JPH02112215A - Electrolytic capacitor - Google Patents

Electrolytic capacitor

Info

Publication number
JPH02112215A
JPH02112215A JP26635588A JP26635588A JPH02112215A JP H02112215 A JPH02112215 A JP H02112215A JP 26635588 A JP26635588 A JP 26635588A JP 26635588 A JP26635588 A JP 26635588A JP H02112215 A JPH02112215 A JP H02112215A
Authority
JP
Japan
Prior art keywords
separator
electrolytic capacitor
fibers
impedance
fiber diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26635588A
Other languages
Japanese (ja)
Other versions
JP2836076B2 (en
Inventor
Takumi Nakada
中田 卓美
Kinbun Saeki
佐伯 欽文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63266355A priority Critical patent/JP2836076B2/en
Publication of JPH02112215A publication Critical patent/JPH02112215A/en
Application granted granted Critical
Publication of JP2836076B2 publication Critical patent/JP2836076B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Paper (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PURPOSE:To obtain a substantially low tandelta and impedance without increasing defects such as short-circuit by a method wherein cellulose system fibers whose raw material is cotton linter and which are manufactured by a copper-ammonia method enabling to control a fiber diameter are papered into a separator. CONSTITUTION:Cellulose system fibers whose raw material is cotton linter and which are manufactured by a copper-ammonia method enabling to control a fiber diameter are papered into an electrolytic capacitor separator. The separator is composed of the fine cellulose system fibers whose average diameter is not larger than 20mum. If Manila, craft, esparto or hemp fibers are mixed during papering, fibers entwist each other more efficiently.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はショート不良等を増加させることなく著しく低
いtanδ・インピーダンスを実現する電解コンデンサ
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an electrolytic capacitor that achieves extremely low tan δ impedance without increasing short circuit defects.

従来の技術 従来からアルミやタンタル等の電解コンデンサのセパレ
ータには、クラフトあるいはマニラ等の繊維から成る抄
紙セパレータが一般的に使用されている。
2. Description of the Related Art Conventionally, paper separators made of kraft or manila fibers have been generally used as separators for electrolytic capacitors made of aluminum, tantalum, etc.

近年、電解コンデンサの性能向上のために低インピーダ
ンス化、低tanδ化が図られるようになり−o、3o
9/cA程度の低密度のマニラ紙もその必要性から検討
されるようになってきた。
In recent years, efforts have been made to lower impedance and lower tanδ to improve the performance of electrolytic capacitors.
Manila paper with a low density of about 9/cA is also being considered due to its necessity.

発明が解決しようとする課題 しかし、従来のマニラ、クラフト紙は自然の繊維を用い
て抄造された紙であるため、繊維径が決まっており、2
0μ以下の細繊維にすることができず、そのままで低密
度化を進めてゆくと一繊維部分と空隙部分とが不均一な
ポーラス紙構造となるため、セパレータの強度が弱くな
ると共に電解コンデンサの電極箔のパリ等による極間短
絡が多く発生し、製品歩留りを悪くしてしまうという欠
陥がある。
Problems to be Solved by the Invention However, since conventional manila and kraft paper are paper made using natural fibers, the fiber diameter is fixed,
It is not possible to make fine fibers with a diameter of 0 μ or less, and if the density is continued as it is, a porous paper structure with uneven fiber parts and void parts will result, which will weaken the strength of the separator and weaken the electrolytic capacitor. There is a drawback in that short circuits between electrodes often occur due to flakes in the electrode foil, resulting in poor product yield.

一方このような問題点を改善する目的として合成樹脂の
紡糸を接着してから成る有機樹脂不織布の電解コンデン
サ用セパレータ(特公昭6113368号)が発明され
た。
On the other hand, in order to solve these problems, a separator for electrolytic capacitors (Japanese Patent Publication No. 6,113,368), which is made of an organic resin nonwoven fabric and is made by bonding spun synthetic resin fibers, was invented.

