JPH021123A - Method of quick nitrizing for forming oxynitride for boundary sealed during insolating oxidization - Google Patents

Method of quick nitrizing for forming oxynitride for boundary sealed during insolating oxidization

Info

Publication number
JPH021123A
JPH021123A JP63260723A JP26072388A JPH021123A JP H021123 A JPH021123 A JP H021123A JP 63260723 A JP63260723 A JP 63260723A JP 26072388 A JP26072388 A JP 26072388A JP H021123 A JPH021123 A JP H021123A
Authority
JP
Japan
Prior art keywords
silicon
layer
silicon dioxide
silicon substrate
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63260723A
Other languages
Japanese (ja)
Inventor
Steven Shao-Lun Lee
ステイーブン・シヤウールン リー
Derryl Dwayne John Allman
デリル ドウエイン ジョン オールマン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NCR Voyix Corp
Original Assignee
NCR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NCR Corp filed Critical NCR Corp
Publication of JPH021123A publication Critical patent/JPH021123A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02329Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen
    • H01L21/02332Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen into an oxide layer, e.g. changing SiO to SiON
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/32Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76202Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO
    • H01L21/76205Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO in a region being recessed from the surface, e.g. in a recess, groove, tub or trench region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE: To minimize bird's beak effect by starting the quick thermal nitridation of a thin silicon dioxide layer on a single-crystal silicon substrate, generating a transient temperature gradient of silicon dioxide in a high- temperature cycle, and generating an oxide-oxynitride compound slope. CONSTITUTION: A short-period thermal nitriding process generates a temperature gradient through a pad oxide 2 and a silicon substrate 1 to generate a slope of a compound of the oxide and oxynitride 6. Further, the quick thermal nitriding transform the pad oxide layer into slanting oxynitride 6 by the silicon substrate 1 without receiving high temperature for an extended period. The nitride layer 6 is transformed from an LPCVD silicon nitride layer 4 and then a pattern of mask photoresist is formed to perform anisotropic etching so that the LPCVD nitride 4, oxynitride layer 6, and silicon substrate 1 are selectively removed. A recessed part 8 is formed in the substrate 1 by etching and the outward appearance of a field oxide 9 which is flat and large and has no bird's beak characteristics is formed. Consequently, the bird's beak suppression is greatly improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は集積回路電子装置の形成方法に関し、特にシ
リコン・ベースド基板を酸化して一般にフィールド酸化
領域として知られる二酸化シリコン誘電体から成る凹部
領域の形成方法に関する〇〔背景技術〕 フィールド酸化物が形成される熱酸化工程中、基板のア
クティブ領域は従来相当厚い窒化シリコン層でマスクさ
れた。一般にパーツビークと呼ばれるマスク窒化物層の
下の層に対するフィールド酸化物の侵食はそれに比例し
て使用可能なアクティブ領域を減少させる。そのように
して使用しうるアクティブ領域に対する直接的影響があ
るため、このパーツビークの減少或は除去はこの業界に
共通の目標である。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates to a method of forming integrated circuit electronic devices, and more particularly to oxidizing a silicon-based substrate to form recessed regions of silicon dioxide dielectric, commonly known as field oxidation regions. Background Art: During the thermal oxidation process in which the field oxide is formed, the active areas of the substrate are conventionally masked with a fairly thick layer of silicon nitride. Field oxide erosion of the layers below the mask nitride layer, commonly referred to as parts beak, proportionally reduces the available active area. Reducing or eliminating this parts beak is a common goal in the industry because of its direct impact on the available active area.

パーツビークを除去しようとする研究者は、パーツビー
クの形成に係わる主なものとしては、マスク窒化シリコ
ン層とシリコン基板との間に従来から置かれる相当薄い
二酸化シリコン層であることがわかった。この二酸化シ
リコンの6ノぐラド”又は技術層の目的は、さもなけれ
ばシリコン基板と窒化シリコン層との間の結合部に発生
し、シリコン基板のアクティブ領域に結晶欠陥を生じさ
せるような緊張の発生全緩和するこ吉である。そのため
、ノクツド/緩衝(バッファ)酸化物層がパージビーク
形成の支配的原因であるとの認識から結晶欠陥を生じさ
せずに緩衝層の使用を省略する方向に多くの技術的努力
が払われてきた。例えば、米国特許第4.331,71
0号はシリコン基板の直接熱窒化を開示している。米国
特許第4,575,921号は窒素イオン・ミリングを
使用して基板表面に直接窒素種を注入してその表面を窒
化物化合物マスク層に変換することを教示している。最
近、マスク窒化物層の下に酸素が貫通するのを防ぐため
、種種の幾分精細な側壁窒化物マスク技術を含むより最
近の精密技術によシ緩衝層のためのよシ薄い層とマスク
層のだめのより厚い層との使用が提案された。
Researchers seeking to eliminate parts beaks have found that the primary contributor to part beak formation is a fairly thin silicon dioxide layer traditionally placed between the masking silicon nitride layer and the silicon substrate. The purpose of this silicon dioxide layer is to avoid tension that would otherwise occur at the bond between the silicon substrate and the silicon nitride layer and cause crystal defects in the active areas of the silicon substrate. Therefore, based on the recognition that the buffer oxide layer is the dominant cause of purge beak formation, many people are moving towards omitting the use of a buffer layer without creating crystal defects. For example, U.S. Patent No. 4.331,71
No. 0 discloses direct thermal nitridation of silicon substrates. U.S. Pat. No. 4,575,921 teaches the use of nitrogen ion milling to implant nitrogen species directly into a substrate surface to convert that surface into a nitride compound mask layer. Recently, thinner layers and masks for the buffer layer have been used to prevent oxygen from penetrating beneath the mask nitride layer, including a variety of somewhat finer sidewall nitride mask techniques. Use with thicker layers of layer dams has been proposed.

