JPH0211152A - Artificial bone - Google Patents

Artificial bone

Info

Publication number
JPH0211152A
JPH0211152A JP63159202A JP15920288A JPH0211152A JP H0211152 A JPH0211152 A JP H0211152A JP 63159202 A JP63159202 A JP 63159202A JP 15920288 A JP15920288 A JP 15920288A JP H0211152 A JPH0211152 A JP H0211152A
Authority
JP
Japan
Prior art keywords
bone
hydroxyapatite
tricalcium phosphate
artificial bone
artificial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63159202A
Other languages
Japanese (ja)
Other versions
JPH0747042B2 (en
Inventor
Takashi Kurosawa
黒沢 尚
Takahiko Iwano
岩野 孝彦
Hiroyasu Takeuchi
啓泰 竹内
Yoshitaka Okubo
大久保 義孝
Toshiyuki Kurosawa
黒澤 敏行
Takeshi Momotomi
武 百冨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Mining and Cement Co Ltd
Original Assignee
Mitsubishi Mining and Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Mining and Cement Co Ltd filed Critical Mitsubishi Mining and Cement Co Ltd
Priority to JP63159202A priority Critical patent/JPH0747042B2/en
Publication of JPH0211152A publication Critical patent/JPH0211152A/en
Publication of JPH0747042B2 publication Critical patent/JPH0747042B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

PURPOSE:To allow the formation of the neonatal bone and the absorption of the artificial bone in a short period of time and to make early treatment of an affected part by combining hydroxyapatite and tricalcium phosphate at the weight ratios of a specific range, thereby extremely uniformly dispersing both. CONSTITUTION:The hydroxyapatite and the tricalcium phosphate are combined in the 5:95-95:5 weight ratio range. The uniformly dispersed ideal artificial bone is obtd. in this way and the formation of the neonatal bone is accelerated by the presence of the hydroxyapatite in the process of forming the neonatal bone at the time of artificial bone implantation. The absorption is accelerated with the tricalcium phosphate present in the bone as the nucleus in the absorption process of the artificial bone.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は生体用セラミックスとしての人工骨、特にヒド
ロキシアパタイトとリン酸三カルシウムとを含有する人
工骨に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an artificial bone as a bioceramic, particularly an artificial bone containing hydroxyapatite and tricalcium phosphate.

〔従来の技術〕[Conventional technology]

従来生体の硬組織代替物質として、各種金属合金及び有
機物等を使用することが知られている。
Conventionally, it has been known to use various metal alloys, organic substances, etc. as hard tissue substitutes for living organisms.

しかしながら、一般的に生体内の環境下において、溶解
劣化若しくは生体に対する毒性を示し、異物反応を伴う
という欠点がある。そこで現在では、生体との親和性に
優れ、かつ前記の欠点のないセラミックス系材料が用い
られつつある。このセラミックス系材料の中でも生体親
和性に優れたアルミナ、カーボン、リン酸三カルシウム
あるいはヒドロキシアパタイトの焼結体若しくは単結晶
からなる人工骨等が開発されつつあり、注目を集めてい
る。特に、ヒドロキシアパタイトは埋込後、早期に骨の
新生が期待できるので好ましい。更にヒドロキシアパタ
イトはアルミナのように結合組織を介して新生骨と接す
ることがなく、親和性に優れている。
However, they generally exhibit dissolution deterioration or toxicity to living organisms in the in vivo environment, and have the drawback of being accompanied by foreign body reactions. Therefore, ceramic materials that have excellent compatibility with living organisms and do not have the above-mentioned drawbacks are now being used. Among these ceramic materials, artificial bones made of sintered bodies or single crystals of alumina, carbon, tricalcium phosphate, or hydroxyapatite, which have excellent biocompatibility, are being developed and are attracting attention. In particular, hydroxyapatite is preferable because new bone formation can be expected at an early stage after implantation. Furthermore, unlike alumina, hydroxyapatite does not come into contact with new bone through connective tissue, and has excellent affinity.

一方、これらの材料を多孔体の形で骨欠損部及び空隙部
の充てん材として使用する方法もあるが。
On the other hand, there is also a method of using these materials in the form of a porous body as a filler for bone defects and voids.

強度的に不十分である。Insufficient strength.

例えば、特開昭60−21763号公報には。For example, in Japanese Patent Application Laid-Open No. 60-21763.

人工骨材料として孔径10〜100μmの連続気孔を有
し、迅速に溶解吸収されて新生骨と置換される多孔質ヒ
ドロキシアパタイト焼結体と、ヒドロキシアパタイト粉
末に熱分解性物質、例えば。
As an artificial bone material, a porous hydroxyapatite sintered body having continuous pores with a pore size of 10 to 100 μm and which is rapidly dissolved and absorbed to replace new bone, and a hydroxyapatite powder containing a thermally decomposable substance, for example.

結晶性セルロースを添加して製造される前記焼結体の製
造方法とが開示されている。
A method for manufacturing the sintered body, which is manufactured by adding crystalline cellulose, is disclosed.

前記のように、ヒドロキシアパタイトは人工骨材料とし
ては極めて優れており、生体親和性が顕著である。しか
し水に対する溶解度積が10−59程度と小さいため、
実用上、生体中でほとんど吸収されない。つまり組織学
的には、生体にとって無機質の異物として長期間存在す
る。
As mentioned above, hydroxyapatite is extremely excellent as an artificial bone material and has remarkable biocompatibility. However, since the solubility product in water is small at around 10-59,
Practically speaking, it is hardly absorbed in the living body. In other words, histologically, it exists for a long period of time as an inorganic foreign substance in living organisms.

又、前述のリン酸三カルシウムは、生体中で吸収されや
すい材料であるが、生体への埋込時に異物反応が強く、
骨の新生量が劣るという欠点がある。
In addition, the aforementioned tricalcium phosphate is a material that is easily absorbed in living organisms, but it has a strong foreign body reaction when implanted into living organisms.
The disadvantage is that the amount of new bone formation is low.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従って、本発明の目的は、親和性に優れ骨形成能が顕著
であり、同時に実用上、生体中で吸収される均一分散し
た理想的な人工骨を提供することである。
Therefore, an object of the present invention is to provide an ideal artificial bone that has excellent affinity and remarkable osteogenic ability, and at the same time is uniformly dispersed and is practically absorbed in the living body.

本発明の別の目的は、異物反応が少なく、特に短期間で
周囲の骨組織と、結合組織を必要とせずに一体化する人
工骨を提供することである。
Another object of the present invention is to provide an artificial bone that causes less foreign body reaction and integrates with surrounding bone tissue, particularly in a short period of time, without the need for connective tissue.

本発明の更に別の目的は、骨組織欠損個所の構造及び機
能を、特に速やかに修復及び回復させ得る人工骨を提供
することである。
Yet another object of the present invention is to provide an artificial bone that can particularly quickly repair and restore the structure and function of a bone tissue defect site.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、ヒドロキシアパタイトとリン酸三カル
シウムの重量比が5=95〜95:5の範囲であること
を特徴とする均一分散した人工骨が提供される。
According to the present invention, there is provided a uniformly dispersed artificial bone characterized in that the weight ratio of hydroxyapatite to tricalcium phosphate is in the range of 5=95 to 95:5.

以下本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明においては、ヒドロキシアパタイトを骨欠損部及
び骨空隙部に充てんすると新生骨が当該個所に早期より
生成するというヒドロキシアパタイトの骨形成促進能に
着目し、これに生体中で吸収され易いリン酸三カルシウ
ムを組合せて使用することにより、ヒドロキシアパタイ
トとリン酸三カルシウムの双方の欠点を補った新規な人
工骨を製造することに成功した。
In the present invention, we focused on the ability of hydroxyapatite to promote bone formation, in that when hydroxyapatite is filled into bone defects and bone voids, new bone is generated in the area at an early stage. By using tricalcium in combination, we succeeded in producing a new artificial bone that compensates for the drawbacks of both hydroxyapatite and tricalcium phosphate.

本発明において、ヒドロキシアパタイトとリン酸三カル
シウムの重量比は5:95〜95:5の範囲でなければ
ならない。ヒドロキシアパタイトとリン酸三カルシウム
の重量割合を前記の範囲で任意に選択することによって
、生体への埋込時に骨の新生と人工骨の吸収の度合いを
コントロールすることができる。理想的な人工骨は、骨
欠損部及び空隙部に埋込んだ場合に、可及的速やかに骨
欠損部及び空隙部の修復を促し、かつ生体にとって本来
の組織ではない人工骨は、修復後生体に吸収されるもの
が好ましい。ヒドロキシアパタイトが5重量%よりも少
量になると所望の骨形成能が得られないので好ましくな
い。逆に、ヒドロキシアパタイトの量が95重量%より
多量になると生体への吸収が悪くなる。
In the present invention, the weight ratio of hydroxyapatite and tricalcium phosphate should be in the range of 5:95 to 95:5. By arbitrarily selecting the weight ratio of hydroxyapatite and tricalcium phosphate within the above range, it is possible to control the degree of new bone formation and resorption of the artificial bone during implantation into a living body. An ideal artificial bone, when implanted into a bone defect or void, should promote the repair of the bone defect or void as quickly as possible, and should not be a tissue that is natural to the living body. Preferably, it is absorbed by the living body. If the amount of hydroxyapatite is less than 5% by weight, it is not preferable because the desired osteogenic ability cannot be obtained. On the other hand, if the amount of hydroxyapatite is more than 95% by weight, absorption into the living body will be poor.

本発明においては、ヒドロキシアパタイトとリン酸三カ
ルシウムとが、均一に分散していることが必須の要件で
ある。均一分散が達成されないとヒドロキシアパタイト
の骨形成促進能とリン酸三カルシウムの生体への吸収性
とが十分に発渾できない。しかし、単にヒドロキシアパ
タイトとリン酸三カルシウムとを混合したのみでは均一
分散は達成できない。
In the present invention, it is essential that hydroxyapatite and tricalcium phosphate be uniformly dispersed. Unless uniform dispersion is achieved, the ability of hydroxyapatite to promote bone formation and the absorbability of tricalcium phosphate into the living body cannot be sufficiently developed. However, uniform dispersion cannot be achieved simply by mixing hydroxyapatite and tricalcium phosphate.

本発明において、人工骨の埋込時の骨代謝メカニズムを
把握し開発を行なったところ、骨代謝の骨形成単位の一
つである管渠単位の面積0.5〜1.0+n+++”当
りにヒドロキシアパタイトとリン酸三カルシウムの双方
の材料を存在させることにより、実用上十分な骨の形成
促進能及び吸収性を得ることができた。管渠単位につい
ては、例えば、画材書店発行・高橋栄明編集の「骨形前
計測ハンドブック」第3頁〜第17頁の骨の組織学的動
態概説」及び医歯薬出版発行・須田立雄著の「骨の科学
」第65頁〜第75頁の「骨の組織発生と成長」中に記
載がある。
In the present invention, we understood and developed the bone metabolism mechanism when implanting an artificial bone, and found that hydroxyl By having both apatite and tricalcium phosphate present, we were able to obtain practically sufficient bone formation promoting ability and absorbability.As for the conduit unit, for example, published by Art Supply Shoten and edited by Eiaki Takahashi "Overview of Bone Histological Dynamics" in "Bone Shape Pre-Measurement Handbook", pages 3 to 17, and "Bone Science", published by Ishiyaku Publishing, written by Tatsuo Suda, "Bone Science", pages 65 to 75. ``Tissue Development and Growth''.

本発明において、管渠単位の面積0.5〜1 、0 m
m ”当りにヒドロキシアパタイトとリン酸三カルシウ
ムの双方の材料を存在させることにより、実用上十分な
骨の形成促進能及び吸収性が得られる理由は、骨の再造
形は骨単位(皮質骨部分)及び管渠単位の値によって変
化するが、管渠部(海綿骨部分)が特に吸収されやすく
、面積測定も容易であるためである。即ち、人工骨埋込
時の新生骨形成過程ではヒドロキシアパタイトの存在に
より新生骨の形成が促進され5人工骨の吸収過程では存
在するリン酸三カルシウムを核として吸収が促進される
ことから、管渠単位の面積当りにヒドロキシアパタイト
とリン酸三カルシウムの双方の材料が存在することが極
めて好ましい。本発明においては、管渠単位の大きさに
はマイクロポアの如き空隙を包含していてもよい。
In the present invention, the area of the pipe conduit unit is 0.5 to 1.0 m
The reason why the presence of both hydroxyapatite and tricalcium phosphate materials in the area of 200 m2 provides practically sufficient bone formation promoting ability and absorbability is that bone remodeling is performed on a bone unit (cortical bone part). ) and the value of the canal unit, but this is because the canal part (cancellous bone part) is particularly easy to absorb and its area is easy to measure.In other words, in the process of new bone formation when implanting an artificial bone, hydroxyl The presence of apatite promotes the formation of new bone, and in the resorption process of artificial bone, absorption is promoted using the existing tricalcium phosphate as a core. It is highly preferred that both materials are present.In the present invention, the size of the conduit unit may include voids such as micropores.

本発明においては、人工骨を形成する一次粒子は、成形
段階より均一分散を行なって10μm以下、特に5μm
以下の粒子径とすることが好ましく、これは焼結時の凝
集粒子による異常粒子成長を防止する必要があるからで
ある。
In the present invention, the primary particles forming the artificial bone are uniformly dispersed from the molding stage to 10 μm or less, particularly 5 μm.
It is preferable to set the particle size to the following, because it is necessary to prevent abnormal particle growth due to agglomerated particles during sintering.

本発明の人工骨の生体への吸収を更に促進するため、人
工骨にマイクロクラックやマイクロポアを付与してもよ
い。
In order to further promote absorption of the artificial bone of the present invention into a living body, microcracks or micropores may be added to the artificial bone.

本発明においては、前記のような均一分散を達成するた
め、湿式合成法により可能な限り微細な一次粒子を合成
し成形することが好ましい。湿式合成にあたっては1合
成温度が一次粒子の粒子径に及ぼす影響が大きく、低温
であるほど微細な一次粒子が合成できる。本発明で湿式
合成にあたって好ましく使用できる温度範囲は約O℃〜
80℃の範囲であり、さらに好ましくは、o℃〜50℃
の範囲である。合成温度が80℃を超えると生成する一
次粒子の粒子径が大きくなり、0℃よりも低いと凍結に
よって撹拌操作が不可能となるので望ましくない。湿式
合成法により合成した一次粒子乾燥物の粒子径は極めて
微細であるが、乾燥及び仮焼段階において凝集するため
、仮焼後に粉砕することが好ましい。しかし、本発明の
人工骨においては一次粒子の粒子径が10μm以下、特
に5μm以下である限りは、凝集粒子の存在は差し支え
ない、これは、−水粒子乾燥物はヒドロキシアパタイト
の構造を有するがカルシウムとリンとの比が理論値であ
る1、67とは異なる非化学量論ヒドロキシアパタイト
であり、これを仮焼すると均一に分散した状態のヒドロ
キシアパタイトとリン酸三カルシウムの混合系が得られ
、この混合系を成形後に焼成しても分散状態は良好に維
持されるからである。
In the present invention, in order to achieve the above-mentioned uniform dispersion, it is preferable to synthesize and mold primary particles as fine as possible by a wet synthesis method. In wet synthesis, the synthesis temperature has a large effect on the particle size of the primary particles, and the lower the temperature, the finer the primary particles can be synthesized. The temperature range that can be preferably used for wet synthesis in the present invention is about 0°C to
In the range of 80°C, more preferably from 0°C to 50°C
is within the range of If the synthesis temperature exceeds 80°C, the particle size of the primary particles produced becomes large, and if it is lower than 0°C, stirring becomes impossible due to freezing, which is not desirable. Although the particle size of the dried primary particles synthesized by the wet synthesis method is extremely fine, they aggregate during the drying and calcination stages, so it is preferable to crush them after calcination. However, in the artificial bone of the present invention, as long as the particle size of the primary particles is 10 μm or less, particularly 5 μm or less, the presence of aggregate particles is acceptable. It is a non-stoichiometric hydroxyapatite with a ratio of calcium to phosphorus different from the theoretical value of 1.67, and when calcined, a mixed system of hydroxyapatite and tricalcium phosphate in a uniformly dispersed state is obtained. This is because even if this mixed system is baked after molding, the dispersion state is maintained well.

本発明においては、前記の湿式合成法の他に、公知の湿
式合成法、乾式合成法又は水熱合成法により予め別々に
合成したヒドロキシアパタイト及びリン酸三カルシウム
を混合1分散して使用することもできる。
In the present invention, in addition to the wet synthesis method described above, hydroxyapatite and tricalcium phosphate, which have been separately synthesized in advance by a known wet synthesis method, dry synthesis method, or hydrothermal synthesis method, may be used by mixing and dispersing them. You can also do it.

本発明の人工骨材料は顆粒及び多孔体のいずれもが好ま
しく使用できる。
The artificial bone material of the present invention can be preferably used in the form of either granules or porous materials.

〔実施例〕〔Example〕

以下に実施例を用いて本発明を更に詳細に説明する。 The present invention will be explained in more detail below using Examples.

去斯Lf2LL 温度を5℃に維持しつつ、濃度0.5mol/Qの水酸
化カルシウム懸濁液2Q、を撹拌しながら、濃度30重
量%のリン酸水溶液を、添加量を変化させることにより
Ca / Pモル比が各々1.66.1.64.1.6
0.1.57.1.54及び1.51となるようにして
ヒドロキシアパタイトを合成し、懸濁液を得た。この懸
濁液を遠心分離した後、105℃にて一昼夜乾燥した。
Lf2LL While maintaining the temperature at 5°C and stirring calcium hydroxide suspension 2Q with a concentration of 0.5 mol/Q, add a phosphoric acid aqueous solution with a concentration of 30% by weight to Ca by varying the amount added. /P molar ratio is 1.66.1.64.1.6 respectively
Hydroxyapatite was synthesized so that the ratios were 0.1.57, 1.54 and 1.51, and a suspension was obtained. This suspension was centrifuged and then dried at 105°C for a day and a night.

得られた乾燥物を800”Cで3時間仮焼し、微粉砕し
た後に、重合度1700のポリビニルアルコール5%水
溶液60gを添加して混合乾燥後成形し、脱バインダー
を行なった。乾燥物を透過型電子顕微鏡で観察したとこ
ろ極めて微細な粒子であった。
The obtained dried product was calcined at 800"C for 3 hours and finely pulverized, and then 60 g of a 5% aqueous solution of polyvinyl alcohol with a degree of polymerization of 1700 was added, mixed, dried, and molded to remove the binder. When observed with a transmission electron microscope, the particles were found to be extremely fine.

次粒子の粒子径を測定したところ乾燥物では約0.03
μm、仮焼物では約0.1μm、微粉砕後の粉砕物の平
均粒子径(凝集粒子径)は約1.5μmであった。次い
で、温度1100℃で焼成することにより焼結体を製造
した。X線回折法により焼結体の同定及び定量を行なっ
た結果、全てヒドロキシアパタイト及びリン酸三カルシ
ウムであった。前記のCa / Pモル比に対応するリ
ン酸三カルシウムの量は各々7.18.40.58.7
6及び94重量%であった。焼結体を薄片とし、偏光顕
微鏡にて分散状態をWA察したところ、管渠単位に相当
する面積(0,5〜1.0mm2)において、前記全て
の組成の場合にヒドロキシアパタイト及びリン酸三カル
シウムの存在が確認できた。
When the particle size of the secondary particles was measured, it was approximately 0.03 in dry matter.
μm, the calcined product was about 0.1 μm, and the average particle size (agglomerated particle size) of the pulverized product after fine pulverization was about 1.5 μm. Next, a sintered body was manufactured by firing at a temperature of 1100°C. The sintered bodies were identified and quantified by X-ray diffraction, and as a result, they were all hydroxyapatite and tricalcium phosphate. The amount of tricalcium phosphate corresponding to the above Ca/P molar ratio is 7.18.40.58.7 respectively
6 and 94% by weight. When the sintered body was made into a thin section and the dispersion state was observed using a polarizing microscope, it was found that hydroxyapatite and triphosphate were observed in the area corresponding to the pipe unit (0.5 to 1.0 mm2) in all of the above compositions. The presence of calcium was confirmed.

又、これらの薄片を塩酸水溶液でエツチングし、走査型
電子顕微鏡を用い、粒子径を測定したところ2μm以上
の粒子は認められなかった。
Further, when these thin pieces were etched with an aqueous hydrochloric acid solution and the particle diameter was measured using a scanning electron microscope, no particles larger than 2 μm were observed.

失意且ス 実施例1で製造した各Ca / Pモル比の乾燥物を用
いてポリウレタンフォームの形状をレプリカする方法で
多孔質状に成形し、温度1100℃で焼成することによ
り7X7X9iaの大きさの多孔体を製造した。多孔体
の平均気孔径は280μm、気孔率は85%であった。
Disappointing and using the dried products of each Ca/P molar ratio produced in Example 1, the polyurethane foam was molded into a porous shape by replicating its shape, and fired at a temperature of 1100°C to form a porous material with a size of 7X7X9ia. A porous body was manufactured. The porous body had an average pore diameter of 280 μm and a porosity of 85%.

ピーグル犬脛骨内顆に穴をあけ、製造した8種類の多孔
体を埋込んだ。術後6月、1年及び2年で埋込部を取り
出し、脛骨長軸方向に切断した後、研磨して約100μ
mの薄切片を作製した。これらの薄切片を軟X線装置に
てコンタクトマイクロラジオグラフィーを撮影し、更に
1画像解析装置で多孔体及び新生骨の面積率を測定した
。その結果を以下の表1及び表2に示す。なお、リン酸
三カルシウム100重量%である場合とヒドロキシアパ
タイト100重量%である場合についても同様に行った
。その結果も表1及び表2に示す。
A hole was made in the medial condyle of the dog's tibia, and eight types of manufactured porous bodies were implanted. In June, 1 year, and 2 years after the surgery, the implanted part was removed, cut in the long axis direction of the tibia, and polished to approximately 100 μm.
A thin section of m was prepared. These thin sections were subjected to contact microradiography using a soft X-ray device, and the area ratio of the porous body and new bone was further measured using an image analysis device. The results are shown in Tables 1 and 2 below. The same procedure was carried out for the case where the tricalcium phosphate was 100% by weight and the case where the hydroxyapatite was 100% by weight. The results are also shown in Tables 1 and 2.

表1及び表2に示す結果より明らかなように、埋込んだ
多孔体の面積率は、埋込期間の経過と共に、及び、リン
酸三カルシウム含有割合の増加につれて低下する傾向に
あることから、生体に吸収され易いと判断できる。特に
、リン酸三カルシウムが100重量%の場合には、2年
後における存在量は非常に少なく吸収されやすいが、新
生骨の形成は全期間にわたり少なかった。
As is clear from the results shown in Tables 1 and 2, the area ratio of the embedded porous material tends to decrease as the embedding period progresses and as the tricalcium phosphate content increases. It can be determined that it is easily absorbed by the living body. In particular, when tricalcium phosphate was 100% by weight, the amount present after two years was very small and easily absorbed, but new bone formation was low over the entire period.

又、ヒドロキシアパタイトが100重量%の場合には、
骨の形成は良好であったが、2年後における多孔体の残
存量は埋込前と殆ど変化がなく、吸収されていないこと
が判明した。
In addition, when hydroxyapatite is 100% by weight,
Bone formation was good, but the remaining amount of the porous material two years later was almost the same as before implantation, indicating that it was not absorbed.

又、前記測定後、これらの薄切片を20μmまで研磨し
1組織学的観察を行なった。その結果。
Furthermore, after the above measurements, these thin sections were polished to 20 μm and subjected to histological observation. the result.

リン酸三カルシウムが100重量%の場合に異物巨細胞
の出現が特に多く、長期にわたってwt察された。吸収
窓では破骨細胞により多孔体の一次粒子と考えられる1
μm前後の粒子が貧食される像が観察され、埋込期間の
短い程貧食は顕著であった。
When tricalcium phosphate was 100% by weight, the appearance of foreign body giant cells was particularly large and was observed over a long period of time. In the resorption window, osteoclasts release 1, which is considered to be the primary particle of the porous material.
It was observed that particles of around μm were eroded, and the shorter the implantation period, the more remarkable the erodibility was.

去】11去 市販のヒドロキシアパタイト粉末(平均粒子径5μm)
60重量部とリン酸三カルシウム粉末40重量部とをポ
ットミルで混合し、これを800℃で3時間仮焼した後
、微粉砕し、重合度1700のポリビニルアルコール5
%水溶液60gを添加して混合乾燥後成形した。脱バイ
ンダー後に、温度1100℃で焼成して焼結体を得た。
11 Commercially available hydroxyapatite powder (average particle size 5 μm)
60 parts by weight of tricalcium phosphate powder and 40 parts by weight of tricalcium phosphate powder were mixed in a pot mill, calcined at 800°C for 3 hours, finely pulverized, and mixed with polyvinyl alcohol 5 having a degree of polymerization of 1700.
% aqueous solution was added, mixed and dried, and then molded. After removing the binder, it was fired at a temperature of 1100°C to obtain a sintered body.

焼結体を薄片とし、偏光顕微鏡にて分散状態をi察した
ところ、管渠単位に相当する面積(0,5〜1.0mm
”)において、ヒドロキシアパタイト及びリン酸三カル
シウムの粒子を含有しない割合は約30%であった。又
、実施例1と同様の方法で粒子径を測定したところ約5
μmを超すものが多く、最大で10μmの粒子も多く観
察された。
When the sintered body was made into a thin section and the dispersion state was observed using a polarizing microscope, it was found that the area corresponding to the pipe unit (0.5 to 1.0 mm
”), the proportion free of hydroxyapatite and tricalcium phosphate particles was approximately 30%. Also, when the particle size was measured in the same manner as in Example 1, it was approximately 5%.
Many of the particles were larger than μm, and many particles with a maximum size of 10 μm were also observed.

災斑■土 実施例3と同様の配合物を用いて、実施例2と同様の方
法で試験を行なった。結果を以下の表1及び表2に示す
A test was carried out in the same manner as in Example 2 using the same formulation as in Example 3. The results are shown in Tables 1 and 2 below.

表1 多孔体の面積率 (以下余白) 〔発明の効果〕 本発明によれば、ヒドロキシアパタイトとリン酸三カル
シウムとが極めて均一に分散し、生体中の骨欠損部及び
空隙部へ埋込した場合に短時間で新生骨の形成と人工骨
の吸収が認められ、患部の早期治癒が達成できる。
Table 1 Area ratio of porous body (hereinafter referred to as blank space) [Effects of the invention] According to the present invention, hydroxyapatite and tricalcium phosphate are extremely uniformly dispersed and embedded into bone defects and voids in living organisms. In some cases, new bone formation and artificial bone resorption can be observed in a short period of time, and early healing of the affected area can be achieved.

特許出頴人patent issuer

Claims (1)

【特許請求の範囲】[Claims] ヒドロキシアパタイトとリン酸三カルシウムとの重量比
が5:95〜95:5の範囲であることを特徴とする均
一分散した人工骨。
A uniformly dispersed artificial bone characterized in that the weight ratio of hydroxyapatite to tricalcium phosphate is in the range of 5:95 to 95:5.
JP63159202A 1988-06-29 1988-06-29 Artificial bone Expired - Lifetime JPH0747042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63159202A JPH0747042B2 (en) 1988-06-29 1988-06-29 Artificial bone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63159202A JPH0747042B2 (en) 1988-06-29 1988-06-29 Artificial bone

Publications (2)

Publication Number Publication Date
JPH0211152A true JPH0211152A (en) 1990-01-16
JPH0747042B2 JPH0747042B2 (en) 1995-05-24

Family

ID=15688555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63159202A Expired - Lifetime JPH0747042B2 (en) 1988-06-29 1988-06-29 Artificial bone

Country Status (1)

Country Link
JP (1) JPH0747042B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269823A (en) * 1986-09-12 1987-03-31 Mitsubishi Mining & Cement Co Ltd Calcium phosphate based fiber
JPS6389164A (en) * 1986-10-02 1988-04-20 ティーディーケイ株式会社 Block-shaped artificial bone
JPS63111875A (en) * 1986-10-30 1988-05-17 京セラ株式会社 Calcium phosphate living body prosthesis material and its production
JPH01293877A (en) * 1988-05-24 1989-11-27 Tdk Corp Preparation of artificial bone material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269823A (en) * 1986-09-12 1987-03-31 Mitsubishi Mining & Cement Co Ltd Calcium phosphate based fiber
JPS6389164A (en) * 1986-10-02 1988-04-20 ティーディーケイ株式会社 Block-shaped artificial bone
JPS63111875A (en) * 1986-10-30 1988-05-17 京セラ株式会社 Calcium phosphate living body prosthesis material and its production
JPH01293877A (en) * 1988-05-24 1989-11-27 Tdk Corp Preparation of artificial bone material

Also Published As

Publication number Publication date
JPH0747042B2 (en) 1995-05-24

Similar Documents

Publication Publication Date Title
US4195366A (en) Whitlockite ceramic
JP4815102B2 (en) Calcium phosphate bone substitute material implant preformed by machining
Takagi et al. Formation of macropores in calcium phosphate cement implants
CA2537620C (en) Bone substitute material comprising crystalline calcium phosphate embedded within a silica xerogel matrix
KR101599245B1 (en) Bone substitute material
US8734524B2 (en) Bone substitute material
AU2007215625A1 (en) Osteoinductive calcium phosphates
JP7249376B2 (en) bone replacement material
JP2008200476A (en) Material for cement and cement
EP3946488B1 (en) Collagen matrix or granulate blend of bone substitute material
Vazquez et al. Effects of addition of mannitol crystals on the porosity and dissolution rates of a calcium phosphate cement
JPH0211152A (en) Artificial bone
RU2822395C2 (en) Collagen matrix or granular mixture of bone substitute material
JPWO2020249716A5 (en)
JPH0461864A (en) Filler for bone deficient part and bone lacuna