このセパレータは、平均繊M1直径が1QII以下の微
細な有機合成繊維から成るため、電荷担体の移動距離を
短かくすることができ、また実質的に連続した繊維で、
かつ各繊維の大部分は一定方向に配列し、更に各繊維の
交点で接着されているから、強度は強く、極間ショート
、セパレータ切断を惹起することなく、不織布の密度を
小さくすることができ、インピーダンスを効果的に減少
させるものと知られている。
Since this separator is made of fine organic synthetic fibers with an average fiber diameter M1 of 1QII or less, the distance traveled by charge carriers can be shortened, and the separator is made of substantially continuous fibers.
In addition, most of the fibers are arranged in a certain direction and are bonded at the intersections of each fiber, so the strength is strong and the density of the nonwoven fabric can be reduced without causing short-circuits or separator breakage. , is known to effectively reduce impedance.

しかし、このセパレータは、無処理の有機合成繊維で不
織布としたのでは、電解液に対する親和性が乏しく、所
望の低インピーダンスを実現することはできず、親和性
を持たせるのには、有機合成繊維に界面活性剤を付着さ
せる等−特別な親和性付与処理が必要であるとされるた
めそれらの処理方法はコンデンサ機能に悪影響を及ぼさ
ないように慎重な配慮が必安である。又、マニラ、クラ
フト紙等のセルロース系の繊維は、電解液が繊維内部に
まで浸透するため−そこが電荷担体の移動領域の一部を
荷い、低インピーダンス化の役目を果すが、有機合成繊
維のセパレータは、界面活性剤を付着させた表面の親和
性は良くなり、低インピーダンス化に役立つが一下地の
M機合成繊維内部には、電解液は浸透しないため、この
領域は電荷移動領域として利用することは全くできない
However, if this separator is made of non-woven fabric made of untreated organic synthetic fibers, it has poor affinity for the electrolyte and cannot achieve the desired low impedance. Since it is said that special affinity imparting treatments such as attaching surfactants to fibers are required, careful consideration must be given to these treatment methods so as not to adversely affect the capacitor function. In addition, in cellulose fibers such as manila and kraft paper, the electrolyte penetrates into the fibers, which fills a part of the area where charge carriers move and serves to lower impedance. The fiber separator improves the affinity of the surface to which the surfactant is attached and helps lower impedance, but the electrolyte does not penetrate into the underlying M machine synthetic fiber, so this region is a charge transfer region. It cannot be used as such at all.

更にこの有機合成繊維のセパレータは、引張りに対し6
0%前後の伸びを有するため、巻取り製造工程では巻取
素子の寸法安定性を欠き、ショート不良の増加も懸念さ
れている。
Furthermore, this organic synthetic fiber separator has a tensile resistance of 6
Since it has an elongation of around 0%, the winding element lacks dimensional stability in the winding manufacturing process, and there is also concern about an increase in short-circuit defects.

一般に電解コンデンサの等価回路は第3図のように静電
容量C1電極皮膜誘電体の抵抗R/ 、電解液とセパレ
ータの合成抵抗Reで表わされ、その等価回路から銹導
されるインピーダンスの式は式1で示される。
In general, the equivalent circuit of an electrolytic capacitor is expressed by the resistance R/ of the capacitance C1 electrode film dielectric and the combined resistance Re of the electrolyte and separator, as shown in Figure 3, and the equation for the impedance derived from the equivalent circuit is is shown in Equation 1.

Z=−(RJ+Re1)2−1−(1/cuc)2=・
・・・式1%式% : 電極皮膜誘電体の抵抗Rは一般に周波数の逆数1/fに
比例して減少してゆき、高周波ではほぼ「0」に等しく
なる。一方、電解液とセパレータの合成抵抗Reは周波
数に影響を受けず低周波から高周波に渡ってほぼ一定の
関係で、電極面積とセパレータの厚みに対して式2のよ
うな関係があり、高周波において低インピーダンス化を
図ろうとするなら、Reを低くする必要がある。
Z=-(RJ+Re1)2-1-(1/cuc)2=・
...Formula 1%Formula %: The resistance R of the electrode film dielectric generally decreases in proportion to the reciprocal of the frequency, 1/f, and becomes approximately equal to "0" at high frequencies. On the other hand, the combined resistance Re of the electrolyte and separator is not affected by the frequency and has a nearly constant relationship from low to high frequencies, and has a relationship as shown in equation 2 with respect to the electrode area and separator thickness. In order to achieve low impedance, it is necessary to lower Re.

Re = kd / s           −−−
−=式2に=定数   d:セパレータの厚み S:電極面積 しかし、従来のマニラ、クラフト紙及び有機合成繊維の
セパレータでは、電解コンデンサの製造工程での作業性
を損うことなく、安定な品質を維持しつつ電解液とセパ
レータの合成抵抗Reを低くして、所望の低インピーダ
ンス化を果すことが困難であった。
Re=kd/s---
- = In Equation 2 = constant d: Separator thickness S: Electrode area However, conventional separators made of manila, kraft paper, and organic synthetic fibers do not impair workability in the manufacturing process of electrolytic capacitors, and provide stable quality. It has been difficult to lower the combined resistance Re of the electrolytic solution and the separator while maintaining the desired low impedance.

本発明はこのような従来の欠点を除去するもの6 ・\
−/ で、強度が強く、親和性付与処理を施こさなくても、そ
れ自身電解液に対して親和性、浸透性を有し、極間ショ
ートを惹起することなく、所望の低インピーダンス化を
可能とする電解コンデンサを提供しようとするものであ
る。
The present invention eliminates these conventional drawbacks6.
- / It has strong strength, has affinity and permeability to the electrolyte even without affinity treatment, and can achieve the desired low impedance without causing shorts between electrodes. The aim is to provide an electrolytic capacitor that enables

課題を解決するための手段 この目的を達成するために本発明は、原料をコツトンリ
ンターとし、繊、雑役を制御できる銅アンモニア法によ
って製造したセルロース系繊維を用いて抄造されたセパ
レータで、繊維の平均直径を20μ以下として、繊維同
志の絡まりが多くなるような構成にしたものである。
Means for Solving the Problems In order to achieve this object, the present invention is a separator made using cellulose fibers produced by a copper ammonia method that uses cotton linters as raw materials and can control fibers and miscellaneous functions. The average diameter of the fibers is set to 20μ or less, so that the fibers are more entangled with each other.

作用 前記のように構成された電解コンデンサにおいて、セパ
レータは、繊維の直径の平均が20μ以下の微細な繊維
から成るため、従来のセパレータと同様な密度に調整し
た時には、繊維同志の絡合点は繊維の直径に逆比例して
多くなるため、従来のセパレータに比べ極めて抄きむら
は少なく、強度が強くなる為、極間ショートが極めて改
善される。
Function In the electrolytic capacitor configured as described above, the separator is composed of fine fibers with an average fiber diameter of 20 μm or less, so when the density is adjusted to the same as that of a conventional separator, the entanglement points of the fibers are Since the amount increases in inverse proportion to the diameter of the fibers, there is extremely little unevenness in papermaking compared to conventional separators, and the strength is increased, so shorts between electrodes are greatly improved.

又、従来のセパレータと同様の抄きむら1強度に調整し
た時には、密度を極めて低くすることが可能であり、前
記Reを低くすることができる。
Further, when the paper unevenness 1 strength is adjusted to be the same as that of conventional separators, the density can be made extremely low, and the above-mentioned Re can be made low.

実施例 以下、本発明の実施例を添付の図面を用いて説明する。Example Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図において−1はアルミニウムよりなるケースであ
り、このケース1にはコンデンサ素子2が収納されてい
る。このコンデンサ素子2ば、アルミニウム箔をエツチ
ングなどの方法により表面積を拡大した陽極箔3と陰極
箔4との間にセパレータ6を介して巻回して構成され、
上記セパレータ6は原料がコツトンリンターで、繊維径
を制御できる銅アンモニア法によって製造された繊維で
、平均直径20μ以下で構成されている。
In FIG. 1, -1 is a case made of aluminum, and a capacitor element 2 is housed in this case 1. This capacitor element 2 is constructed by winding aluminum foil with a separator 6 interposed between an anode foil 3 and a cathode foil 4 whose surface area has been expanded by etching or other methods.
The separator 6 is made of cotton linter as a raw material, and is made of fibers manufactured by a copper ammonia method that allows the fiber diameter to be controlled, and has an average diameter of 20 μm or less.

6は封口体でコンデンサ素子2をケース1に収納し電解
液を含浸した後ケース1の開口部に封着されて電解コン
デンサを構成している。
Reference numeral 6 denotes a sealing body which houses the capacitor element 2 in the case 1, impregnates it with an electrolytic solution, and then seals it at the opening of the case 1 to form an electrolytic capacitor.