Hui#Jかが開示した論文“高密度MO8用セレクテ
ィプ酸化技術”(IEEE Electron Dev
iceLetters+ Vol、 EDL−2+ 1
981年10月)はマスク窒化物層とシリコン基板との
間の界面の方に向けられたより最近の研究のほとんどの
基礎を形成するものである。考慮しうる緩衝層の中でH
utほかは薄く成長したオキシナイトライド・フィルム
と反Sr窒化酸化物層によって形成されたオキシナイト
ライド・フィルムとをマスク窒化物層に関する緊張を緩
衝するものとして評価した。Hutほかが考察した最大
見込みのある緩衝層は窒化物注入マスク層、LPCVD
窒化物マスク層、プラズマ窒化物マスク層であり、これ
らは基板の結晶欠陥を生じさせずパーツビークを最少に
する観点のものであった。緩S層として反応炉成長又は
変換されたオキシナイトライドの使用は考慮されたが、
パーツビーク除去のためにはあまり見込みがないものと
して捨てられた。
The paper “Selective oxidation technology for high-density MO8” (IEEE Electron Dev
iceLetters+ Vol, EDL-2+ 1
(October 981) forms the basis of most of the more recent work directed towards the interface between the mask nitride layer and the silicon substrate. Among the possible buffer layers H
Ut et al. evaluated a thinly grown oxynitride film and an oxynitride film formed by an anti-Sr nitride oxide layer to buffer the strains associated with the mask nitride layer. The most promising buffer layer considered by Hut et al. is a nitride implant mask layer, LPCVD.
These are a nitride mask layer and a plasma nitride mask layer, and these are intended to minimize part beak without causing crystal defects in the substrate. The use of reactor grown or converted oxynitrides as a slow S layer was considered;
It was discarded as having little potential for Parts Beak removal.

又、最近の研究には、酸化物の窒化における一般的及び
特別な急速熱アニールが開示されている。
Recent work also discloses general and special rapid thermal annealing in oxide nitridation.

最近の最も適切な知識による急速熱アニールはダート酸
化物層の窒化に使用される。それはHoriほかによる
論文6急速熱アニールによって作られたナノメートル範
囲の薄い窒化酸化物における界面状態及び固定チャージ
”に見ることができる( IEEE Electron
 Device Letters + 1986年12
月)。
Rapid thermal anneal according to current best knowledge is used for nitriding the dirt oxide layer. It can be seen in paper 6, ``Interfacial states and fixed charges in nanometer-range thin nitrided oxides made by rapid thermal annealing'' by Hori et al. (IEEE Electron
Device Letters + December 1986
Month).

〔この発明が解決しようとする問題点〕しかしながら、
この論文は、そのような誘電体が5〜12ナノメートル
の範囲の厚さで使用されたときに、信頼性のあるダート
絶縁材料の形成のだめの窒化方法の探研に向けられてい
るものであってこの発明の目的を達成するものではない
[Problems to be solved by this invention] However,
This paper is directed to the exploration of nitridation methods for the formation of reliable dart insulating materials when such dielectrics are used at thicknesses in the 5-12 nanometer range. However, the purpose of this invention is not achieved.

この発明の目的はパーツビーク効果を最少にするため、
単結晶シリコン基板と窒化シリコン又は同様なものから
成るパターン化フィールド酸化マスク層との間の界面を
シールする方法を提供することである。この方法は最少
の製造シーケンス精製法で他の方法と共に共通に使用さ
れているシリコン・フィールド酸化物形成の局部酸化方
法の状況で、又はシールド界面局部酸化方法で実施する
ことができる。
The purpose of this invention is to minimize the parts beak effect.
It is an object of the present invention to provide a method for sealing an interface between a single crystal silicon substrate and a patterned field oxide mask layer of silicon nitride or the like. This method can be implemented in the context of a commonly used silicon field oxide formation local oxidation method or in a shield interface local oxidation method with other methods with minimal manufacturing sequence refinement.

〔問題を解決するための手段〕[Means to solve the problem]

従って、この発明は次のようにして上記の問題を解決し
た。
Therefore, the present invention solves the above problems as follows.

この発明の好ましい実施例においては、アンモニア又は
窒素環境下で輻射(又は放射)源急速熱アニール動作を
含み、単結晶シリコン基板の上に置かれる薄い二酸化シ
リコン層の急速熱窒化を起させる。高温サイクルの期間
及び高さにより、二酸化シリコンの過渡的温度傾斜(勾
配)を発生し、ある最終構造のための酸化物−オキシナ
イトライド化合物勾配(傾斜)を発生して基板ドーパン
トの再分散効果を最少にする。薄いノクソド二酸化シリ
コン層の化合物層への変換は窒化シリコン・マスク層と
シリコン基板との間の熱膨張係数の違いを緩衝する一方
、その後のフィールド酸化物成長動作中の酸素種の拡散
のだめの通り路をほとんど除去するようになる。
A preferred embodiment of the invention includes a radiant (or radiation) source rapid thermal anneal operation in an ammonia or nitrogen environment to cause rapid thermal nitridation of a thin silicon dioxide layer disposed on a single crystal silicon substrate. Depending on the duration and height of the high-temperature cycle, a transient temperature gradient of the silicon dioxide is created, which creates an oxide-oxynitride compound gradient for a certain final structure, resulting in a redispersion effect of the substrate dopants. Minimize. Conversion of the thin Noxod silicon dioxide layer to a compound layer buffers the difference in coefficient of thermal expansion between the silicon nitride mask layer and the silicon substrate, while also preventing the diffusion of oxygen species during subsequent field oxide growth operations. This will eliminate most of the road.

