JPH02111656A - Production of ceramic sintered article - Google Patents

Production of ceramic sintered article

Info

Publication number
JPH02111656A
JPH02111656A JP63262719A JP26271988A JPH02111656A JP H02111656 A JPH02111656 A JP H02111656A JP 63262719 A JP63262719 A JP 63262719A JP 26271988 A JP26271988 A JP 26271988A JP H02111656 A JPH02111656 A JP H02111656A
Authority
JP
Japan
Prior art keywords
methylstyrene
ceramic powder
binder
thermoplastic resin
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63262719A
Other languages
Japanese (ja)
Inventor
Tadashi Asanuma
正 浅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP63262719A priority Critical patent/JPH02111656A/en
Publication of JPH02111656A publication Critical patent/JPH02111656A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To make possible to obtain sintered article with improved strength of molded article before sintering treatment and complete cleaning at relatively low temperature by mixing specific thermoplastic resin into ceramic powder as binder. CONSTITUTION:Copolymer of poly-alpha-methylstyrene obtained by anionic polymerization or cationic polymerization of monomer in which one of alpha-methylstyrene and polyethylene glycol is etherified with alkyl group and the other with alkenyl group is used as thermoplastic resin in production of ceramic sintered article by mixing thermoplastic resin into ceramic powder as binder, molding, cleaning and sintering. Usually 100 pts.wt. ceramic powder is mixed with 5-50 pts.wt. the copolymer of poly-alpha-methylstyrene. Especially a molding method fluidizing ceramic powder and binder mixing with suitable solvent and making to sheet by doctor blade method, etc., is effective.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はセラミνり焼結体の製造方法に関し、詳しくは
、焼結処理前の成形体の強度を向上し、しかも比較的低
温で完全に脱脂が行われるセラミック焼結体の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a ceramic sintered body, and more specifically, it improves the strength of a molded body before sintering and can be completely completed at a relatively low temperature. The present invention relates to a method for manufacturing a ceramic sintered body in which degreasing is performed.

〔従来の技術〕[Conventional technology]

複雑な形状や高寸法晴度が要求されるセラミック製品の
製造法としては、予め成形した成形体を焼成するいわゆ
る常圧焼結法、反応焼結法などの技術を利用することが
工業的に行なわれている。
As a manufacturing method for ceramic products that require complex shapes and high dimensional clarity, it is industrially possible to use techniques such as the so-called pressureless sintering method and reaction sintering method, in which pre-formed compacts are fired. It is being done.

ここで成形体を成形する手段としては、例えばアルミナ
やフェライトなどのセラミック粉末に、必要に応じてバ
インダーの他に焼結促進剤を加えた組成物を湿式プレス
法、ドクターブレード法、押出成形法、射出成形法など
の乾式あるいは湿式法の成形法で所望の形状に成形する
ことが行われている。
Here, methods for forming the compact include a wet pressing method, a doctor blade method, an extrusion molding method, and a composition prepared by adding a sintering accelerator in addition to a binder to ceramic powder such as alumina or ferrite, if necessary. Molding into a desired shape is performed using dry or wet molding methods such as injection molding.

(発明が解決しようとする課題) 比較的低温で脱脂が可能な方法として本発明者らは、既
にポリα−メチルスチレンを使用する方法(特開昭60
−51657号公報)、更に焼結前の成形物の強度を改
良する方法(特開昭60−65762号公fll)を捷
写している。しかしながら、これらの方法では特別のポ
リα−メチルスチレンを必要とし、しかも焼結前の成形
物が特に湿式法で成形した場合に不均一であるという問
題があった。
(Problems to be Solved by the Invention) The present inventors have already developed a method using polyα-methylstyrene (Japanese Unexamined Patent Application Publication No. 1983-1993) as a method capable of degreasing at a relatively low temperature.
JP-A-51657) and a method for improving the strength of a molded product before sintering (JP-A-60-65762 full). However, these methods require a special poly-α-methylstyrene and have the problem that the molded product before sintering is non-uniform, especially when molded by a wet method.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは上記問題を解決する方法について鋭意検討
し、本発明を完成した。
The present inventors have intensively studied methods for solving the above problems and have completed the present invention.

即ち、本発明は、セラミンク粉末に熱可塑性樹脂をバイ
ンダーとして混合し、成形したのち脱脂し、焼結するセ
ラミック焼結体の製造方法において、熱可塑性樹脂がα
−メチルスチレンとポリエチレングリコールの一方がア
ルキルで他方がアルケニル基でエーテル化した単量体と
アニオン重合、あるいはカチオン重合で重合して得たポ
リαメチルスチレンであるセラミック焼結体の製造方法
である。
That is, the present invention provides a method for producing a ceramic sintered body in which ceramic sintered powder is mixed with a thermoplastic resin as a binder, molded, degreased, and sintered.
- A method for producing a ceramic sintered body, which is polyα-methylstyrene obtained by anionic polymerization or cationic polymerization of monomers of methylstyrene and polyethylene glycol, one of which is etherified with an alkyl group and the other with an alkenyl group. .

本発明においては、バインダーとして用いるポリα−メ
チルスチレンに特徴がある。ここでα−メチルスチレン
の一部を得られた共重合体の分解性を損なわない範囲で
スチレンとかその誘導体などアニオン重合性の他の単量
体にかえることも可能である。
The present invention is characterized by polyα-methylstyrene used as a binder. Here, it is also possible to substitute other anionically polymerizable monomers such as styrene or its derivatives within a range that does not impair the degradability of the copolymer obtained from a part of α-methylstyrene.

共重合に用いるポリエチレングリコールの一方がアルキ
ルで他方がアルケニル基でエーテル化した単量体として
は、アルキル基としてはメチル、エチル、プロピル、ブ
チル、ペンチル、ヘキシルなどが、アルケニル基として
はビニル、プロペニル、フチニル、ペンテニル、ヘキセ
ニル等力例示できポリエチレングリコール部としては、
エチレングリコール、ジエチレングリコール、トリエチ
レングリコールないし分子量として千程度のものが好ま
しく利用できる。
Monomers of polyethylene glycol used for copolymerization in which one side is alkyl and the other is etherified with alkenyl groups include methyl, ethyl, propyl, butyl, pentyl, hexyl, etc. as alkyl groups, and vinyl and propenyl as alkenyl groups. , phthynyl, pentenyl, hexenyl, etc. Examples of polyethylene glycol moieties include:
Ethylene glycol, diethylene glycol, triethylene glycol or those having a molecular weight of about 1,000 can be preferably used.

使用しうる共重合体の分子量としては、特に制限はない
が、通常数千〜数百万のものが適当である。また 上述
の特開昭60−51657号公報に記載されているよう
な2〜8聞体との混合物であっても良い。
There are no particular restrictions on the molecular weight of the copolymer that can be used, but a range of several thousand to several million is usually appropriate. It may also be a mixture with 2 to octagonal forms as described in the above-mentioned Japanese Patent Application Laid-Open No. 60-51657.

本発明において重要なのは、上述のバインダーとして用
いるポリα−メチルスチレンとして、特定の製造方法で
合成された共重合体を用いることにある。
What is important in the present invention is to use a copolymer synthesized by a specific production method as the polyα-methylstyrene used as the binder.

本発明において、アニオン重合は有機リチウム、有機ナ
トリウムなどの有機金属を用いて行うことができ重合方
法については特に制限はないが、α−メチルスチレンの
天井温度は低いので比較的低温で重合が行われる。また
カチオン重合で重合を行う場合にも公知の硫酸、フルオ
ロ酢酸などの酸類あるいは、塩化アルミニム、弗化硼素
等のルイス酸などの触媒を用い比較的低温で重合するこ
とで重合体が得られる。
In the present invention, anionic polymerization can be carried out using organic metals such as organolithium and organosodium, and there are no particular restrictions on the polymerization method, but since the ceiling temperature of α-methylstyrene is low, polymerization can be carried out at a relatively low temperature. be exposed. Furthermore, when polymerization is carried out by cationic polymerization, a polymer can be obtained by polymerizing at a relatively low temperature using a catalyst such as a known acid such as sulfuric acid or fluoroacetic acid, or a Lewis acid such as aluminum chloride or boron fluoride.

本発明において、こうして得られたポリα−メチルスチ
レンはついでセラミックと混合される。
In the present invention, the polyα-methylstyrene thus obtained is then mixed with a ceramic.

混合はポリα−メチルスチレンを溶剤に溶解しそれにセ
ラミック粉を分散して行われる。この際、ポリα−メチ
ルスチレンの他に、必要に応じ可望剤、例えば、フタル
酸ジエステル、流動パラフィン、スチレン或いはα−メ
チルスチレンのオリゴマーなどを併用してもかまわない
The mixing is performed by dissolving polyα-methylstyrene in a solvent and dispersing the ceramic powder therein. At this time, in addition to polyα-methylstyrene, a desensitizing agent such as phthalic acid diester, liquid paraffin, styrene or α-methylstyrene oligomer may be used in combination, if necessary.

これらの使用割合としては、セラミック扮100重量部
に対してポリα−メチルスチレン5〜50重量部、及び
可塑剤0〜50重り部を使用するのが一般的である。
The ratio of these components is generally 5 to 50 parts by weight of polyα-methylstyrene and 0 to 50 parts by weight of plasticizer per 100 parts by weight of the ceramic material.

本発明の方法はどのような成形法にも適用可能であるが
、特に、セラミック粉とバインダーと適当な溶媒を混合
して流動化し、ドクターブレード法でシート化する方法
などの湿式法に適用すると効果的である。
Although the method of the present invention can be applied to any molding method, it is particularly applicable to wet methods such as mixing ceramic powder, a binder, and a suitable solvent, fluidizing it, and forming it into a sheet using a doctor blade method. Effective.

〔実施例〕〔Example〕

以下、実施例を示し本発明をさらに説明する。 The present invention will be further explained below with reference to Examples.

実施例1 200dのフラスコに窒素気流下、トルエン10〇−1
α−メチルスチレン50d、ポリエチレングリコールの
メチル−アリル−エーテル(日本油脂■製ユニオックス
PKA−5006) 1oII11を入れ、混合後、常
温でn−ブチルリチウム(15wtχ)3.OIdを加
え、冷却して一45°Cとし8時間重合した後、メタノ
ールをlld入れ失活し、次いで多量のメタノール中に
投入し、生成したポリマーを析出させたところポリエチ
レングリコールのメチル−アリル−エーテルを2.2s
+tχ(元素分析により算出、赤外吸収スペクトルで1
100cm−’)で数平均分子量は96,000である
共重合体を得た。
Example 1 Toluene 100-1 in a 200 d flask under nitrogen flow
α-methylstyrene 50d, methyl-allyl-ether of polyethylene glycol (UNIOX PKA-5006 manufactured by NOF ■) 1oII11 were added, and after mixing, n-butyllithium (15wtχ) 3. OId was added, cooled to -45°C, and polymerized for 8 hours, then methanol was added to inactivate it, and then poured into a large amount of methanol to precipitate the formed polymer. Methyl-allyl of polyethylene glycol 2.2s of ether
+tχ (calculated by elemental analysis, 1 in infrared absorption spectrum)
100 cm-') and a number average molecular weight of 96,000.

セラミック成型用超微粒アルミナ100gに上記ポリα
−メチルスチレン20g5α−メチルスチレンオリゴマ
ー(三井東圧化学■製、MS−730) 20gトルエ
ン60mを加えボールミルで良く混合した後、スラリー
をテフロンシート上に流延し、厚さIIIIIllのシ
ートとした。乾燥後シートを切断して切断面を観察した
ところアルミナは均一に分散していた。また、シートを
lOloXloに切断し、直径51mノ穴ヲパッキンカ
ッターであけ、次いで400°Cで脱脂したが、シート
及び穴の形状に欠陥はなかった。更に1400℃で焼結
して欠陥のないアルミナの焼結体を得た。
The above polyα is added to 100g of ultrafine alumina for ceramic molding.
-Methylstyrene 20g 5α-methylstyrene oligomer (manufactured by Mitsui Toatsu Chemicals, MS-730) 20g Toluene 60ml was added and mixed well in a ball mill, and the slurry was cast onto a Teflon sheet to form a sheet with a thickness of IIIllll. After drying, the sheet was cut and the cut surface was observed to find that the alumina was uniformly dispersed. Further, the sheet was cut into lOloXlo, holes with a diameter of 51 m were punched with a packing cutter, and then degreased at 400°C, but there were no defects in the shape of the sheet or the holes. Further, it was sintered at 1400°C to obtain a defect-free alumina sintered body.

比較例1 α−メチルスチレンの単独重合体を用いた他は実施例1
と同様にしたところ、切断面は不均一であり、穴をあけ
る際にシートの一部が破損し、脱脂しただけで全部で5
個所が破損した。
Comparative Example 1 Same as Example 1 except that α-methylstyrene homopolymer was used.
When I did the same thing as above, the cut surface was uneven, part of the sheet was damaged when drilling the hole, and the total cost was 5.
Parts were damaged.

実施例2 ユニオンクスPKA−5006に変えエチレングリコー
ル部の分子量の大きいユニオックスPKA−5007を
用いた他は実施例1と同様にしポリエチレングリコール
のメチル−アリル−エーテルを1.2wtχ含有する共
重合体を4同様に評価したが、シートの断面は均一であ
り、脱脂後の成型体の形状に問題はなく、焼結後の欠陥
もなかった。
Example 2 A copolymer containing 1.2 wtχ of methyl-allyl ether of polyethylene glycol was prepared in the same manner as in Example 1, except that UNIONX PKA-5007, which has a larger molecular weight in the ethylene glycol moiety, was used instead of UNIONX PKA-5006. was evaluated in the same manner as in No. 4, but the cross section of the sheet was uniform, there was no problem with the shape of the molded product after degreasing, and there were no defects after sintering.

実施例3 α−メチルスチレンに代えて、α−メチルスチレンとス
チレンの1:1混合物を用い、数平均分子m1os、o
oo 、ポリエチレングリコールのメチルアリル−エー
テルを1.4wtχ含有する重合体を得、それを用いて
評価した他は実施例1と同様にしたが、脱脂後の成型体
の形状に異常はなく、更に1400℃での焼結でも均一
な焼結体を得ることができた。
Example 3 A 1:1 mixture of α-methylstyrene and styrene was used instead of α-methylstyrene, and the number average molecule m1os, o
oo, a polymer containing 1.4 wtχ of methyl allyl ether of polyethylene glycol was obtained and evaluated using the same, but the same procedure as in Example 1 was carried out, but there was no abnormality in the shape of the molded product after degreasing, and further 1400 Even by sintering at ℃, a uniform sintered body could be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明の方法では、脱脂前の成型物が均一であり、成形
物を比較的低温で脱脂でき、また加工、脱脂、焼結の際
に破壊することなくセラミック焼結体が製造できるので
、工業的に極めて価値がある。
In the method of the present invention, the molded product is uniform before degreasing, the molded product can be degreased at a relatively low temperature, and a ceramic sintered body can be manufactured without breaking during processing, degreasing, and sintering, so it can be used industrially. extremely valuable.

特許出願人 三井東圧化学株式会社Patent applicant: Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1.セラミック粉末に熱可塑性樹脂をバインダーとして
混合し、成形したのち脱脂し、焼結するセラミック焼結
体の製造方法において、熱可塑性樹脂がα−メチルスチ
レンとポリエチレングリコールの一方がアルキルで他方
がアルケニル基でエーテル化した単量体とアニオン重合
、あるいはカチオン重合で重合して得たポリα−メチル
スチレンであるセラミック焼結体の製造方法。
1. In a method for producing a ceramic sintered body in which ceramic powder is mixed with a thermoplastic resin as a binder, molded, degreased, and sintered, the thermoplastic resin contains α-methylstyrene and polyethylene glycol, one of which is an alkyl group and the other an alkenyl group. A method for producing a ceramic sintered body made of polyα-methylstyrene obtained by polymerizing an etherified monomer with anionic or cationic polymerization.
JP63262719A 1988-10-20 1988-10-20 Production of ceramic sintered article Pending JPH02111656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63262719A JPH02111656A (en) 1988-10-20 1988-10-20 Production of ceramic sintered article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63262719A JPH02111656A (en) 1988-10-20 1988-10-20 Production of ceramic sintered article

Publications (1)

Publication Number Publication Date
JPH02111656A true JPH02111656A (en) 1990-04-24

Family

ID=17379643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63262719A Pending JPH02111656A (en) 1988-10-20 1988-10-20 Production of ceramic sintered article

Country Status (1)

Country Link
JP (1) JPH02111656A (en)

Similar Documents

Publication Publication Date Title
JPS6187703A (en) Catalyst for polymerization
Mellot et al. Beyond simple AB diblock copolymers: application of bifunctional and trifunctional RAFT agents to PISA in water
Huang et al. Synthesis of well-defined PCL-b-PnBA-b-PMMA ABC-type triblock copolymers: toward the construction of nanostructures in epoxy thermosets
KR20020053849A (en) Polymerization catalyst and process
WO1999048934A1 (en) Polymer compositions
JPH01247406A (en) Catalyst composition for producing alpha-polyolefin narrow molecular weight distribution
Chen et al. Facile synthesis of nanocapsules and hollow nanoparticles consisting of fluorinated polymer shells by interfacial RAFT miniemulsion polymerization
CA1169842A (en) Polymerization of olefins
JPH03167246A (en) Resin composition
JPH02111656A (en) Production of ceramic sintered article
JPH02107605A (en) Catalyst component
US3070574A (en) Process for graftpolymerizing alphamethylstyrene in the presence of cyclic ethers and alkali metal catalyst
Penczek et al. Segmental exchange polyacetal‐polyether in the cationic copolymerization of trioxane with dioxolane catalyzed by BF3 in the presence of polyethers
KR100647028B1 (en) Method for producing polyethylene homopolymers and copolymers
Yang et al. Synthesis of high molecular weight isobutylene-α-methylstyrene copolymers containing alkenyl groups with a half sandwich scandium initiator system under mild conditions
KR102598236B1 (en) Compatibilizer for organic-inorganic composite material
JPH02111655A (en) Production of ceramic sintered article
CN1036139C (en) Polymeric compositions and method for preparing them
Baumert et al. Progress in controlled polymerization and design of novel polymer architectures
SU1135427A3 (en) Method of obtaining catalytic composition for polymerization of ethylene and copolymerization of ethylene with butene-1
EP0012148B1 (en) Process for the preparation of high density ethylene polymers in fluid bed reactor
KR960001619B1 (en) Method for preparing molded articles from cross-linked
RU2099364C1 (en) Method for production of composite materials
JPS5810411B2 (en) How to find out how to get started
JP2503024B2 (en) Method for manufacturing ceramic molded body