上記セパレータ6の繊維直径を微細にすればするほどそ
の効果は大きくなり、低インピーダンス化が図れるが、
従来のクラフト、マニラ繊維直径は20〜30μであり
セパレータの厚みを実質30μ以下にすることは不可能
である。
The finer the fiber diameter of the separator 6, the greater the effect and the lower the impedance.
Conventional kraft and manila fibers have a diameter of 20 to 30 microns, and it is virtually impossible to reduce the thickness of the separator to less than 30 microns.

又、一般にセパレータ6の強度は、繊維どうしの絡合力
、あるいは親和力による物理的結合力、および化学的な
接着力によって成立っている。
In general, the strength of the separator 6 is determined by the entanglement force between fibers or physical bonding force due to affinity, and chemical adhesive force.

従来のマニラ、クラフト繊維は、繊維径が20〜30μ
と太いため、これで造った不織布は、低インピーダンス
化を図るために、低密度化すると、絡合力が低下すると
共に、著しく抄きむらが生じるので、作業性の悪化、シ
ョート発生率の増加をまねき、おのずと限界が生ずる。
Conventional manila and kraft fibers have a fiber diameter of 20 to 30μ.
Since the nonwoven fabric is thick, if the density is reduced in order to lower the impedance, the entangling force will decrease and the fabric will become noticeably uneven, resulting in poor workability and an increase in the incidence of short circuits. , a limit naturally arises.

本発明のセパレータは一繊維の直径の平均が20μ以下
の微細な繊維から成るだめ、繊維同志の絡合点が多くな
る関係上、低密度化しても比較的セパレータの強度の低
下は少なく一繊雑役が自由に細くできるだめ低密度にし
ても繊維を繊細にすれば抄きむらを抑えることが出来、
低インピーダンス化が図れる。
Since the separator of the present invention is made of fine fibers with an average diameter of 20μ or less, the strength of the separator is relatively small even when the density is lowered, because there are many points where the fibers intertwine with each other. Since the miscellaneous work can be made thinner freely, even if the density is low, if the fibers are made delicate, unevenness in papermaking can be suppressed.
Low impedance can be achieved.

又、前記の有機合成繊維から成る不織布は、界面活性剤
等により処理しなければ、繊維自身に親和性がなく、電
解液の含浸性が悪く低インピーダンス化が図れず一又電
解液の保持性も悪く、コンデンサの寿命も非常に短かく
なる。又、引張りに対する伸度も延伸処理を施こしても
60%程度存在するため、これが巻取工程での巻取精度
を悪くさせ、ショート発生等の不良を誘発させる可能性
がある。
Furthermore, unless treated with a surfactant or the like, the nonwoven fabric made of the above-mentioned organic synthetic fibers has no affinity with the fiber itself, has poor impregnability with the electrolyte, and cannot achieve low impedance, and has poor retention of the electrolyte. This is bad, and the life of the capacitor will be extremely shortened. Furthermore, since the elongation against tension remains approximately 60% even after the stretching process, this may impair the winding precision in the winding process and induce defects such as short circuits.

これに対し本発明では、原料のコツトンセルロースがそ
れ自身親和性を有するため、親和性付与処理を施こさな
くても、電解液の含浸性、保持性は良好である。又引張
りに対する伸度もほとんどなく巻取精度等への影響も小
さい。
On the other hand, in the present invention, since the raw material cotton cellulose itself has affinity, the electrolyte impregnating and retaining properties are good even without affinity imparting treatment. In addition, it has almost no elongation under tension and has little effect on winding accuracy, etc.

以上のように本発明の電解コンデンサは巻取工程におけ
る極間ショート等の問題を惹起することなく、インピー
ダンスを飛躍的に低下することができるものである。
As described above, the electrolytic capacitor of the present invention can dramatically reduce impedance without causing problems such as short circuit between electrodes during the winding process.

以下、本発明による具体例について述べる。Specific examples according to the present invention will be described below.

(実施例1) 原料がコツトンリンターで、繊維径が制御可能な銅アン
モニア法によって製造されたセルロース10 〆\−7 系繊維を用いて抄造された電解コンデンサセパレータを
用い、16V47μFの定格で内部素子を巻取り、それ
に′11へ解液を含浸して組立て、エージング処理を施
し、電解コンデンサを作製した。
(Example 1) An electrolytic capacitor separator made of cotton linter as a raw material and made from cellulose 10 \-7 type fiber manufactured by the copper ammonia method that can control the fiber diameter was used. An electrolytic capacitor was produced by winding up the element, impregnating it with a solution '11, assembling it, and subjecting it to an aging treatment.

(実施例2) 平均繊維直径を107ノに変更した他実施例1と同じ方
法で電解コンデンサを作製した。
(Example 2) An electrolytic capacitor was produced in the same manner as in Example 1 except that the average fiber diameter was changed to 107 mm.

(実施例3) 平均繊維直径を6μに変更した他実施例1と同じ方法で
電解コンデンサを作製した。
(Example 3) An electrolytic capacitor was produced in the same manner as in Example 1 except that the average fiber diameter was changed to 6μ.

(実施例4) 平均繊維直径が6μの本発明の繊維40重量%、従来の
マニラ繊維を6o重量%、混抄したセパレータを用いた
他実施例1と同じ方法で電解コンデンサを作成した。
(Example 4) An electrolytic capacitor was produced in the same manner as in Example 1 except that a separator was prepared by mixing 40% by weight of the fiber of the present invention with an average fiber diameter of 6μ and 60% by weight of conventional Manila fiber.

(従来例1) 通常密度(0,5g/cj)の従来のマニラ紙をセパレ
ータとして用い、実施例1と同じ方法で電解コンデンサ
を作製した。
(Conventional Example 1) An electrolytic capacitor was produced in the same manner as in Example 1 using conventional manila paper of normal density (0.5 g/cj) as a separator.

(従来例2) 低密度(o、3eg/d)に調整した従来のマニラ紙を
セパレータとして用い、実施例1と同じ方法で電解コン
デンサを作製した。
(Conventional Example 2) An electrolytic capacitor was produced in the same manner as in Example 1 using conventional Manila paper adjusted to a low density (o, 3eg/d) as a separator.

実施例及び従来例で用いたセパレータの物性を第1表に
示す。又、実施例及び従来例の内部のコンデンサ素子の
巻取直後のショート発生率を第2表に示す。これらの内
部素子に電解液を含浸して組立てた電解コンデンサの特
性を第3表に示す。
Table 1 shows the physical properties of the separators used in the examples and conventional examples. Further, Table 2 shows the short circuit occurrence rate immediately after winding up of the internal capacitor elements of the embodiment and the conventional example. Table 3 shows the characteristics of an electrolytic capacitor assembled by impregnating these internal elements with an electrolyte.

又、20°Cでの周波数に対するインピーダンス変化を
第2図に示している。
Also, FIG. 2 shows the impedance change with respect to frequency at 20°C.

(以 下 余 白) 以上の結果からもわかるように、実施例1〜4は、従来
例1に比ベコンデンサ素子のショート発生もなく、優れ
た特性を示めすことは明らかである。
(Margins below) As can be seen from the above results, it is clear that Examples 1 to 4 exhibit excellent characteristics without the occurrence of short circuits in the capacitor elements compared to Conventional Example 1.

発明の効果 以上のように本発明は、ショート不良等を増加させるこ
とな(tanδ、インピーダンスを著しく低くした高性
能、高品質の電解コンデンサを提供するもので、その実
用的効果は大なるものである。
Effects of the Invention As described above, the present invention provides a high-performance, high-quality electrolytic capacitor that does not increase short-circuit defects, etc. (tan δ, and impedance is significantly lowered), and its practical effects are significant. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電解コンデンサの一実施例を示す分解
斜視図、第2図は本発明の実施例及び従来例で得られた
コンデンサの20″Cのインピーダンスの温度特性図、
第3図は″1F解コンデンサの等価回路図である。 1・・・・・・ケース、2・・・・・・コンデンサ素子
、3・・・・・・陽極箔、4・・・・・・陰極箔、6・
・・・・・セパレータ、6・・・・・封口体。
FIG. 1 is an exploded perspective view showing an embodiment of the electrolytic capacitor of the present invention, FIG. 2 is a temperature characteristic diagram of impedance at 20"C of capacitors obtained in the embodiment of the present invention and the conventional example,
Figure 3 is an equivalent circuit diagram of a 1F solution capacitor. 1... Case, 2... Capacitor element, 3... Anode foil, 4...・Cathode foil, 6・
... Separator, 6 ... Sealing body.

