture thereof, and a non-woven fabric made of the same
CN1070936C (en) * 1995-12-14 2001-09-12 智索股份有限公司 Polypropylene fiber, a method for manufacture thereof, and a non-woven fabric made of the same
JP2009541529A (en) * 2006-06-20 2009-11-26 ダウ グローバル テクノロジーズ インコーポレイティド Neutralization of non-activated polymerization catalysts using phosphoric acid or phosphonate

Also Published As

Publication number Publication date
JPH0672352B2 (en) 1994-09-14

Similar Documents

Publication Publication Date Title
JP3748572B2 (en) Fiber and fiber molded body using the same
US5322728A (en) Fibers of polyolefin polymers
KR100807917B1 (en) Elastomeric bicomponent fibers comprising block copolymers having high flow
AU680263B2 (en) Novel polyolefin fibers and their fabrics
CN1934296B (en) Propylene-based copolymers, a method of making the fibers and articles made from the fibers
CN104010808B (en) Fiber and non-woven material prepared therefrom
JPH10298824A (en) Fiber and fibrous formed product using the same
KR20100031108A (en) Elastic nonwoven fabric, process for producing the same, and textile product comprising the elastic nonwoven fabric
CN102016149A (en) Fibers and fabrics made from ethylene/ alpha-olefin interpolymers
CN101351582B (en) Fibers made from copolymers of propylene/alpha-olefins
WO2004076726A1 (en) Polypropylene fibres
EP2671993B1 (en) Nonwoven fabric and textile product
WO1994009193A1 (en) Polymeric composition for soft polypropylene fibers
KR100510952B1 (en) A polypropylene fibre and a product made therefrom
JPH08509530A (en) Elastic fibers, fabrics and products made from them
WO2000060148A1 (en) Polypropylene fibres
US6720388B1 (en) Polypropylene fibres
JPH02112456A (en) Nonwoven fabric made of polypropylene
JPH09324355A (en) Nonwoven fabric
CN114787437A (en) Nonwoven fabric with enhanced mechanical strength
KR100468911B1 (en) Manufacturing method of polypropylene fiber for carpet
EP1390192A1 (en) Process for forming soft, drapeable nonwoven fabric

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees