JPH02111002A - Variable inductor device - Google Patents

Variable inductor device

Info

Publication number
JPH02111002A
JPH02111002A JP26454388A JP26454388A JPH02111002A JP H02111002 A JPH02111002 A JP H02111002A JP 26454388 A JP26454388 A JP 26454388A JP 26454388 A JP26454388 A JP 26454388A JP H02111002 A JPH02111002 A JP H02111002A
Authority
JP
Japan
Prior art keywords
thin film
coil
inductance
superconducting thin
variable inductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26454388A
Other languages
Japanese (ja)
Inventor
Shinichiro Hatta
八田 真一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26454388A priority Critical patent/JPH02111002A/en
Publication of JPH02111002A publication Critical patent/JPH02111002A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a small-sized variable inductor element which can be operated at a temperature of liquid nitrogen and whose structure is simple by a method wherein a thin film of a superconductor is formed on a substrate and this thin film can be turned on a pivot perpendicular to an axis of an inductance coil. CONSTITUTION:A superconducting thin film 13 formed on a substrate 14 is arranged at the inside of an inductance coil 11; an angle formed by the thin film 13 with reference to the inductance coil 11 is made variable. That is to say, a magnetic permeability of the superconducting thin film 13 has a negative value; its absolute value is largely dependent on an angle formed by an external magnetic field with reference to the thin film 13. Accordingly, a pivot 12 of the superconducting thin film is formed inside the inductance coil 11 in a direction perpendicular to the central axis of the coil 11; the superconducting thin film 13 as a magnetic core of an inductance is turned inside the coil 11; then, an effective magnetic permeability of the magnetic core is changed by an angle formed by the central axis with reference to a film plane; accordingly, the inductance of the coil 11 can be changed. Thereby, it is possible to obtain a variable inductor whose structure is simple and where a value of the inductance can be changed continuously.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、インダクタンスコイル中で、超電導薄膜をコ
イルに対して回転させることによシ、コイルのインダク
タンスを元々の値より減少させて、インダクタンスの値
を調節する可変インダクタ装置である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention reduces the inductance of the coil from its original value by rotating a superconducting thin film relative to the coil in an inductance coil, thereby increasing the inductance value. This is a variable inductor device that adjusts the

従来の技術 超電導体を、そのマイスナー効果を利用して磁性材料と
して用い、インダクタンスの芯として使用するというア
イデアは、古くからあった。
Conventional technology The idea of using superconductors as magnetic materials by utilizing their Meissner effect and as the core of inductance has been around for a long time.

発明が解決しようとする課題 しかしながら、P b 、 N b 3T を等の従来
の超電導材料ではその転移温度Tcが低く、インダクタ
ンス用磁性材料として使用するためには、液体ヘリウム
を使用しなければならず、たいへん高価な動作費用が必
要であった。
Problems to be Solved by the Invention However, conventional superconducting materials such as P b and N b 3T have a low transition temperature Tc, and in order to be used as a magnetic material for inductance, liquid helium must be used. , requiring very high operating costs.

更に従来の受動素子では、コンデンサや抵抗は簡単に可
変素子が、作製できたのであるが、インダクタンスLの
場合、その構造上、高性能で簡便な可変素子を作製する
ことが困難であり、その改善が望まれていた。
Furthermore, with conventional passive elements, variable elements such as capacitors and resistors can be easily fabricated, but in the case of inductance L, due to its structure, it is difficult to fabricate a high-performance and simple variable element. Improvement was desired.

課題を解決するための手段 本発明では、酸化物超電導体の薄膜を基板上に作製しそ
のljり膜を、インダクタンスコイルの軸に垂直な回転
軸の回りに回転させLを減少させることによシ可変イン
ダクター素子を作製する。この時、超電導薄膜素材とし
て、たとえば銅を含む酸化物超電導体を使うと、液体窒
素温度程度の温度77にで動作可能となシ、高価な液体
ヘリウムで冷却する必要は消滅する。
Means for Solving the Problems In the present invention, a thin film of an oxide superconductor is produced on a substrate, and the Lj film is rotated around a rotation axis perpendicular to the axis of an inductance coil to reduce L. A variable inductor element is manufactured. At this time, if an oxide superconductor containing copper, for example, is used as the superconducting thin film material, it can operate at a temperature 77 about the temperature of liquid nitrogen, eliminating the need for cooling with expensive liquid helium.

また、この可変インダクター素子自体の構造が非常に単
純であるので、微少化、高密度作製化が可能となる。
Furthermore, since the structure of the variable inductor element itself is very simple, miniaturization and high-density fabrication are possible.

更に、磁芯として超電導体を使用しているので、IGH
z程度の高周波領域まで安定に、Lを可変動作できる。
Furthermore, since a superconductor is used as the magnetic core, IGH
L can be stably varied up to a high frequency region of about z.

以上の方法で、非常に簡単な構造で小型の可変インダク
ター素子を、液体窒素温度で動作させることが可能とな
った。
With the method described above, it has become possible to operate a small variable inductor element with a very simple structure at liquid nitrogen temperature.

作   用 薄膜作製用の基板上に布製した超電導薄膜の透磁率は負
の値を持ち、その絶対値は外部磁界と薄膜との成す角度
に大きく依存する。透磁率の絶対値は、外部磁界が1漢
表面と垂直である時、最大値をとり、逆に平行の時0と
なる。それ故、インダクタンスコイル内に、このコイル
の中心軸と垂直方向に超電導薄膜の回転軸を作製する。
The magnetic permeability of a superconducting thin film fabricated on a substrate for fabricating a working thin film has a negative value, and its absolute value largely depends on the angle formed between the external magnetic field and the thin film. The absolute value of magnetic permeability takes the maximum value when the external magnetic field is perpendicular to the surface of the magnetic field, and becomes 0 when it is parallel to the surface. Therefore, a rotation axis of the superconducting thin film is created in the inductance coil in a direction perpendicular to the central axis of this coil.

この時、インダクタンスの磁芯である超電導薄膜をコイ
ル内で回転させると、中心軸と膜面の成す角度によって
磁芯の有効透磁率が変化するので、コイルのインダクタ
ンスを変化させることができる。この変化は、透磁率が
負の値を持つため、超電導薄膜面が中心軸に垂直な時、
全体のLは最小となシ、平行な時、最大となる。更に、
このインダクターは、磁芯に超電導体を用いているため
に、高周波領域中でも、可変インダクタンスとして安定
に動作するために、信頼性のよい素子ができる。
At this time, when the superconducting thin film, which is the magnetic core of the inductance, is rotated within the coil, the effective magnetic permeability of the magnetic core changes depending on the angle formed between the central axis and the film surface, so the inductance of the coil can be changed. This change occurs because the magnetic permeability has a negative value, so when the superconducting thin film surface is perpendicular to the central axis,
The overall L is minimum, and maximum when parallel. Furthermore,
Since this inductor uses a superconductor for its magnetic core, it operates stably as a variable inductance even in the high frequency range, making it a highly reliable element.

実施例 本実施例に用いた超電導薄膜は、たとえばスパッタ法に
よシ作製したB15rCaCuO膜であシ、膜厚は約2
000人であり、102にで電気抵抗は完全に0となる
。この他にT I B a Ca Cu O膜、ランタ
ノイド−BaCuO膜なども使用可能である。
Example The superconducting thin film used in this example is, for example, a B15rCaCuO film prepared by sputtering, and the film thickness is approximately 2.
000 people, and the electrical resistance becomes completely 0 at 102. In addition, a T I B a Ca Cu O film, a lanthanide-BaCuO film, etc. can also be used.

第1図は本発明の実施例の一例を示す模式図である。第
1図のように、インダクタンスコイ/l/11の内部に
、回転軸12の付いた超電導薄膜13とその基板14を
設置する。回転軸12はコイルの中心軸と垂直となって
いる。またコイ/I/1の内径は、薄膜の外周とほぼ一
致している。更に基板14や回転軸12は絶縁体でかつ
非磁性体で作製されておシ、素子の電気的磁気的性質に
何ら影響を与えないように工夫された。
FIG. 1 is a schematic diagram showing an example of an embodiment of the present invention. As shown in FIG. 1, a superconducting thin film 13 with a rotating shaft 12 and its substrate 14 are installed inside the inductance coil/l/11. The rotation axis 12 is perpendicular to the central axis of the coil. Further, the inner diameter of Koi/I/1 almost coincides with the outer circumference of the thin film. Further, the substrate 14 and the rotating shaft 12 are made of an insulating and non-magnetic material so as not to affect the electrical and magnetic properties of the element.

この素子のインダクタンスを測定する前に、使用する超
電導薄膜の透磁率を、測定磁場と膜面との成す角度θに
ついて、rf−3QUIDを用いて測定した。この時の
配置を第2図に、この実験結果を第3図に示す。外部磁
場100e以内では、磁化曲線は、はぼ直線となシ、透
磁率が定義できる。この煩きは、負であり、直線の傾き
、すなわち透磁率はθに大きく依存する。このように、
微少な磁場領域では、超電導薄膜は小連結の第一種超電
導体であると考えられ、その磁化はM=−He:t/4
i(1−n) と表わせる。ここにMは超″r[導体の磁化、Hexは
外部磁界、nは反磁場係数である。薄膜の場合、Hex
 が膜面と垂直の時はn==1−δとなる。δは完全な
平面の反磁場係数の補正係数である。この場合、δ=0
.001となって、透磁率の稙ば、4.2にで約−13
00(cqs  unit ) 77にで130となっ
た。θが減少するにつれて、透磁率の絶対値は急速に減
少し、0−、oでは透磁率は、はぼ0となった。
Before measuring the inductance of this element, the magnetic permeability of the superconducting thin film used was measured with respect to the angle θ formed by the measurement magnetic field and the film surface using RF-3QUID. The arrangement at this time is shown in FIG. 2, and the experimental results are shown in FIG. 3. Within the external magnetic field 100e, the magnetization curve is almost a straight line, and the magnetic permeability can be defined. This difficulty is negative, and the slope of the straight line, that is, the magnetic permeability, depends largely on θ. in this way,
In the small magnetic field region, the superconducting thin film is considered to be a first-class superconductor with small connections, and its magnetization is M=-He:t/4
It can be expressed as i(1-n). Here, M is the super-r[magnetization of the conductor, Hex is the external magnetic field, and n is the demagnetizing field coefficient. In the case of a thin film, Hex
When is perpendicular to the film surface, n==1-δ. δ is a correction factor for the demagnetizing field coefficient of a perfect plane. In this case, δ=0
.. 001, and the permeability is 4.2, which is about -13.
00 (cqs unit) became 130 in 77. As θ decreases, the absolute value of magnetic permeability decreases rapidly, and at 0- and o, the magnetic permeability is almost 0.

この測定は、直流測定であるが、約IGHz程度の高周
波領域までこの特性が現れる。
Although this measurement is a direct current measurement, this characteristic appears up to a high frequency region of about IGHz.

さて、この超電導薄膜を可動磁芯としたインダクタンス
コイルを第1図のように作製した。超電導B15rCa
CuO薄膜13は、Mgo単結晶の基板14に作製しで
ある。このMqO基板14の大きさは10X10X0.
5絹であり、コイル内で回転するための軸は、石英で作
製した。この基板14も回転軸12も、絶縁体で、かつ
非磁性体であり、この素子を液体窒素温度に冷やしても
、インダクタンス動作に対しては何ら影響を与えないこ
とが確かめられた。コイルは、この超電導薄膜の周囲に
1行うようにして、約数10turnの銅線を巻いた。
Now, an inductance coil using this superconducting thin film as a movable magnetic core was fabricated as shown in Fig. 1. Superconducting B15rCa
The CuO thin film 13 was fabricated on a substrate 14 of Mgo single crystal. The size of this MqO substrate 14 is 10X10X0.
5 silk, and the shaft for rotation within the coil was made of quartz. Both the substrate 14 and the rotating shaft 12 are insulating and non-magnetic, and it was confirmed that even if this element was cooled to liquid nitrogen temperature, it would have no effect on the inductance operation. The coil was made by winding approximately several tens of turns of copper wire around this superconducting thin film once.

コイルのインダクタンスは、約70 MHzまで、ベク
トルインビーダンヌメータを用いて測定した。
The inductance of the coil was measured up to approximately 70 MHz using a vector in-vehicle dunnmeter.

この時の測定磁場は60 m Oe以下であると考えら
れる。このインダクタンスコイルだけのLは約1.8μ
Hであった。コイルのLの周波数特性は、かなり高周波
まで平坦であった。第3図にその結果を示すが、5oM
Hz以上の周波数でのLの増加はLC共振によるものと
思われる。次に回転軸を回して、77Kに冷やし、コイ
ルの作る磁場と膜面が垂直になるように超電導薄膜磁芯
をセットすると、Lの値は減少してゆき約1μHで最小
となった。これは、超電導磁芯の負の透磁率によるもの
であると思われる。θ−90°の時、前と同様にLの周
波数依存性を測定すると(第4図)やはシ周波数に対し
て、平坦な特性を示す。
The measured magnetic field at this time is considered to be 60 m Oe or less. The L of this inductance coil alone is approximately 1.8μ
It was H. The frequency characteristics of the coil L were flat up to fairly high frequencies. The results are shown in Figure 3, and 5oM
The increase in L at frequencies above Hz is likely due to LC resonance. Next, the rotating shaft was turned, the temperature was cooled to 77K, and the superconducting thin film core was set so that the magnetic field created by the coil was perpendicular to the film surface.The value of L decreased until it reached a minimum value of about 1 μH. This seems to be due to the negative magnetic permeability of the superconducting magnetic core. When the frequency dependence of L is measured as before at θ-90° (FIG. 4), it shows a flat characteristic with respect to the frequency.

超電導薄膜自体の周波数特注は、原理的には約IGHz
  程度まで透磁率の変化はないはずであるから、第4
図の結果は正しいと考えられる。
In principle, the frequency customization of the superconducting thin film itself is approximately IGHz.
There should be no change in magnetic permeability to a certain degree, so the fourth
The results shown in the figure are considered correct.

更に透磁率の絶対値が大きい試料を用いたシ、コイル内
の超電導薄膜の枚数を増やせば、更に大きくLの値を連
続的に減少させることができる。
Furthermore, if a sample with a large absolute value of magnetic permeability is used and the number of superconducting thin films in the coil is increased, the value of L can be continuously decreased even further.

第4図に、本発明のデバイヌのLの値と、角度θの実験
値を示す。θ=90°の時、Lは最小となり、O=Qの
時、インダクタンスコイル本来の値を回復する。
FIG. 4 shows the value of Devine's L and the experimental value of the angle θ of the present invention. When θ=90°, L becomes minimum, and when O=Q, the inductance coil recovers its original value.

発明の効果 以上、述べてきたように本発明によれば、液体窒素温度
で動作し、簡単な構造を持ち、連続的にインダクタンス
の値を変化させうる可変インダクターが作製可能となシ
、その影響は大きい。
Effects of the Invention As described above, according to the present invention, it is possible to manufacture a variable inductor that operates at liquid nitrogen temperature, has a simple structure, and can continuously change the value of inductance. is big.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の可変インダクターの模式図、第2図は
外部磁場と薄膜との位置関係を示す図、第3図は外部磁
場と薄膜平面の角度θを変化させた時の磁化曲線図、第
4図はインダクタンスの周波数依存性図である。 11・・・・・・インダクタンスコイル、12・・・・
・・回転軸、13・・・・・・超電導薄膜、14・・・
・・・基板。 図 図 第2図 H(Oe)
Fig. 1 is a schematic diagram of the variable inductor of the present invention, Fig. 2 is a diagram showing the positional relationship between the external magnetic field and the thin film, and Fig. 3 is a diagram of the magnetization curve when the angle θ between the external magnetic field and the thin film plane is changed. , FIG. 4 is a frequency dependence diagram of inductance. 11... Inductance coil, 12...
... Rotating shaft, 13... Superconducting thin film, 14...
···substrate. Figure 2 H (Oe)

Claims (3)

【特許請求の範囲】[Claims] (1)基体上に作製した超電導薄膜がインダクタンスコ
イルの内部に配置され、前記薄膜と前記インダクタンス
コイルとのなす角度を可変としたことを特徴とする可変
インダクター装置。
(1) A variable inductor device characterized in that a superconducting thin film produced on a base is disposed inside an inductance coil, and the angle between the thin film and the inductance coil is variable.
(2)コイルによる磁場と超電導薄膜との成す角度によ
って透磁率の値が変化することを利用することを特徴と
する特許請求の範囲第1項記載の可変インダクター装置
(2) The variable inductor device according to claim 1, which utilizes the fact that the value of magnetic permeability changes depending on the angle formed between the magnetic field by the coil and the superconducting thin film.
(3)超電導薄膜として、銅を含む酸化物の超電導体を
用いたことを特徴とする特許請求の範囲第1項記載の可
変インダクター装置。
(3) The variable inductor device according to claim 1, wherein an oxide superconductor containing copper is used as the superconducting thin film.
JP26454388A 1988-10-20 1988-10-20 Variable inductor device Pending JPH02111002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26454388A JPH02111002A (en) 1988-10-20 1988-10-20 Variable inductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26454388A JPH02111002A (en) 1988-10-20 1988-10-20 Variable inductor device

Publications (1)

Publication Number Publication Date
JPH02111002A true JPH02111002A (en) 1990-04-24

Family

ID=17404730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26454388A Pending JPH02111002A (en) 1988-10-20 1988-10-20 Variable inductor device

Country Status (1)

Country Link
JP (1) JPH02111002A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007158360A (en) * 1999-07-16 2007-06-21 Lucent Technol Inc Article equipped with variable inductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007158360A (en) * 1999-07-16 2007-06-21 Lucent Technol Inc Article equipped with variable inductor

Similar Documents

Publication Publication Date Title
US3210707A (en) Solid state inductor built up of multiple thin films
Kawabe et al. Planar inductor
US4280095A (en) Extremely sensitive super conducting quantum interference device constructed as a double-helix array
US6020803A (en) Hybrid high field superconducting assembly and fabrication method
WO2003079482A2 (en) Tunable superconductor resonator or filter
US6573818B1 (en) Planar magnetic frame inductors having open cores
US6239594B1 (en) Mageto-impedance effect element
US4190817A (en) Persistent current superconducting method and apparatus
US5609946A (en) High frequency, high density, low profile, magnetic circuit components
JPH02111002A (en) Variable inductor device
GB2360137A (en) Guides for RF magnetic flux
JPH04351103A (en) Microwave resonator
US3431144A (en) Method for manufacturing microminiature coils
US4539741A (en) Josephson junction element and method of making the same
US3239725A (en) Superconducting device
JPH04196601A (en) Oxide superconducting microwave passive element and manufacture thereof
JPH0529154A (en) Superconducting variable inductor
JP3022094B2 (en) Magnetic sensor
JP3342701B2 (en) Composite with anisotropy to microwave
JPH03129804A (en) Inductor and transformer
US20210125761A1 (en) Superconducting magnet and method of manufacturing superconducting magnet
JPH08162330A (en) Inductor element
Sneary et al. Development of high temperature superconducting coils using Bi-2223/Ag tapes
JPH01137609A (en) Chip inductor
JPH05145128A (en) Superconductive current limiting device