Claims (4)

【特許請求の範囲】[Claims] (1)原料がコットンリンターで、繊維径が制御可能な
銅アンモニア法によって製造されたセルロース系繊維を
用い、抄造されたセパレータを電極箔間に介在させて巻
回したコンデンサ素子をケースに封入してなる電解コン
デンサ。
(1) A capacitor element is enclosed in a case, using cellulose fibers manufactured by the copper ammonia method, which uses cotton linter as the raw material and whose fiber diameter can be controlled, and is wound with a paper-made separator interposed between electrode foils. Electrolytic capacitor.
(2)セルロース系繊維が平均直径20μ以下である請
求項1記載の電解コンデンサ。
(2) The electrolytic capacitor according to claim 1, wherein the cellulose fibers have an average diameter of 20 μm or less.
(3)抄造に円網法あるいは長網法を用いた請求項1記
載の電解コンデンサ。
(3) The electrolytic capacitor according to claim 1, wherein a cylinder method or a Fourdrinier method is used for paper making.
(4)抄造時にマニラ,クラフト,エスパルト,ヘンプ
の中の少なくとも1種類以上の繊維を混抄して成る請求
項1記載の電解コンデンサ。
(4) The electrolytic capacitor according to claim 1, wherein at least one type of fiber from manila, kraft, esparto, and hemp is mixed into the paper during papermaking.
JP63266355A 1988-10-21 1988-10-21 Electrolytic capacitor Expired - Fee Related JP2836076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63266355A JP2836076B2 (en) 1988-10-21 1988-10-21 Electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63266355A JP2836076B2 (en) 1988-10-21 1988-10-21 Electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH02112215A true JPH02112215A (en) 1990-04-24
JP2836076B2 JP2836076B2 (en) 1998-12-14

Family

ID=17429792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63266355A Expired - Fee Related JP2836076B2 (en) 1988-10-21 1988-10-21 Electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2836076B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397017A (en) * 1986-10-13 1988-04-27 Omron Tateisi Electronics Co Serial/parallel conversion circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397017A (en) * 1986-10-13 1988-04-27 Omron Tateisi Electronics Co Serial/parallel conversion circuit

Also Published As

Publication number Publication date
JP2836076B2 (en) 1998-12-14

Similar Documents

Publication Publication Date Title
JP6674956B2 (en) Electrochemical element separator and electrochemical element
JP3466206B2 (en) Electrolytic capacitor
EP3573083A1 (en) Separator for aluminum electrolytic capacitors, and aluminum electrolytic capacitor
TWI778238B (en) Diaphragm for aluminum electrolytic capacitor and aluminum electrolytic capacitor using the same
DE102020126899A1 (en) Cellulosic fiber based separator for electrochemical elements
JP3324803B2 (en) Separator for electrolytic capacitors
JPH01293608A (en) Electrolytic capacitor
JPH02112215A (en) Electrolytic capacitor
JPS6386417A (en) Electrolytic capacitor
JP2692126B2 (en) Electrolytic capacitor
DE112018003665T5 (en) Nonwoven and battery separator
JPH01268110A (en) Electrolytic capacitor
JPH0458508A (en) Electrolytic capacitor
JP2892412B2 (en) Electrolytic paper for electrolytic capacitors
JP3098549B2 (en) Electrolytic capacitor
JP3037725B2 (en) Electrolytic capacitor
JP2674007B2 (en) Electrolytic capacitor
KR20210105910A (en) Separator for aluminum electrolytic capacitors and aluminum electrolytic capacitors
EP4109478A1 (en) Separator for aluminum electrolytic capacitors, and aluminum electrolytic capacitor
JP2706954B2 (en) Separator for electrolytic capacitor
WO2020137674A1 (en) Separator for aluminum electrolytic capacitor and aluminum electrolytic capacitor
JP2014222706A (en) Separator for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
DE2444718C3 (en) Speaker cone
JPH01161819A (en) Separator for electrolytic capacitor
EP3913646A1 (en) Separator for aluminum electrolytic capacitor, and aluminum electrolytic capacitor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees