JPH0211059Y2 - - Google Patents

Info

Publication number
JPH0211059Y2
JPH0211059Y2 JP1985027013U JP2701385U JPH0211059Y2 JP H0211059 Y2 JPH0211059 Y2 JP H0211059Y2 JP 1985027013 U JP1985027013 U JP 1985027013U JP 2701385 U JP2701385 U JP 2701385U JP H0211059 Y2 JPH0211059 Y2 JP H0211059Y2
Authority
JP
Japan
Prior art keywords
blood vessel
artificial blood
organ
immunosuppressive
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985027013U
Other languages
Japanese (ja)
Other versions
JPS61142020U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985027013U priority Critical patent/JPH0211059Y2/ja
Publication of JPS61142020U publication Critical patent/JPS61142020U/ja
Application granted granted Critical
Publication of JPH0211059Y2 publication Critical patent/JPH0211059Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

「産業上の利用分野」 本考案は臓器移植における拒絶反応を抑制する
効果を持つた免疫抑制用人工血管に関する。 「従来技術」 近年、臓器移植が盛んに行われるようになり、
人間の臓器を他の人間、又は人間以外の動物の臓
器を人間に移植するということが多くみられるよ
うになつてきた。このように臓器移植が盛んに行
われるようになつてきた最大の理由は、新しく開
発された免疫抑制剤が以前のものに比べて、より
優れた効果をあらわすようになつてきたためと思
われる。 すなわち、臓器をもらい受ける者の組織適合性
と、臓器提供者の適合性とがうまく一致した時に
は、もらい受ける者の体内でのその臓器に対する
拒絶反応は起らないが、一般には、ほとんどの事
例において移植臓器に対する拒絶反応が起り、そ
の拒絶反応に対し、免疫抑制剤を使用することに
より、その拒絶反応を弱めるか、又は抑えること
ができるようになつたためである。 「解決すべき技術課題」 しかしながら、現在までに開発された免疫抑制
剤は、いずれも、経口剤として、又は注射等によ
り全身性に投与されるものであり、局所的に拒絶
反応抑制効果をもたせることが出来るものではな
かつた。このため、その免疫抑制剤による副作用
が現われ易く、また逆に副作用が出るほどの量で
なければ、抑制剤としての効果がなく、その結
果、重篤な感染症にかかつたり、悪性腫瘍の原因
になつたりすることが報告され、臓器移植実施に
際しての最大の技術課題となつていた。 本考案は上記のように全身的に投与することに
よつて免疫関与細胞の活性を弱めていた免疫抑制
剤の使用量を少なくしたり、また単独で拒絶反応
の抑制効果をもたせる、免疫抑制用人工血管を提
供せんとするものである。 「技術課題を解決する手段」 本考案を図示の実施例に基づき詳細に説明す
る。第1図は本考案に係る拒絶反応抑制効果を有
する免疫抑制用人工血管の基本的構造を示す説明
図で、第2図は同人工血管の使用方法を示す説明
図であり、第4図は本考案に係る免疫抑制用人工
血管の他実施例を示す平面図である。 図中、1は長尺な管状に形成された免疫抑制用
人工血管で、その周辺には磁石部3が配設されて
いる。この磁石部3は後述するように人工血管1
の孔内においてトンネル状の磁場を発生させるた
めのものであり、第1図の実施例に示すように人
工血管2の周側壁2′と一体に形成してもよいし、
また第3図に示す実施例のように人工血管2の周
側壁2′に配設するようにしたり、あるいは第4
図に示す実施例のように人工血管2の周側近傍に
配設してもよいこと勿論である。 また、磁石部3は人工血管の孔内4をはさんで
N極とS極が相対するよう配設する等して免疫抑
制用人工血管1の孔内4の適所にトンネル状の磁
場5を形成するようにしたものである。第3図及
び第4図は磁場5の影響力を強化するためのもの
で、第3図に示した実施例は、磁石部3をN極と
S極とを逆にした磁石3a,3b,3c,…を、
複数個列設するように構成したものであり、又、
第4図は磁石3a,3b,3c,…を正列に並べ
た境界間隙部に人工血管1が蛇行しながら通るよ
うに配設した実施例である。 本件考案の人工血管は上記のように血管周側又
はその近傍に磁石3a,3b,3c,…を設け、
当該血管の孔内にはトンネル状の磁場が形成され
るように構成する。 この免疫抑制用人工血管1を臓器移植の際に使
用する状態を模型的に示したのが第2図及び第5
図である。第2図中、6は移植用臓器であり、7
は動脈血管、8は移植用臓器6への動脈側連結血
管で、その一部に本考案に係る免疫抑制用人工血
管1を用いる。尚、9は移植用臓器6から出てく
る血液を静脈血管10と連結する静脈側連結用血
管であり、11は水の移動のみで細胞成分の移動
を阻止するフイルターである。該フイルター11
は細胞成分の移動を阻止するものであると同時
に、移植用臓器6を露出させずに隔離するもので
ある。即ち、動脈側連結血管8、静脈側連結血管
9をも隔離し、臓器が例えば腎臓の場合には、こ
れらの血管の他に尿管をも隔離することは勿論で
ある。 尚、第5図は第4図に示す実施例の人工血管を
使用する際の状態を示す説明図である。 「作用」 ここで、磁力と臓器移植に伴う拒絶反応抑制効
果との関係について説明すると、組織非適合性の
臓器移植が行われた生体においては、免疫関与細
胞、すなわち、T細胞、B細胞、NK細胞、マク
ロフアージ等が、移植された臓器6に付随してい
る動脈側連結血管8を通じてその臓器6内に入
り、その内部で異物性を感知して一定の情報を把
握し、移植を受けた生体内の抗体産生機構(図示
しない)により抗体をつくつて再び移植臓器6の
動脈側連結血管8側から流入して、その移植臓器
6を除去する作用を開始する訳である。 本考案はこういつた移植臓器6に対する拒絶反
応のメカニズムに着目し、磁力によつてそれら免
疫担当細胞の異物であることの情報収集機能を移
植臓器6につながつている入口の動脈側血管部位
で可逆的に抑制し、抗体産生機構による抗体が出
来るだけ生じないようにして移植された臓器を拒
絶反応から守る方法をとろうとするものである。 尚、ここに可逆的に抑制するということは、曝
磁された免疫関与細胞(リンパ球等)において、
一定時間(異物である移植臓器内血管を循環して
いる間)は、DNA合成等が抑制され、すなわち、
その細胞の本来の異物感知機能、並びに異物排除
機能が抑制されて、移植臓器内血管を通過し終つ
た後は、元の正常な情報収集機能を発揮するよう
に回復するような状態の抑制である。 従来より使用されている拒絶反応抑制剤(例え
ばサイクロスポリンA〓Cyclosporin−eA〓)によ
る抑制作用も同じように免疫担当細胞(リンパ球
等)の活性を低下させて、抗体がなるべく出来な
いようにするもので(臨床免疫、14(2);93−99,
1982年〓臓器移植とC−yclosporine A〓落合武
徳、坂本薫、浅野武秀、渡辺一男)、臓器移植の
拒絶反応を抑制する基本的メカニズムには、おお
きな差異はない。ただ、免疫担当細胞の活性を低
下させる手段として薬物によるのか磁力によつて
行なうのかの差異と、免疫担当細胞の活性低下作
用が従来長期的、全身的であるのに対し、本考案
の場合には一時的かつ部分的であるといつた点に
差異がある。すなわち、前者の薬物は、経口又は
注射により投与されるので、全身的に影響が出る
傾向があるのに対し、後者の磁力は、局的に限定
して影響を与えることが出来る特性をもつてい
る。 磁気が生態に与える影響については、生体磁気
学として各方面で研究されており、細胞のDNA、
RNAの合成が抑制される効果が証明されている。
(第2回〓磁気と生体〓研究会資料P##〜36,
1976年〓磁場によるMH134腹水癌の核酸DNA、
RNA合成抑制効果について〓斉藤四郎、宮川富
"Field of Industrial Application" The present invention relates to an immunosuppressive artificial blood vessel that has the effect of suppressing rejection reactions in organ transplants. “Prior art” In recent years, organ transplants have become more common.