急速熱窒化に続き、パッド・オキシナイトライド層はフ
ィールド酸化物成長の準備のため、シリコン基板の上の
層のマスク及びi4ターン・エツチングを受ける前に低
圧化学蒸着デポジッ) (LPGVD)で処理された窒
化物層とその他の希望する層によってカバーされる。
Following rapid thermal nitridation, the pad oxynitride layer is treated with low pressure chemical vapor deposition (LPGVD) before being subjected to a mask and i4 turn etch of the top layer on the silicon substrate in preparation for field oxide growth. covered by a nitride layer and other desired layers.

〔実施例〕〔Example〕

次に、1対の実施例によってこの発明の詳細な説明する
。すなわち、薄い酸化物層の急速熱窒化によって形成さ
れたオキシナイトライド層は化合物の傾斜を表わし、そ
れによって通常ノクツド酸化物によって与えられる熱膨
張係数緩衝特性を保持しながら窒化物マスク層の下にお
ける望ましくない酸素種の横拡散を防止する。その結果
、基板シリコン表面の破損及びパーツビークの形成が防
止される。その上、この方法は温度/時間感知基板ドー
パントの再分散効果なしに、最少の製造時間の追加を要
するl製造工程の追加のみでLOCOS又は5ILOタ
イプのフィールド酸化物製造シーケンスに組込むことが
できる。その上、侵食、すなわちパーツビークの長さと
フィールド酸化物の厚さとの間の割合は前述のHuiほ
かによる論文によって評価され、捨てられたタイプのオ
キシナイトライド・・ぐラド層におけるものに比べて相
当改良されたことに注意を要する。
Next, the present invention will be explained in detail by means of a pair of embodiments. That is, the oxynitride layer formed by rapid thermal nitridation of a thin oxide layer exhibits a compound gradient, thereby retaining the coefficient of thermal expansion buffering properties normally provided by oxidized oxides, while retaining the thermal expansion coefficient buffering properties normally provided by oxidized oxides. Preventing lateral diffusion of undesirable oxygen species. As a result, damage to the silicon substrate surface and formation of parts beaks are prevented. Moreover, this method can be incorporated into LOCOS or 5ILO type field oxide fabrication sequences without temperature/time sensitive substrate dopant redispersion effects and with only one additional fabrication step requiring minimal additional fabrication time. Moreover, the erosion, i.e., the ratio between the part beak length and the field oxide thickness, was evaluated by the aforementioned paper by Hui et al. and compared to that in the discarded type oxynitride-Grad formation. It should be noted that there have been considerable improvements.

第1の実施例は、LOGO8技術に従ってフィールド酸
化物領域を製造するシーケンス”A”を第1A図乃至第
5A図に示す。第2の実施例は第1B図乃至第5B図に
示すよりな5ILO技術に従ってフィールド酸化物を形
成する方式であるB”シーケンスに示す。
A first embodiment is shown in FIGS. 1A-5A, sequence "A" for manufacturing field oxide regions according to the LOGO8 technique. A second embodiment is shown in the B'' sequence, which is a method of forming field oxide according to the 5ILO technique shown in FIGS. 1B-5B.

第1A図から始まるLOCO8技術においては、単結晶
シリコン基板1の上には好ましくは熱酸化により比較的
薄い、すなわち公称13〜15ナノメートル厚の二酸化
シリコン層2を形成する。薄い酸化層2は、さもないと
窒化シリコン層4(第3A図)から誘起されるようなス
トレスからシリコン基板lの表面3を分離する従来のノ
4ツド又は緩衝層である。シリコン基板1の表面3に対
する窒化シリコン層4の低圧化学蒸着(LPGVD )
による直接形成はシリコン基板に形成されたアクティブ
領域の実行性能を劣化させるだけ十分な性質の結晶の転
位線を生じさせることになる。そのストレスに対する実
質的寄与は熱膨張係数で異なる。他方、窒化物層と基板
層との間にパッド酸化物2が含有すると、0.3〜0.
4の範囲の侵食率でパーツピーク成長を生じさせるに十
分な性質及び程度のマスキングLPGVD窒化物層の下
の領域に対し酸化物に沿って酸素種の拡散を生じさせる
ことになる。
In the LOCO8 technique, starting from FIG. 1A, a relatively thin silicon dioxide layer 2, preferably 13-15 nanometers thick, is formed on a single crystal silicon substrate 1, preferably by thermal oxidation. The thin oxide layer 2 is a conventional node or buffer layer that isolates the surface 3 of the silicon substrate 1 from stresses that would otherwise be induced from the silicon nitride layer 4 (FIG. 3A). Low pressure chemical vapor deposition (LPGVD) of a silicon nitride layer 4 on the surface 3 of the silicon substrate 1
direct formation of the silicon substrate results in crystalline dislocation lines of sufficient nature to degrade the performance of the active region formed in the silicon substrate. The actual contribution to stress varies with the coefficient of thermal expansion. On the other hand, if the pad oxide 2 is contained between the nitride layer and the substrate layer, the amount of the pad oxide 2 will be 0.3 to 0.
Erosion rates in the range of .4 will cause diffusion of oxygen species along the oxide to the region beneath the masking LPGVD nitride layer of sufficient nature and extent to cause part peak growth.

次の第2A図の合成処理は一般に急激熱窒化と称する、
パッド酸化物2をオキシナイトライド層6に変換するよ
うにしたアンモニア中における急激熱アニール動作の導
入を含む。短期間の熱窒化工程はパッド酸化物2及びシ
リコン基板1を通して温度傾斜(勾配)を発生し、酸化
物及びオキシナイトライド合成物の傾斜を生じさせる。
The next synthesis process shown in Figure 2A is generally called rapid thermal nitridation.
It involves the introduction of a rapid thermal anneal operation in ammonia to convert the pad oxide 2 into an oxynitride layer 6. The short term thermal nitridation process creates a temperature gradient through the pad oxide 2 and silicon substrate 1, resulting in a gradient of the oxide and oxynitride composite.

酸化物2の厚さにおいて窒素密度は酸化物2がシリコン
基板1と出合う界面において最大となる。
In the thickness of the oxide 2, the nitrogen density is greatest at the interface where the oxide 2 meets the silicon substrate 1.

窒素は酸化物2に導入される結合のミスマツチ・ストレ
子によってその界面に集められ、そのストレスが窒素に
使用可能な原子レベルのスペースを増加する。よシ厚い
酸化物層2は通常そのシリコン基板1の界面と外面5の
両方により高い窒素集中を有するであろう。薄い酸化物
層2、例えばl Q nma又はそれ以下の酸化物10
は22に述べる形式の急速熱窒化の後、比較的均質とな
るであろう。
Nitrogen is collected at the interface by the bond mismatch strain introduced into oxide 2, and the stress increases the atomic space available for nitrogen. A thicker oxide layer 2 will normally have a higher concentration of nitrogen both at the interface and at the outer surface 5 of its silicon substrate 1. Thin oxide layer 2, e.g. l Q nma or less oxide 10
will be relatively homogeneous after rapid thermal nitridation of the type described in 22.

急速熱窒化は180秒間表面5で約1150℃の温度を
発生するように構成動作するタングステン−ハロゲン・
ラング輻射エネルギ源を使用して行われる。熱サイクル
は大気圧の純アンモニア中で行われる。そのような急速
熱窒化はノクツド酸化物層2をシリコン基板1によシ高
い温度を期間を延長して受けさせることなく傾斜オキシ
ナイトライド6に変換するであろう。
Rapid thermal nitridation is performed using a tungsten-halogen nitriding system configured to generate a temperature of approximately 1150°C at the surface 5 for 180 seconds.
This is done using a Lang radiant energy source. Thermal cycling takes place in pure ammonia at atmospheric pressure. Such rapid thermal nitridation would convert the nocted oxide layer 2 to a graded oxynitride 6 without subjecting the silicon substrate 1 to higher temperatures for an extended period of time.

第2A図の急速熱窒化に続き、ナイトライド層6は公称
100ナノメートル厚にデポジットされたLPGVD窒
化シリコン層4から変換される。その後、幾分LOCO
8製造方式を維持して、第3A図の構造が写真のような
方法で処理され、マスク・ホトレジストの・ぞターンを
形成し、順次LPGVD窒化物4、オキシナイトライド
層6及びシリコン基板1の公称30ナノメートルを選択
的に除去するよう異方性エツチングを受けさせる。基板
1のエツチングによシ第4A図に示すような凹部8を形
成する。好ましくは、このエツチング処理は当世のリア
クティブ・イオン・エツチング装置を使用して行われ、
その凹部の大体縦壁の形成を保証する。
Following the rapid thermal nitridation of FIG. 2A, the nitride layer 6 is converted from the LPGVD silicon nitride layer 4 deposited to a nominal 100 nanometer thickness. After that, some LOCO
8. Maintaining the manufacturing method, the structure of FIG. 3A is processed in a photographic manner to form the mask photoresist turns and sequentially deposit the LPGVD nitride 4, oxynitride layer 6 and silicon substrate 1. It is subjected to an anisotropic etch to selectively remove a nominal 30 nanometers. By etching the substrate 1, a recess 8 as shown in FIG. 4A is formed. Preferably, this etching process is performed using modern reactive ion etching equipment;
This ensures the formation of roughly vertical walls of the recess.

例えば、そのエツチングはCHF3102ガスを使用し
た圧力約25mトルのRFドライブ・プラズマ・エツチ
ングで達成することができる。
For example, the etching can be accomplished by RF driven plasma etching using CHF3102 gas at a pressure of about 25 mTorr.

フィールド酸化物成長動作がそれに続き、それは約45
分間にわたシ、温度的950℃、ウェット酸化中で行わ
れるのが好ましい。その後、従来方式によるLPCVD
窒化物4及びオキシナイトライド6層の除去が行、われ
る。それはCHF3102又は10 : I NH4F
 : HFウェットエツチング剤でボイルしたH3PO
4酸又はRIE 7’ラズマ・エツチング剤を使用して
行われ、第5A図に示すような、相当平坦且2大きなバ
ージビーク特性のないフィールド酸化物9の外形を形成
することができる。公称700ナノメートル厚のフィー
ルド酸化物が形成されると共に、シーケンス″A”につ
いて、侵食、すなわちバージビーク長とフィールド酸化
物層との比は公称0.1ということがわかった。・ぐラ
ド層分離又は緩衝は前記したように、オキシナイトライ
ド6の寄与を保証し、基板1のアクティブ領域表面11
は今サブミクロン間が要求さnている強調さnた範囲に
おける転位は発生せず、高パホーマンスのアクティブ電
界効果又はバイポーラ装置を達成することができる。
A field oxide growth operation follows, which is about 45
Preferably, the oxidation is carried out in wet oxidation at a temperature of 950° C. for 1 minute. After that, LPCVD using conventional method
Removal of the nitride 4 and oxynitride 6 layers is performed. It is CHF3102 or 10: I NH4F
: H3PO boiled with HF wet etching agent
4 acid or RIE 7' lasma etchant to form a field oxide 9 profile that is fairly flat and free of large barge beak characteristics, as shown in FIG. 5A. A nominally 700 nanometer thick field oxide was formed and the erosion, ie, barge beak length to field oxide layer ratio, was found to be nominally 0.1 for sequence "A". - The gradient layer separation or buffer ensures the contribution of the oxynitride 6 and the active area surface 11 of the substrate 1, as described above.
High performance active field effect or bipolar devices can now be achieved without dislocations occurring in the emphasized submicron range now required.

急速熱窒化状態の選ばnた組合わせによる製造シーケン
スで区別できる状態にある単一工程を含むことによって
多大なパーツビーク抑制の改良が得らnたということに
特に注目するべきである。
It should be particularly noted that significant part beak suppression improvements were obtained by including a single step with distinct conditions in the manufacturing sequence with selected combinations of rapid thermal nitriding conditions.

他の実施例は、B”シーケンスとして図に示すように、
5ILO処理を使用してフィールド酸化物を形成するも
のである。その製造は第1B図から始まり、そのシリコ
ン基板lはその上に非常に薄い二酸化シリコン層を有す
る。自然の酸化物層21は公称1〜3ナノメートル厚で
あり、その名のとおり、シリコン基板lの簡単な酸化や
又は自然に形成さnたものでよい。窒素又はアンモニア
の急速な熱アニールで大気圧が用いらn(第2B図に示
す)、自然の酸化物21を薄いオキシナイトライド層2
2に変換する。
Another embodiment is shown in the figure as a "B" sequence.
5ILO process is used to form the field oxide. Its manufacture begins in FIG. 1B, where the silicon substrate l has a very thin silicon dioxide layer thereon. The natural oxide layer 21 is nominally 1-3 nanometers thick and, as its name suggests, may be formed by simple oxidation of the silicon substrate or by natural formation. A rapid thermal anneal of nitrogen or ammonia at atmospheric pressure (shown in Figure 2B) transforms the native oxide 21 into a thin oxynitride layer 2.
Convert to 2.

この急速な熱窒化は、チャンバが大気圧の窒素又はアン
モニア・ガスを約1.4リットル/分流している間に、
約40秒間、温度約1150℃を酸化物21表面にかけ
るよう動作するタングステン−ハロゲン・ランプを使用
して行うのが好ましい。
This rapid thermal nitridation is performed while the chamber is flowing approximately 1.4 liters/min of nitrogen or ammonia gas at atmospheric pressure.
Preferably, this is done using a tungsten-halogen lamp operated to apply a temperature of about 1150 DEG C. to the oxide 21 surface for about 40 seconds.

オキシナイトライド層22は本来の厚さ1〜3ナノメー
トルのままである。
The oxynitride layer 22 remains at its original thickness of 1-3 nanometers.

急速な熱窒化に続き、この製造シーケンスは、−船釣な
5ILO処理に従い、公称15〜18ナノメートル厚の
LPGVD窒化シリ窒化層93フ続いて公称35〜40
ナノメートル厚のプラズマCVD又は低温酸化物( L
TO )層24を形成し、公称100ナノメートル厚の
LPCVD窒化シリ窒化シリコ全層26る。
Following rapid thermal nitridation, this fabrication sequence follows a typical 5ILO process to deposit a nominally 15-18 nanometer thick LPGVD nitrided silinitride layer 93 followed by a nominal 35-40 nanometer thick
Nanometer thick plasma CVD or low temperature oxide (L
Form a LPCVD silicon nitride silicon nitride full layer 26 with a nominal 100 nanometer thickness.

第3B図の合成構造は、好ましくはりアクティブ・イオ
ン・エツチングのような前述の方法によるホトレゾスト
を使用したホトリソグラフ処理を受け、全体として第4
B図に示すようにシリコン基板1のフィールド酸化物領
域を露出する。シリコン基板lは再びその表面3の下公
称30ナノメートルの溝をつける。又、リアクティブ・
イオン・エツチングの特性にあるように、シリコン基板
1の27同様、連続層22.23,24.26の壁は大
体垂直である。
The composite structure of FIG. 3B is preferably photolithographically processed using a photoresist by the methods described above, such as active ion etching, and the entire fourth
The field oxide region of silicon substrate 1 is exposed as shown in Figure B. The silicon substrate 1 is again grooved nominally 30 nanometers below its surface 3. Also, reactive
As is the nature of ion etching, the walls of successive layers 22, 23, 24, 26, like 27 of silicon substrate 1, are generally vertical.

まだ、5ILO処理に従い、次に第4B図のシリコン基
板1は約450分間、温度約950℃でウェット酸素気
中で酸化を受け、公称約700ナノメートル厚のフィー
ルド酸化物領域28(第5B図)を形成する。LPCV
D窒化物23 、26の比較的薄い多層は酸化中合成マ
スク層が持上るのを抑制する上、第5B図に示すように
いかなるパーツビーク効果をも制限するだけ十分な堅さ
を有する。再び、パーツビークの効果的な不存在は、第
4B図のA’ツド/緩緩衝ナトトラ42層22沿ったい
かなる酸素種の拡散の強制的な抑制に基本的に貢献しう
るものである。
Still following the 5ILO process, the silicon substrate 1 of FIG. 4B is then subjected to oxidation in a wet oxygen atmosphere at a temperature of about 950° C. for about 450 minutes to form a field oxide region 28 (FIG. 5B) nominally about 700 nanometers thick. ) to form. LPCV
The relatively thin multilayer of D-nitrides 23, 26 suppresses lifting of the synthetic mask layer during oxidation and is sufficiently stiff to limit any part beak effects as shown in FIG. 5B. Again, the effective absence of part beaks can essentially contribute to the forced suppression of the diffusion of any oxygen species along the layer 22 of FIG.

第5B図は代表的なフィールド酸化物領域28の断面図
であり、それはマスク層22 、 23 。
FIG. 5B is a cross-sectional view of a typical field oxide region 28, which includes mask layers 22, 23.

24 、261r従来方式で除去し、シリコン基板1の
アクティブ領域の表面29全露出した後を示す。
24, 261r is shown after the entire surface 29 of the active region of the silicon substrate 1 is exposed by removal using the conventional method.

薄いオキシナイトライド層22のパッド/緩衝効果に従
い、シリコン基板表面29の破損は除去される。非常に
薄いオキシナイトライド層22はLPCVD窒化物層2
3とシリコン基板1との熱膨張係数の違いによる衝撃を
吸収するに十分な厚さである。厚いLPCVD窒化物層
26も同様に酸化物層24によって緩衝される。フィー
ルド酸化物のアクティブ領域に対する侵入はこの処理シ
ーケンスに従い有効に無視しうる程になった。しかし、
比較したとき、アクティブ領域表面29にすぐ隣シ合う
フィールド酸化物28の相対的急傾斜が与えられ、フィ
ールド酸化物28はフィールド酸化物9(第5A図のL
OCOSシーケンス)より平坦でないということが明ら
かである。
According to the padding/buffering effect of the thin oxynitride layer 22, damage to the silicon substrate surface 29 is eliminated. The very thin oxynitride layer 22 is the LPCVD nitride layer 2
The thickness is sufficient to absorb the impact caused by the difference in thermal expansion coefficient between the silicon substrate 1 and the silicon substrate 1. Thick LPCVD nitride layer 26 is similarly buffered by oxide layer 24. Field oxide encroachment into the active area is effectively negligible following this processing sequence. but,
When compared, given the relative steepness of field oxide 28 immediately adjacent active area surface 29, field oxide 28 is similar to field oxide 9 (L in FIG. 5A).
It is clear that it is not as flat as the OCOS sequence).

再びパーツビークの異状な程の抑制に注目するべきであ
る。
Once again, we should pay attention to the unusual degree of suppression of parts beak.

輻射エネルギの急速な熱窒化の実行のための温度及び時
間的条件は上記の実施例で使用したものに限定されるべ
きでない。例えば、極く薄い酸化物のために、炉中温度
約1250℃で約10秒の短い期間を使用することも可
能である。又、逆の極端な点では、比較的厚い・ゼット
/緩衝酸化物のために、30分までの期間で約900℃
の範囲の表面温度を使用することができる。正確な条件
の組合わせは次のように埋閂して選ばれるべきである。
The temperature and time conditions for performing radiant energy rapid thermal nitridation should not be limited to those used in the above examples. For example, for very thin oxides it is possible to use a furnace temperature of about 1250° C. and a short period of about 10 seconds. At the other extreme, temperatures of approximately 900°C for periods of up to 30 minutes due to the relatively thick z/buffer oxide
A range of surface temperatures can be used. The exact combination of conditions should be selected as follows.

すなわち、酸化物層3又は21の外面に向けられた短期
間の高い強度の輻射エネルギ源は露出した酸化物の窒化
を容易にするストレス傾斜を有する過渡温度傾斜を発生
するものと信じられる。
That is, it is believed that a short duration, high intensity radiant energy source directed at the outer surface of the oxide layer 3 or 21 creates a transient temperature gradient with a stress gradient that facilitates nitridation of the exposed oxide.

これらの条件は2〜3時間に亘り、ランプ温度を上昇及
び下降させる場合の要時間の炉中窒化に明らかに対照で
ある。又、基板の炉又は対流型熱条件性はチャンバの清
掃を予め行ったとはいえ、相当長いランプ上昇時間、酸
化対窒化開始における低い温度、水から本来得られる酸
素種及びシリコン基板に予め吸収されていた酸素種のた
め望ましくない酸化を受ける。
These conditions are in clear contrast to the time required for furnace nitriding, where the lamp temperature is ramped up and down over a period of 2-3 hours. Additionally, the furnace or convection thermal conditions of the substrate, even with pre-cleaning of the chamber, include considerably long lamp rise times, low temperatures at the onset of oxidation versus nitridation, oxygen species naturally available from water, and pre-absorption into the silicon substrate. Due to the oxygen species present, it undergoes undesirable oxidation.

本来の二酸化シリコンに比較して緩衝又は・ぐラド効果
を維持しながら、フィールド酸化物形成中酸素種の横拡
散を禁止するべく薄い二酸化シリコン・・ぐラド/緩衝
層の急速熱窒化は、多結晶又はアモルファス形シリコン
を含みシリコン基板を使用する各種の半導体製造処理一
般に使用されうろことは当業者間に疑いがない。
Rapid thermal nitridation of a thin silicon dioxide grad/buffer layer inhibits lateral diffusion of oxygen species during field oxide formation while maintaining a buffer or gradation effect compared to native silicon dioxide. There is no doubt among those skilled in the art that such techniques are commonly used in a variety of semiconductor manufacturing processes using silicon substrates, including crystalline or amorphous silicon.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図乃至第5A図は、この発明によりシリコン局部
酸化(LOCO8)製造シーケンスの前後関係を表わし
た簡略断面図、 第1B図乃至第5B図は、シールド界面局部酸化(5r
Lo )ff造クシ−ケンス前後関係を表わしたこの発
明の簡略断面図である。 図中、1・・・シリコン基板、2・・・パッド酸化物、
4 、23−LPGVD窒化物、6 、22−オ*シナ
イトライド、21・・・自然の酸化物。 出願代理人  斉 藤   勲 FIG、 IA FIG、 IB FIG、 4A FIG、4B FIG、 2A FIG、 2B FIG、 5A FIG、 5B FIG、  3A FIG、 3B
1A to 5A are simplified cross-sectional views showing the sequence of manufacturing silicon local oxidation (LOCO8) according to the present invention, and FIGS. 1B to 5B are shield interface local oxidation (LOCO8)
FIG. 2 is a simplified cross-sectional view of the present invention showing the front and back relationship of the FF construction sequence. In the figure, 1... silicon substrate, 2... pad oxide,
4, 23-LPGVD nitride, 6, 22-O*cinitride, 21... natural oxide. Application agent Isao Saito FIG, IA FIG, IB FIG, 4A FIG, 4B FIG, 2A FIG, 2B FIG, 5A FIG, 5B FIG, 3A FIG, 3B

Claims (10)

【特許請求の範囲】[Claims] (1)窒化シリコンと窒化シリコン・ベースド酸化マス
ク層との間にパッド又は緩衝層を形成する方法であって
、 シリコン基板上に薄い二酸化シリコン層を形成し、 前記二酸化シリコン層の周囲に窒化環境を与え、前記二
酸化シリコンに対し二酸化シリコンの窒化に適した強さ
の輻射エネルギ源に当て、前記二酸化シリコン層を通し
て過渡的な熱傾斜を発生する各工程を含むことを特徴と
するパッド層の形成方法。
(1) A method for forming a pad or buffer layer between silicon nitride and a silicon nitride-based oxide mask layer, the method comprising forming a thin silicon dioxide layer on a silicon substrate, and providing a nitriding environment around the silicon dioxide layer. and applying a radiant energy source to the silicon dioxide of an intensity suitable for nitriding the silicon dioxide to generate a transient thermal gradient through the silicon dioxide layer. Method.
(2)前記輻射エネルギ源の強さは900〜1150℃
から変動する二酸化シリコン表面温度を発生する特許請
求の範囲第1項記載の方法。
(2) The intensity of the radiant energy source is 900 to 1150°C
2. The method of claim 1, wherein the silicon dioxide surface temperature varies from .
(3)前記輻射エネルギ源に当てる期間は10〜180
0秒から変化する特許請求の範囲第2項記載の方法。
(3) The period of application to the radiant energy source is 10 to 180
3. The method of claim 2, wherein the time varies from 0 seconds.
(4)前記窒化環境はアンモニア又は窒化ガスである特
許請求の範囲第2項記載の方法。
(4) The method according to claim 2, wherein the nitriding environment is ammonia or nitriding gas.
(5)前記窒化環境はアンモニア又は窒化ガスである特
許請求の範囲第3項記載の方法。
(5) The method according to claim 3, wherein the nitriding environment is ammonia or nitriding gas.
(6)シリコン基板に薄い二酸化シリコン層を形成し、 前記二酸化シリコン層に対し窒化物環境を与え、前記二
酸化シリコンに対し二酸化シリコンを窒化するに適した
強さの輻射エネルギ源を当て、前記二酸化シリコン層を
通して過渡的な熱傾斜を発生し、 前記窒化された二酸化シリコン層の上に窒化シリコン・
ベースド酸化マスク層を形成し、 前記窒化シリコン・ベースド酸化マスク層及び窒化され
た二酸化シリコン層をエッチングして前記シリコン基板
の領域を選択的に露出し、 上層の存在下で前記露出したシリコン基板を酸化する各
工程を含むシリコン半導体基板にフィールド酸化物領域
を形成する方法。
(6) Forming a thin silicon dioxide layer on a silicon substrate, providing a nitride environment to the silicon dioxide layer, and applying a radiant energy source of an intensity suitable for nitriding the silicon dioxide to the silicon dioxide; generating a transient thermal gradient through the silicon layer and depositing silicon nitride on the nitrided silicon dioxide layer;
forming a based oxide mask layer, etching the silicon nitride based oxide mask layer and the nitrided silicon dioxide layer to selectively expose regions of the silicon substrate, and etching the exposed silicon substrate in the presence of an overlying layer; A method of forming field oxide regions in a silicon semiconductor substrate including steps of oxidizing.
(7)前記エッチング動作は前記シリコン基板に凹部を
形成するよう継続される特許請求の範囲第6項記載の方
法。
7. The method of claim 6, wherein the etching operation continues to form a recess in the silicon substrate.
(8)前記輻射エネルギ源の強さは900〜1250℃
から変化する二酸化シリコン表面温度を発生する特許請
求の範囲第6項記載の方法。
(8) The intensity of the radiant energy source is 900 to 1250°C
7. The method of claim 6, wherein the silicon dioxide surface temperature varies from .
(9)シリコン基板上に非常に薄い第1の二酸化シリコ
ン層を形成し、 前記第1の二酸化シリコン層に対し窒化環境を与え、 前記第1の二酸化シリコンに対し二酸化シリコンを窒化
するに適した強さの輻射エネルギ源に当て、前記第1の
二酸化シリコン層を通して過渡的な熱傾斜を発生し、 前記窒化された第1の二酸化シリコン層の上に第1の窒
化シリコン・ベースド酸化マスク層を形成し 前記第1の窒化シリコン酸化マスク層の上に第2の二酸
化シリコン層を形成し、 前記第2の二酸化シリコン層の上に第2の窒化シリコン
・ベースド酸化マスク層を形成し、前記窒化シリコン・
ベースド及び二酸化シリコン層をエッチングして前記シ
リコン基板の選択的領域を露出し、 上層の存在下で前記露出したシリコン基板を酸化する各
工程を含むシリコン半導体基板に対するフィールド酸化
物形成方法。
(9) Forming a very thin first silicon dioxide layer on a silicon substrate, providing a nitriding environment to the first silicon dioxide layer, and providing a nitriding environment suitable for nitriding silicon dioxide to the first silicon dioxide. applying a high intensity radiant energy source to generate a transient thermal gradient through the first silicon dioxide layer, forming a first silicon nitride based oxide mask layer over the nitrided first silicon dioxide layer; forming a second silicon nitride based oxide masking layer over the first silicon nitride oxide masking layer; forming a second silicon nitride based oxide masking layer over the second silicon dioxide layer; silicon·
A method of forming a field oxide on a silicon semiconductor substrate comprising: etching a base and silicon dioxide layer to expose selective areas of the silicon substrate; and oxidizing the exposed silicon substrate in the presence of an overlying layer.
(10)前記エッチング動作は前記シリコン基板に凹部
を形成するよう継続される特許請求の範囲第9項記載の
方法。
10. The method of claim 9, wherein the etching operation continues to form a recess in the silicon substrate.
JP63260723A 1987-10-19 1988-10-18 Method of quick nitrizing for forming oxynitride for boundary sealed during insolating oxidization Pending JPH021123A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11024587A 1987-10-19 1987-10-19
US110,245 1987-10-19

Publications (1)

Publication Number Publication Date
JPH021123A true JPH021123A (en) 1990-01-05

Family

ID=22331982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63260723A Pending JPH021123A (en) 1987-10-19 1988-10-18 Method of quick nitrizing for forming oxynitride for boundary sealed during insolating oxidization

Country Status (2)

Country Link
JP (1) JPH021123A (en)
DE (1) DE3832450A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08306680A (en) * 1995-04-28 1996-11-22 Nec Corp Manufacture of semiconductor device
JPH09181069A (en) * 1995-11-03 1997-07-11 Hyundai Electron Ind Co Ltd Semiconductor device element isolating method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2648956A1 (en) * 1989-06-23 1990-12-28 Commissariat Energie Atomique PROCESS FOR PRODUCING FIELD OXIDE OF AN INTEGRATED CIRCUIT ON SILICON
DE10029658C2 (en) * 2000-06-16 2003-01-09 Infineon Technologies Ag Process for producing a barrier layer on a silicon substrate
US11990331B2 (en) * 2020-06-15 2024-05-21 Changxin Memory Technologies, Inc. Method for forming silicon dioxide film and method for forming metal gate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08306680A (en) * 1995-04-28 1996-11-22 Nec Corp Manufacture of semiconductor device
JPH09181069A (en) * 1995-11-03 1997-07-11 Hyundai Electron Ind Co Ltd Semiconductor device element isolating method

Also Published As

Publication number Publication date
DE3832450A1 (en) 1989-04-27

Similar Documents

Publication Publication Date Title
US4764248A (en) Rapid thermal nitridized oxide locos process
CA1088217A (en) Method of manufacturing semiconductor devices in which oxide regions are formed by an oxidation mask disposed directly on a substrate damaged by ion implantation
JP2008028403A (en) Method for forming first oxide layer, and second oxide layer
JPH05206115A (en) Manufacture of isolation region in oxide
US5937310A (en) Reduced bird's beak field oxidation process using nitrogen implanted into active region
JPH098023A (en) Separation method of semiconductor element
US5118641A (en) Methods for reducing encroachment of the field oxide into the active area on a silicon integrated circuit
JPH021123A (en) Method of quick nitrizing for forming oxynitride for boundary sealed during insolating oxidization
EP0189795B1 (en) Oxygen-impervious pad structure on a semiconductor substrate
US5719086A (en) Method for isolating elements of semiconductor device
JP3245136B2 (en) Method of improving film quality of insulating film
JPH09326391A (en) Manufacture of element isolation oxide film
US5962914A (en) Reduced bird's beak field oxidation process using nitrogen implanted into active region
US5726091A (en) Method of reducing bird's beak of field oxide using reoxidized nitrided pad oxide layer
US6204547B1 (en) Modified poly-buffered isolation
JPS61174737A (en) Manufacture of semiconductor element
US5175129A (en) Method of fabricating a semiconductor structure having an improved polysilicon layer
JPH0653209A (en) Manufacture of semiconductor device
US6835634B1 (en) Streamlined field isolation process
JPH05235006A (en) Epitaxial wafer forming method
JPH0258248A (en) Manufacture of semiconductor device
JPS6112374B2 (en)
JPS6224629A (en) Formation of semiconductor surface protective film
JPH09223668A (en) Semiconductor substrate and processing method of semiconductor substrate
JPH06163531A (en) Formation of element isolation region in semiconductor