Transplantation of human organs to other humans or organs from non-human animals to humans has become increasingly common. The main reason why organ transplants have become so popular is thought to be that newly developed immunosuppressive drugs have become more effective than their predecessors. In other words, when there is a good match between the tissue compatibility of the recipient and the compatibility of the organ donor, rejection of the organ will not occur in the recipient's body, but in most cases This is because a rejection reaction occurs against a transplanted organ, and it has become possible to weaken or suppress the rejection reaction by using immunosuppressants. ``Technical issues to be solved'' However, all immunosuppressants developed to date are administered systemically as oral agents or by injection, and have a local rejection suppressing effect. It wasn't something I could do. For this reason, side effects from immunosuppressive drugs are likely to occur, and conversely, unless the dose is large enough to cause side effects, it is ineffective as a suppressive drug, resulting in serious infections and malignant tumors. It has been reported that this can be the cause of cancer, and has become the biggest technical issue when implementing organ transplants. The present invention is an immunosuppressant that reduces the amount of immunosuppressants that weaken the activity of immune-related cells when administered systemically, and also has the effect of suppressing rejection alone. The aim is to provide artificial blood vessels. "Means for Solving Technical Problems" The present invention will be explained in detail based on illustrated embodiments. FIG. 1 is an explanatory diagram showing the basic structure of the immunosuppressive artificial blood vessel having the effect of suppressing rejection according to the present invention, FIG. 2 is an explanatory diagram showing how to use the artificial blood vessel, and FIG. FIG. 3 is a plan view showing another embodiment of the immunosuppressive artificial blood vessel according to the present invention. In the figure, reference numeral 1 denotes an immunosuppressive artificial blood vessel formed into a long tubular shape, around which a magnet portion 3 is arranged. This magnet part 3 is connected to the artificial blood vessel 1 as described later.
It is for generating a tunnel-like magnetic field in the hole of the artificial blood vessel 2, and may be formed integrally with the peripheral side wall 2' of the artificial blood vessel 2, as shown in the embodiment of FIG.
Furthermore, as in the embodiment shown in FIG.
Of course, it may be arranged near the circumferential side of the artificial blood vessel 2 as in the embodiment shown in the figure. In addition, the magnet part 3 is arranged such that the north pole and the south pole are opposite to each other across the hole 4 of the artificial blood vessel 1, so that a tunnel-shaped magnetic field 5 is applied to the appropriate place in the hole 4 of the immunosuppressive artificial blood vessel 1. It was designed so that it could be formed. 3 and 4 are for strengthening the influence of the magnetic field 5. In the embodiment shown in FIG. 3c,...,
It is configured so that multiple pieces are installed in a row, and
FIG. 4 shows an embodiment in which the artificial blood vessel 1 is arranged so as to meander through a boundary gap where magnets 3a, 3b, 3c, . . . are arranged in regular rows. As mentioned above, the artificial blood vessel of the present invention is provided with magnets 3a, 3b, 3c, ... on the peripheral side of the blood vessel or in the vicinity thereof,
A tunnel-like magnetic field is formed within the pore of the blood vessel. Figures 2 and 5 schematically show how this immunosuppressive artificial blood vessel 1 is used during organ transplantation.
It is a diagram. In Figure 2, 6 is an organ for transplantation, and 7
8 is an arterial blood vessel, and 8 is an arterial side connecting blood vessel to the organ 6 for transplantation, and the immunosuppressive artificial blood vessel 1 according to the present invention is used as a part of the arterial blood vessel. Note that 9 is a venous connecting blood vessel that connects the blood coming out of the organ for transplantation 6 to the venous blood vessel 10, and 11 is a filter that prevents the movement of cellular components only by the movement of water. The filter 11
This prevents the movement of cellular components, and at the same time isolates the organ 6 for transplantation without exposing it. That is, the arterial side connecting blood vessel 8 and the venous side connecting blood vessel 9 are also isolated, and if the organ is a kidney, for example, it goes without saying that the ureter is also isolated in addition to these blood vessels. Incidentally, FIG. 5 is an explanatory diagram showing a state in which the artificial blood vessel of the embodiment shown in FIG. 4 is used. "Effect" Here, to explain the relationship between magnetic force and the effect of suppressing the rejection reaction associated with organ transplantation, in a living body that has undergone tissue-incompatible organ transplantation, immune-related cells such as T cells, B cells, NK cells, macrophages, etc. enter the organ 6 through the arterial connecting blood vessel 8 attached to the transplanted organ 6, detect the foreign body inside the organ 6, grasp certain information, and receive the transplant. Antibodies are produced by an in-vivo antibody production mechanism (not shown) and flow into the artery-side connecting blood vessel 8 of the transplanted organ 6 again, starting the action of removing the transplanted organ 6. This invention focuses on the mechanism of rejection reaction against the transplanted organ 6, and uses magnetic force to collect information on the foreign body of these immunocompetent cells at the entrance artery-side blood vessel site connected to the transplanted organ 6. The aim is to reversibly inhibit the production of antibodies by the antibody production mechanism to protect transplanted organs from rejection. Note that reversible suppression means that in magnetized immune-related cells (lymphocytes, etc.),
For a certain period of time (while the foreign body is circulating in the blood vessels in the transplanted organ), DNA synthesis, etc. is suppressed, that is,
The cell's original foreign body sensing function and foreign body expulsion function are suppressed, and after it has passed through the blood vessel in the transplanted organ, it will recover to its original normal information gathering function. be. The inhibitory effect of conventionally used anti-rejection drugs (e.g. Cyclosporin A〓Cyclosporin-eA〓) similarly reduces the activity of immunocompetent cells (lymphocytes, etc.) and prevents the production of antibodies as much as possible. (Clinical Immunology, 14(2); 93-99,
1982: Organ Transplants and C-yclosporine A (Takenori Ochiai, Kaoru Sakamoto, Takehide Asano, Kazuo Watanabe) There are no major differences in the basic mechanisms that suppress organ transplant rejection. However, there are differences in whether the method used to reduce the activity of immunocompetent cells is a drug or magnetic force, and the effect of reducing the activity of immunocompetent cells is conventionally long-term and systemic, whereas in the case of the present invention, The difference is that it is temporary and partial. In other words, the former drug is administered orally or by injection, so it tends to have a systemic effect, whereas the latter's magnetic force has the property of being able to have a localized effect. There is. The influence of magnetism on ecology is being researched in various fields as biomagnetism, and the effects of magnetism on biology are being studied in various fields.
It has been proven to suppress RNA synthesis.
(2nd Magnetism and Biology Research Group Materials P##~36,
1976 = Nucleic acid DNA of MH134 ascites cancer by magnetic field,
About RNA synthesis suppression effect〓Shiro Saito, Tomi Miyagawa

【表】 以上より、すべての例で10%以上の抑制率が得
られた。すなわち、DNA合成の抑制が認められ
た。 実験2:磁場内を出て一定時間後にDNA合成が
元に回復することの確認。 f 被験体から一定の血液を採取し、リンパ球だ
けを分離する。 g そのリンパ球の一定数をシヤーレに取り、培
養液を入れ、DNA合成促進剤である一定量の
PHA(レクチン)を混合する。 h 被験体から一定の血液を採取し、リンパ球だ
けを分離し、そのリンパ球の一定数をシヤーレ
に取り、培養液を入れたものを作成しておく。
ここまでは、第1実験a)b)c)と同じであ
る。 i その混合液を平板状のマグネットで上下に挟
んだマグネツト群(2000エステツドの定常磁
場)と、非マグネツト群(コントロール)とに
分け、3日間培養した(第6図参照)後、前記
マグネツト群からマグネツトを取り外す。 j マグネツトを取り外した後、これらのすべて
のリンパ球混合液群に、一定量のトリチウムサ
イミジンを加え、さらに16時間培養する。 k それぞれの群からリンパ球を採取し、シンチ
レーシヨン カウンターでその放射活性を測定
する。すなわち、測定法は、前記e)と同様で
あつた。 その結果は、表2の通りであつた。
[Table] From the above, an inhibition rate of 10% or more was obtained in all cases. In other words, suppression of DNA synthesis was observed. Experiment 2: Confirmation that DNA synthesis returns to its original state after a certain period of time after leaving the magnetic field. f. A certain amount of blood is collected from the subject and only lymphocytes are separated. g Take a certain number of lymphocytes in a shear dish, add culture medium, and add a certain amount of DNA synthesis promoter.
Mix PHA (lectin). h. Collect a certain amount of blood from the subject, separate only the lymphocytes, take a certain number of lymphocytes in a shear dish, and prepare a culture medium.
The steps up to this point are the same as the first experiments a) b) c). i The mixed solution was divided into a magnet group (constant magnetic field of 2000 EST) and a non-magnet group (control), which were sandwiched vertically between flat magnets, and after culturing for 3 days (see Figure 6), the magnet group Remove the magnet from the j After removing the magnet, add a certain amount of tritiated thymidine to all of these lymphocyte mixture groups and culture for an additional 16 hours. k Collect lymphocytes from each group and measure their radioactivity using a scintillation counter. That is, the measurement method was the same as in e) above. The results were as shown in Table 2.

【表】 以上より、おおむねマグネツト群と非マグネツ
ト群とで差がなく、DNAの機能は可逆的に元に
回復していることが認められた。 次に、実験3として同種異系腎移植術を、ラツ
トで試みた(第7図)。 腎受容者であるウイスターラツトの両腎を切除
し(右副腎、左側尿管は残す。)、あらかじめ取り
出しておいた腎提供者であるSDラツトの左腎を
カフ法により、各々の左腎静脈血管同志で直接接
続し、それぞれの左腎動脈は、免疫抑制用人工血
管の各々の端部とをカフ法により接続し、尿管は
縫合接続した。(人工血管の血流部分は、ゴアテ
ツクス−内径0.8mm、外径1.0mmのチユーブ、マグ
ネツトはTDK社製のネオジウム−3500エステツ
ド、ゴアテツクならびにマグネツト保持部はシリ
コンゴムを使用する。) その結果は、表3の通りであつた。
[Table] From the above, it was confirmed that there was generally no difference between the magnet group and the non-magnet group, and the DNA function was reversibly restored to its original state. Next, in Experiment 3, allogeneic kidney transplantation was attempted in rats (Figure 7). Both kidneys of Wistar rats (kidney recipients) were removed (the right adrenal gland and left ureter were left intact), and the previously removed left kidney of SD rats (kidney donors) was inserted into each left renal vein using the cuff method. The blood vessels were directly connected, and each left renal artery was connected to each end of the immunosuppressive artificial blood vessel by the cuff method, and the ureter was sutured. (The blood flow part of the artificial blood vessel uses a Gore-Tex tube with an inner diameter of 0.8 mm and an outer diameter of 1.0 mm. The magnet uses TDK neodymium 3500 ester, and the Gore-Tex and magnet holding part use silicone rubber.) The results are as follows. The results were as shown in Table 3.

【表】 以上から免疫抑制用人工血管群は、非人工血管
群(コントロール群)に比較して、おおむね二倍
以上の生存日数が得られた。 このことから、免疫抑制用人工血管により、腎
受容者の免疫関与細胞が異物であるい移植腎に対
して寛容であつたことが認められた。 尚、生体内に磁場を与える場合は、他の正常蔵
器に悪影響を及ぼさない様にしなければならず、
第2図に示すように移植蔵器6とつながつている
動脈側連結血管8に隣接して設置するのが望まし
い。また、同じ強さの磁力の場合、定常磁場に比
べて変動磁場の方が細胞に及ぼす影響が強いこと
が知られているが、同じ定常磁場でも動脈側連結
血管8を流れる免疫関与細胞に関してN極、S極
の方向を血流にそつて交互に作用させると、より
効果的に影響を及ぼすことが明らかになつた。そ
れを具現化したのが第3図及び第4図に示した人
工血管の実施例である。 「効果」 本考案は叙上のように、長尺な管状に形成した
人工血管の周辺に磁石部を配設し、当該人工血管
の孔内にトンネル状の磁場を形成するようにした
免疫抑制用人工血管である。したがつて、この人
工血管1を移植臓器6のつながつている動脈側連
結血管8に設置すると、この人工血管の中を血液
が通過したとき、免疫関与細胞に磁力の可逆的な
影響を与えてその活性を低下せしめ、抗体産生機
構が働かないようにし、それによつて拒絶反応抑
制効果を挙げることが出来るものである。しか
も、このように本考案は免疫関与細胞に対して、
局部的にしかも効果を発揮するに有利な位置で可
逆的なダメージを与えることが出来るので、その
移植臓器の拒絶反応を必要に応じて選択的に抑制
することが可能となつた。そのため体全体の免疫
抑制機構の機能低下をほとんどなくすることが出
来る。
[Table] From the above, the immunosuppressive artificial blood vessel group had roughly twice as many survival days as the non-artificial blood vessel group (control group). From this, it was confirmed that the immune-related cells of the kidney recipient were tolerant to the foreign body or transplanted kidney due to the immunosuppressive artificial blood vessel. When applying a magnetic field inside a living body, care must be taken to ensure that it does not adversely affect other normal storage organs.
As shown in FIG. 2, it is preferable to install it adjacent to the arterial connecting blood vessel 8 that is connected to the transplanted device 6. In addition, it is known that when the magnetic force is the same, a fluctuating magnetic field has a stronger effect on cells than a steady magnetic field, but even with the same steady magnetic field, the N It has become clear that alternating the pole and south pole directions along the blood flow produces more effective effects. The embodiment of the artificial blood vessel shown in FIGS. 3 and 4 embodies this. ``Effects'' As mentioned above, the present invention is an immunosuppression method in which a magnet is placed around a long tubular artificial blood vessel to form a tunnel-like magnetic field within the pore of the artificial blood vessel. It is an artificial blood vessel. Therefore, when this artificial blood vessel 1 is placed in the arterial side connecting blood vessel 8 connected to the transplanted organ 6, when blood passes through this artificial blood vessel, it exerts a reversible magnetic force on immune-related cells. It lowers its activity and prevents the antibody production mechanism from working, thereby producing an effect of suppressing rejection reactions. Moreover, the present invention is effective against immune-related cells.
Since it is possible to inflict reversible damage locally and at a position advantageous for exerting the effect, it has become possible to selectively suppress the rejection reaction of the transplanted organ as necessary. Therefore, it is possible to almost eliminate the decline in the function of the immunosuppressive mechanism throughout the body.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係る拒絶反応抑制効果を有す
る免疫抑制用人工血管の構造を示す説明図、第2
図は同人工血管の使用方法を示す説明図、第3図
は同人工血管の他実施例を示す構造説明図で、第
4図は同人工血管の他実施例を示す平面図で、第
5図は第4図に示す実施例の使用状態を示す説明
図で、第6図は本考案にかかる第1、第2実験に
用いるマグネツト群とマグネツト群の作成法を示
す説明図、第7図は第3実験を説明する概略説明
図である。
FIG. 1 is an explanatory diagram showing the structure of the immunosuppressive artificial blood vessel having the effect of suppressing rejection according to the present invention, and FIG.
The figure is an explanatory diagram showing how to use the artificial blood vessel, FIG. 3 is a structural explanatory diagram showing another embodiment of the artificial blood vessel, FIG. 4 is a plan view showing another embodiment of the artificial blood vessel, and The figures are explanatory drawings showing the usage state of the embodiment shown in Fig. 4, Fig. 6 is an explanatory drawing showing the magnet group used in the first and second experiments according to the present invention, and the method of making the magnet group. FIG. 2 is a schematic explanatory diagram illustrating the third experiment.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 長尺な管状に形成した人工血管の周辺に磁石部
を配設し、当該人工血管の孔内にトンネル状の磁
場を形成するようにしたことを特徴とする免疫抑
制用人工血管。
An artificial blood vessel for immunosuppression, characterized in that a magnet portion is disposed around an artificial blood vessel formed into a long tubular shape, and a tunnel-like magnetic field is formed within the hole of the artificial blood vessel.
JP1985027013U 1985-02-26 1985-02-26 Expired JPH0211059Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985027013U JPH0211059Y2 (en) 1985-02-26 1985-02-26

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985027013U JPH0211059Y2 (en) 1985-02-26 1985-02-26

Publications (2)

Publication Number Publication Date
JPS61142020U JPS61142020U (en) 1986-09-02
JPH0211059Y2 true JPH0211059Y2 (en) 1990-03-19

Family

ID=30523570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985027013U Expired JPH0211059Y2 (en) 1985-02-26 1985-02-26

Country Status (1)

Country Link
JP (1) JPH0211059Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5731873A (en) * 1980-08-05 1982-02-20 Electro Biology Inc Electromagnetic treatment device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5731873A (en) * 1980-08-05 1982-02-20 Electro Biology Inc Electromagnetic treatment device

Also Published As

Publication number Publication date
JPS61142020U (en) 1986-09-02

Similar Documents

Publication Publication Date Title
Oo et al. Liver homing of clinical grade Tregs after therapeutic infusion in patients with autoimmune hepatitis
Nessi et al. Acute renal failure after rifampicin: a case report and survey of the literature
JPH07165694A (en) N-(4-trifluoromethylphenyl)-2-cyano-3-hydroxycrotonamide
US20070093427A1 (en) Membrane-permeable NFAT inhibitory peptide
McKee et al. Albumin and globulin circulation in experimental ascites: Relative rates of interchange between plasma and ascitic fluid studied with C14-labeled proteins
Magee et al. The growing problem of chronic renal failure after transplantation of a nonrenal organ
JPH0211059Y2 (en)
Mitry et al. Hepatocyte transplantation
US4348375A (en) Radioassay process and compositions useful therein
Doherty et al. Penetration of naproxen and salicylate into inflammatory exudates in the rat.
Vorne et al. Comparison of 123I monoclonal granulocyte antibody and 99Tcm-HMPAO-labelled leucocytes in the detection of inflammation
Stratta et al. The Early Years of Nephrology at Molinette Hospital in Turin Told by Those Who Lived and Built Them
Bizzi et al. Plasma triglycerides and thrombosis in rats
Putnam et al. The metabolism of DL-glutamic acid-1-C14 in man.
Hassler Arterial cell kinetics in experimental hypertension
Turnock et al. Accumulation of Ribonucleic Acid in Escherichia coli due to the Action of 5-Methyl Tryptophan
Hughes et al. Endotoxic shock and its effects on hepatobiliary scanning in dogs.
Badalamenti et al. Renal effects of atrial natriuretic pactor (ANF) and blood pressure (BP) in cirrhotic patients with avid sodium retention
Krekorian The development of radiolabelled PLGA-based nanoparticles for optimised cell labelling
Ballardini et al. HCV infection and liver histology: A factor of progression to cirrhosis?
Bacq et al. Successful treatment of fascioliasis (F) with bithionol (B) in 9 patients
Brouwer et al. A 26-year-old woman with fever, migratory polyarthritis, and pericarditis subsequent to a T-cell lymphoma
Barterino et al. Silymarin in experiment. Liver lesions
Shiozawa et al. A case of an ABO‐incompatible renal transplant with abundant intratubular basement membrane immune deposits
Sinzinger et al. The use of indium-111-labeled platelets in the management of renal transplant patients