JPH02110363A - Working electrode for immunity sensor and manufacture thereof - Google Patents

Working electrode for immunity sensor and manufacture thereof

Info

Publication number
JPH02110363A
JPH02110363A JP63262971A JP26297188A JPH02110363A JP H02110363 A JPH02110363 A JP H02110363A JP 63262971 A JP63262971 A JP 63262971A JP 26297188 A JP26297188 A JP 26297188A JP H02110363 A JPH02110363 A JP H02110363A
Authority
JP
Japan
Prior art keywords
electrode
antibody
antigen
porous
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63262971A
Other languages
Japanese (ja)
Inventor
Takeyuki Kawaguchi
武行 川口
Hisashi Jo
尚志 城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP63262971A priority Critical patent/JPH02110363A/en
Publication of JPH02110363A publication Critical patent/JPH02110363A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To achieve high sensitivity by providing a conductive porous body as an electrode for a porous electrode to be used, and forming a device with antibody or antigen which is formed on the electrode and fixed to conductive macromolecules. CONSTITUTION:A porous electrode to be used is a conductive porous body as an electrode. The body is especially selected out of the following materials: a material wherein a metal thin film is provided on the surface and/or the inner hole wall of organic or inorganic porous body; net-shaped or sponge-shaped metal; and net-shaped carbon fiber. The body comprises conductive macromolecules formed on the electrode and antibody or antigen which is fixed in and/or on the surface of the conductive macromolecules. Any antibody or antigen can be used for the antibody or antigen which is fixed in the conductive macromolecule. In this way, the structure of a highly sensitive sensor characterized by excellent reproducibility and stability for a long time is obtained.

Description

【発明の詳細な説明】 (1)産業上の利用分野: 本発明は新規な免疫センサ用動作電極に関する。[Detailed description of the invention] (1) Industrial application fields: The present invention relates to a novel working electrode for an immunosensor.

ざらに詳しくは、多孔質な電極上に形成された導電性高
分子および該高分子中または/および表面に固定された
抗体または抗原からなる免疫サンサ用動作電極とその製
造方法に関する。
More specifically, the present invention relates to a working electrode for an immunosensor consisting of a conductive polymer formed on a porous electrode, and an antibody or antigen immobilized in and/or on the surface of the polymer, and a method for manufacturing the same.

(2)従来技術: 臨床医学の分野において、極めて特異的な生化学反応で
ある抗体−抗原反応を用いた免疫学的診断がこれまで行
われてきた。具体的方法としては、沈降・凝集法、ラジ
オイムノアッセイ法、エンザイムイムノアッセイ法、蛍
光イムノアッセイ法等が知られており、実用にも供され
ている。しかしながら、これらの方法では、特殊な設備
や高価な装置を必要としたり、取り扱いが煩雑である等
の難点があった。
(2) Prior Art: In the field of clinical medicine, immunological diagnosis using an antibody-antigen reaction, which is a very specific biochemical reaction, has been performed so far. As specific methods, sedimentation/aggregation methods, radioimmunoassay methods, enzyme immunoassay methods, fluorescence immunoassay methods, etc. are known and are in practical use. However, these methods have drawbacks such as requiring special equipment and expensive equipment, and being complicated to handle.

近年、簡便に抗原または抗体を検出する方法として免疫
センサが提案されている。例えば、鈴木。
In recent years, immunosensors have been proposed as a convenient method for detecting antigens or antibodies. For example, Suzuki.

相沢らは抗体または抗原を酢酸セルロース膜に固定し膜
電位を測定することにより抗原または抗体の検出が可能
であることを示しくJ、 )lembraneSci、
、 2.125 (1977))、山水2悼村らは抗体
または抗原を固定した化学修飾電極を用い、電極電位を
測定することにより抗原または抗体を検出した(J、 
Immunol、 Methods、 22.309 
(197B))。また、民谷、軽部らは電界効果型トラ
ンジスターのゲート部に抗体を固定し抗原の検出を行な
い(第5回化学センサ研究発表会要旨集z−4(198
6)) 、合口らは抗体を固定したポリピロールやポリ
チオフェンやポリフラン膜を用いると抗原の検出が可能
であることを示した(特開昭61−195346号、6
3−50747号)。しかしながら、これらの方法では
検出感度が低いことや、再現性が悪い、長期間の使用に
耐えない等の問題点があった。
Aizawa et al. showed that it is possible to detect antigens or antibodies by immobilizing antibodies or antigens on cellulose acetate membranes and measuring the membrane potential.
, 2.125 (1977)), Sansui, 2 Morimura et al. detected antigens or antibodies by measuring the electrode potential using chemically modified electrodes on which antibodies or antigens were immobilized (J,
Immunol, Methods, 22.309
(197B)). In addition, Tamiya, Karube et al. fixed antibodies on the gate part of field effect transistors and detected antigens (5th Chemical Sensor Research Presentation Abstracts Z-4 (1988).
6)), Aiguchi et al. showed that antigens can be detected using polypyrrole, polythiophene, or polyfuran membranes on which antibodies are immobilized (Japanese Patent Application Laid-open No. 195346/1986, 6).
No. 3-50747). However, these methods have problems such as low detection sensitivity, poor reproducibility, and cannot withstand long-term use.

(3)発明の概要 本発明はかかる状況に鑑みてなされたものである。すな
わち、再現性に優れた長時間にわたって安定な高感度の
センサの構築を鋭意検討した結果、本発明に到達したも
のである。
(3) Summary of the invention The present invention has been made in view of this situation. That is, the present invention was arrived at as a result of intensive research into constructing a highly sensitive sensor that is stable over a long period of time with excellent reproducibility.

(4)本発明の構成: すなわち、本発明は、 1、多孔質な電極上に形成された導電性高分子および該
導電性高分子の中または/および表面に固定された抗体
または抗原からなる免疫センサ用動作電極、 2、上記多孔質な電極が、有機または無機多孔質体の表
面または/および内孔壁に金属薄膜を設けたもの、網状
またはスポンジ状金属、および網状炭素繊維から選ばれ
たものである1項記載の免疫センサ用動作電極、及び 3、多孔質な電極上で、導電性高分子を形成しうる電解
重合可能な単量体を支持電解質および抗体または抗原の
存在下に水溶液中にて電解重合し、形成された導電性高
分子中に抗体または抗原を包括固定することを特徴とす
る免疫センサ用動作電極の製造方法である。
(4) Structure of the present invention: That is, the present invention consists of: 1. A conductive polymer formed on a porous electrode, and an antibody or antigen immobilized in and/or on the surface of the conductive polymer. Working electrode for immunosensor 2. The porous electrode is selected from organic or inorganic porous material with a metal thin film provided on the surface and/or inner pore wall, reticular or sponge-like metal, and reticular carbon fiber. 3. An electrolytically polymerizable monomer capable of forming a conductive polymer is placed on the porous electrode in the presence of a supporting electrolyte and an antibody or an antigen. This is a method for producing a working electrode for an immunosensor, which is characterized by electrolytically polymerizing in an aqueous solution and entrapping an antibody or an antigen in the formed conductive polymer.

本発明において用いられる多孔質電極は電極としての導
電性を有する多孔質体であり、特に有機または無機多孔
質体の表面または/および内孔壁に金属薄膜を設けたも
の、網状またはスポンジ状金属、および網状炭素繊維か
ら選ばれたものである。これらの多孔質電極の電導間は
O,Is/cm〜106  S/amでおり、また平均
孔径は0.1 μm 〜1mmで、空隙率は20〜80
%であることが望ましい。
The porous electrode used in the present invention is a porous body having electrical conductivity as an electrode, and in particular, an organic or inorganic porous body provided with a metal thin film on the surface and/or inner pore wall, a net-like or sponge-like metal , and reticulated carbon fiber. The conductivity of these porous electrodes is O,Is/cm to 106 S/am, the average pore diameter is 0.1 μm to 1 mm, and the porosity is 20 to 80
% is desirable.

ざらに望ましくは、電導間1 S /c+n〜106 
 S/cm。
Roughly desirably, the conductivity is 1 S/c+n~106
S/cm.

平均孔径1μm〜100μmである。電導間が0.IS
/Cm以下では多孔質電極に電解重合可能な単量体の電
解重合を行うことができず、平均孔径が0.1μm以下
では多孔質電極の内孔壁に電解重合によるポリマーを形
成することができない。
The average pore diameter is 1 μm to 100 μm. The conductivity is 0. IS
/Cm or less, electrolytic polymerization of monomers that can be electrolytically polymerized to the porous electrode cannot be performed, and if the average pore diameter is less than 0.1 μm, it is impossible to form a polymer by electrolytic polymerization on the inner pore walls of the porous electrode. Can not.

本発明で用いられる有機または無機多孔質体は特に制限
されず、その表面および内孔壁に電極となる金属薄膜を
形成できるものであれば、いかなるものでも使用可能で
ある。その具体例としては、多孔質高分子フィルム、無
機フィルター、多孔質繊維、不織布、網状物等が挙げら
れる。多孔質高分子フィルム、繊維、不織布、および網
状物の素材としてはポリスチレン、ポリ塩化ビニル、ポ
リテトラフルオロエチレン、ポリフッ化ビニリデン。
The organic or inorganic porous body used in the present invention is not particularly limited, and any porous body can be used as long as it can form a metal thin film serving as an electrode on its surface and inner pore walls. Specific examples thereof include porous polymer films, inorganic filters, porous fibers, nonwoven fabrics, net-like materials, and the like. Materials for porous polymer films, fibers, nonwoven fabrics, and nettings include polystyrene, polyvinyl chloride, polytetrafluoroethylene, and polyvinylidene fluoride.

ポリエチレン、ポリプロピレン、ポリビニルアルコール
、ポリアクリロニトリル、ポリ(メタ)アクリル酸エス
テル、ポリスルフtン、ポリエーテルスルフォン、ポリ
アミド、ポリイミドおよびこれらの共重合体ならびに誘
導体等が挙げられる。
Examples include polyethylene, polypropylene, polyvinyl alcohol, polyacrylonitrile, poly(meth)acrylic acid ester, polysulfone, polyethersulfone, polyamide, polyimide, and copolymers and derivatives thereof.

本発明で用いられるこれらの多孔質体の平均孔径は、1
 nm〜1mmであることが望ましい。さらに望ましく
は10nm〜10μmである。平均孔径が1nm未満で
あると、電極用の金属薄膜を多孔質体の内孔壁に形成す
ることが不可能になる。また、孔径が’+mmより大き
いと多孔質電極の単位体積当りの導電性高分子の占める
体積分率が大幅に小さくなり、電極としての機能が低下
する。上記多孔質体の空隙率は5〜80%、好ましくは
20〜80%が望ましい。本発明で用いられる多孔質体
の表面と内孔壁に設けられる金属としては、電解重合で
変質や劣化の少ない金属なら特に制限されず、金、白金
The average pore diameter of these porous bodies used in the present invention is 1
It is desirable that the thickness is from nm to 1 mm. More preferably, the thickness is 10 nm to 10 μm. If the average pore diameter is less than 1 nm, it becomes impossible to form a metal thin film for an electrode on the inner pore walls of the porous body. On the other hand, if the pore diameter is larger than '+mm, the volume fraction occupied by the conductive polymer per unit volume of the porous electrode becomes significantly small, and the function as an electrode deteriorates. The porosity of the porous body is preferably 5 to 80%, preferably 20 to 80%. The metal provided on the surface and inner pore walls of the porous body used in the present invention is not particularly limited as long as it is a metal that is less likely to be altered or deteriorated by electrolytic polymerization, and may include gold and platinum.

パラジウム、ニッケル、銅、銀、炭素等が挙げられる。Examples include palladium, nickel, copper, silver, and carbon.

これらの金属の薄膜は、例えば真空蒸着法。Thin films of these metals can be formed, for example, by vacuum evaporation.

スパッタリング法、化学メツキ法、イオンプレーティン
グ法、メタルスプレー法などで多孔質体の表面と内孔壁
に形成される。金属薄膜の膜厚は、多孔質体の内孔をふ
さがない程度が望ましく、多孔質体の孔径にもよるが1
nlll〜10μmが適当である。
It is formed on the surface of the porous body and the inner pore walls by sputtering, chemical plating, ion plating, metal spraying, etc. The thickness of the metal thin film is preferably such that it does not block the inner pores of the porous body, and although it depends on the pore diameter of the porous body, it is
A suitable thickness is 10 μm to 10 μm.

本発明で用いられる網状またはスポンジ状金属としては
導電性高分子を形成するための電解重合反応において変
質や劣化のない金属なら特に制限されず、金、白金、パ
ラジウム、ニッケル、銅。
The net-like or sponge-like metal used in the present invention is not particularly limited as long as it does not undergo alteration or deterioration in the electrolytic polymerization reaction for forming the conductive polymer, and includes gold, platinum, palladium, nickel, and copper.

銀等が挙げられる。Examples include silver.

本発明で用いられる単量体は電解重合法によって導電性
高分子を形成するものであれば特に制限されず、例えば
ピロール、アニリン、チオフェン。
The monomer used in the present invention is not particularly limited as long as it forms a conductive polymer by electrolytic polymerization, and includes, for example, pyrrole, aniline, and thiophene.

フランおよびこれらの誘導体が挙げられる。これらの単
量体のうちで、得られる導電性高分子の電導型、力学的
強度、化学的および熱的安定性ならびに多孔電極との密
着性などから判断して、ピロールおよびアニリンが特に
望ましい。また、電解重合時に用いるドーパントとして
は、単量体の種類により異なり、ピロール、チオフェン
およびフランの場合は過塩素酸リチウム塩、テトラエチ
ルアンモニウム過塩素酸塩、テトラエチルアンモニウム
ホウ酸塩、ヘキサフルオロリン酸等が好適に用いられる
。また、アニリンの場合はPAmが好適に用いられるが
、本発明はこれらに限定されるものではない。
Mention may be made of furans and their derivatives. Among these monomers, pyrrole and aniline are particularly desirable, judging from the conductivity type, mechanical strength, chemical and thermal stability, and adhesion to porous electrodes of the resulting conductive polymer. Dopants used during electropolymerization vary depending on the type of monomer; in the case of pyrrole, thiophene, and furan, lithium perchlorate, tetraethylammonium perchlorate, tetraethylammonium borate, hexafluorophosphoric acid, etc. is preferably used. Further, in the case of aniline, PAm is preferably used, but the present invention is not limited thereto.

本発明で導電性高分子に固定される抗体または抗原はい
かなるものも可能でおり、例えばI(IG 。
Any antibody or antigen can be immobilized on the conductive polymer in the present invention, such as I(IG).

IgH等の各種免疫グロブリン、アルブミン、 hCG
等が挙げられる。
Various immunoglobulins such as IgH, albumin, hCG
etc.

抗体または抗原は、多孔質電極上で電解重合可能な単量
体を支持電解質および抗体または抗原ともに水溶液中に
て電解重合することによって、導電性高分子に包括され
、多孔質電極の表面または/および内孔壁に固定される
。重合時の溶液中の単量体の濃度は一般に0.01 m
ol/1〜0.5 mol /dであり、支持電解質は
0.1 mol /rrdl程度でよい。
The antibody or antigen is encapsulated in a conductive polymer by electrolytically polymerizing a monomer that can be electrolytically polymerized on a porous electrode together with a supporting electrolyte and the antibody or antigen in an aqueous solution, and then applied to the surface of the porous electrode or/and the antibody or antigen. and fixed to the bore wall. The concentration of monomer in the solution during polymerization is generally 0.01 m
ol/1 to 0.5 mol/d, and the supporting electrolyte may be about 0.1 mol/rrdl.

抗体または抗原は溶液に溶解する程度であり、例えばヒ
トのIgGの場合は0.01mMd 〜0.5mq /
rdである。電解重合は定電位法でも定電流法でも可能
であり、定電位法では銀/塩化銀電極に対して0.2V
〜1.5Vの電位で、定電流法では0.1mA /cm
2〜50mA/cm2の電流密度で電解重合する。この
ようにして得られた抗体または抗原を包括固定した導電
性高分子の膜厚は多孔質電極の内孔をふさがない程度が
望ましく、多孔質電極の孔径にもよるが、1nm〜10
μmが適当である。また、多孔質電極中の抗体または抗
原を包括固定した電導性高分子は連続層となっているこ
とが好ましい。
Antibodies or antigens are dissolved in a solution, for example, in the case of human IgG, it is 0.01mMd to 0.5mq/
It is rd. Electrolytic polymerization can be performed using either a constant potential method or a constant current method.
~1.5V potential, 0.1mA/cm using constant current method
Electrolytic polymerization is carried out at a current density of 2 to 50 mA/cm2. The film thickness of the conductive polymer on which the antibody or antigen entrappingly immobilized thus obtained is desirably such that it does not block the inner pores of the porous electrode, and varies from 1 nm to 10 nm, depending on the pore diameter of the porous electrode.
μm is appropriate. Further, it is preferable that the conductive polymer entrapping and immobilizing the antibody or antigen in the porous electrode forms a continuous layer.

このようにして得た抗体または抗原を固定した多孔質電
極を、適当な容器内に入れられたゲル状電解質に漬け、
参照電極に対する電位差変化を測定する。参照電極は抗
体または抗原を固定していない上記多孔質電極を用いる
か、抗体または抗原を失活させた多孔質電極を用いるこ
とが望ましい。
The porous electrode with the antibody or antigen immobilized thus obtained is soaked in a gel electrolyte placed in a suitable container.
Measure the change in potential difference relative to a reference electrode. As the reference electrode, it is desirable to use the above porous electrode on which no antibody or antigen is immobilized, or a porous electrode on which the antibody or antigen has been inactivated.

抗原または抗体を含む溶液を上記ゲル状電解質に滴下し
た際に生じる電位差変化が検出応答である。
The detection response is a change in potential difference that occurs when a solution containing an antigen or antibody is dropped into the gel electrolyte.

(5)発明の効果: かくして本発明の多孔質な電極上に形成された導電性高
分子および該高分子中または/および表面に固定された
抗体または抗原からなる免疫センサは単位体積当りの表
面積が非常に大きく、その結果高感度化が達成され、検
体液中に含まれる稀薄濃度の抗原または抗体の検出を行
うことが可能である。また、長時間水溶液中に放置して
も固定した抗体あるいは抗原は脱離ぜず検出特性の劣化
は認められない。また、驚くべきことには抗原または抗
体を検出した後、多孔質電極を蒸溜水で洗浄し抗原また
は抗体を含む溶液に漬けると特別な再生処理を行わずし
て再び抗原または抗体の検出が可能になることも本発明
において明らかになった。
(5) Effects of the invention: Thus, the immunosensor comprising the conductive polymer formed on the porous electrode of the present invention and the antibody or antigen immobilized in the polymer or/and on the surface has a small surface area per unit volume. is very large, and as a result, high sensitivity is achieved, making it possible to detect dilute concentrations of antigens or antibodies contained in sample fluids. In addition, even if left in an aqueous solution for a long period of time, the immobilized antibody or antigen does not come off and no deterioration of detection characteristics is observed. Surprisingly, after detecting an antigen or antibody, if the porous electrode is washed with distilled water and immersed in a solution containing the antigen or antibody, it is possible to detect the antigen or antibody again without any special regeneration treatment. It has also become clear in the present invention that

以下、実施例により本発明をさらに詳しく説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 ポリエチレンテレフタレートの不織布(日本バイリーン
■)fF−135K)を常法に従い化学メツキした。
Example 1 A nonwoven fabric of polyethylene terephthalate (Japan Vilene ■ fF-135K) was chemically plated according to a conventional method.

すなわち、塩化スズ水溶液に浸漬後、0.1Hの塩化パ
ラジウムの0.18塩酸水溶液に浸漬した後、乾燥した
。ついで、ニッケルアンモニウムサルファイド31.6
1J 、次亜リン酸ナトリウム42.4111 、酒石
酸ナトリウム55.2g、硫酸アンモニウム40.6(
It 、ホウ酸59.40を蒸溜水11に溶解した液を
水酸化ナトリウム水溶液でpH9に調整した溶液に浸漬
した。
That is, after being immersed in a tin chloride aqueous solution, it was immersed in a 0.1H palladium chloride aqueous solution of 0.18 hydrochloric acid, and then dried. Next, nickel ammonium sulfide 31.6
1J, sodium hypophosphite 42.4111, sodium tartrate 55.2g, ammonium sulfate 40.6 (
It was immersed in a solution prepared by dissolving 59.40% of boric acid in 11% of distilled water and adjusting the pH to 9 with an aqueous sodium hydroxide solution.

上記方法でニッケルをメツキしたフィルタを多孔質電極
として用いた。この多孔質電極の電導型は32、I S
/cmで平均孔径12.5μIであった。0.1Hテト
ラエチルアンモニウムバークロレートと0.3Mピロー
ルを含むプロピレンカーボネート溶液に上記多孔質電極
を浸漬し銀/塩化銀電極に対して1.1vの定電位条件
で電気量が0.8C/cm2に達するまで電解重合を行
った。乾燥、洗浄後ざらに0.1)?塩化カリウムと0
.15Mビロールと0.25mM railのIIJG
を含む蒸溜水に浸漬し銀/塩化銀電極に対して0.65
Vの定電位条件で電気量が0.IC/cm2に達するま
で電解重合を行った。走査型電子顕微鏡によるとIOC
を含むポリピロールの薄膜が不織布の表面および内孔壁
に連続的に形成しており、また多孔質電極の内孔をふさ
がっていないことが観察された。
A filter plated with nickel using the above method was used as a porous electrode. The conductivity type of this porous electrode is 32, IS
/cm, and the average pore diameter was 12.5 μI. The above porous electrode was immersed in a propylene carbonate solution containing 0.1H tetraethylammonium verchlorate and 0.3M pyrrole, and the amount of electricity was 0.8 C/cm2 under constant potential conditions of 1.1 V with respect to the silver/silver chloride electrode. Electrolytic polymerization was carried out until the Rough 0.1) after drying and washing? potassium chloride and 0
.. IIJG with 15M virol and 0.25mM rail
0.65 for silver/silver chloride electrodes immersed in distilled water containing
Under constant potential conditions of V, the amount of electricity is 0. Electrolytic polymerization was carried out until IC/cm2 was reached. IOC according to scanning electron microscopy
It was observed that a thin film of polypyrrole containing polypyrrole was continuously formed on the surface of the nonwoven fabric and the inner pore walls, and did not block the inner pores of the porous electrode.

このIgGを固定した多孔質電極を25n+Hのリン酸
ナトリウム緩衝液(1)86.8)とウシ血清アルブミ
ンを混合した0、7重量%の寒天に浸漬しIgGを固定
していない多孔質電極との電位差測定を行った。
This porous electrode with immobilized IgG was immersed in 0.7% by weight agar mixed with 25n+H sodium phosphate buffer (1) 86.8) and bovine serum albumin. Potential difference measurements were made.

その結果、ベルオキシターゼを標識した抗ICIQの濃
度5x10−10mol/dに対して5.2mVの電位
差変化が生じた。25m)lのリン酸緩衝液(p 6.
8)に7日間浸漬した後、同様な測定を行ったところ5
×10−’Omol/dのベルオキシターゼ標識抗I(
JGに対して5.1mVの電位差変化が生じ、応答の劣
化が見られなかった。
As a result, a potential difference change of 5.2 mV occurred for a concentration of 5 x 10-10 mol/d of anti-ICIQ labeled with peroxidase. 25ml) l of phosphate buffer (p 6.
After soaking in 8) for 7 days, similar measurements were performed.
×10-'Omol/d of peroxidase-labeled anti-I (
A potential difference change of 5.1 mV occurred with respect to JG, and no deterioration in response was observed.

実施例2 白金メツシュ(80メツシユ)を0.1)1塩化カリウ
ムと0.158ピロールと0.25mg/ dのIgG
を含む蒸溜水に浸漬し、銀/塩化銀電極に対して0.6
5Vの定電位条件で電気量が0.IC/Cm2に達する
まで電解重合を行った。実施例1と同様に測定したとこ
ろ5xlO” mol/mのベルオキシターゼ標識抗I
(JG似対して4.0mVの電位差変化が生じた。
Example 2 Platinum mesh (80 mesh) was mixed with 0.1) monopotassium chloride, 0.158 pyrrole, and 0.25 mg/d of IgG
0.6 for silver/silver chloride electrodes.
Under constant potential conditions of 5V, the amount of electricity is 0. Electrolytic polymerization was carried out until IC/Cm2 was reached. As a result of measurement in the same manner as in Example 1, 5xlO" mol/m of peroxidase-labeled anti-I
(A potential difference change of 4.0 mV occurred compared to JG.

比較例 白金を0.18塩化カリウムと0.158ピロールと0
.25mMrdlのIGGを含む蒸溜水に浸漬し、銀/
塩化銀電極に対して0.65Vの定電位条件で電気量が
0、IC/cm2に達するまで電解重合を行った。実施
例1と同様に測定したところ5X10”Omol/dの
ベルオキシターゼ標識抗ICIGに対して0.5mVの
電位差変化しか生じなかった。
Comparative Example Platinum was mixed with 0.18 potassium chloride and 0.158 pyrrole.
.. Silver/
Electrolytic polymerization was performed under constant potential conditions of 0.65 V with respect to a silver chloride electrode until the amount of electricity reached 0, IC/cm2. When the measurement was carried out in the same manner as in Example 1, only a 0.5 mV potential difference change occurred with respect to 5×10” Omol/d of peroxidase-labeled anti-ICIG.

Claims (3)

【特許請求の範囲】[Claims] (1)多孔質な電極上に形成された導電性高分子および
該導電性高分子の中または/および表面に固定された抗
体または抗原からなる免疫センサ用動作電極。
(1) A working electrode for an immunosensor consisting of a conductive polymer formed on a porous electrode and an antibody or antigen immobilized in or/on the surface of the conductive polymer.
(2)上記多孔質な電極が、有機または無機多孔質体の
表面または/および内孔壁に金属薄膜を設けたもの、網
状またはスポンジ状金属、および網状炭素繊維から選ば
れたものである請求項1記載の免疫センサ用動作電極。
(2) The porous electrode is selected from organic or inorganic porous bodies with a metal thin film provided on the surface and/or inner pore walls, net-like or sponge-like metals, and reticulated carbon fibers. Item 1. The working electrode for an immunosensor according to item 1.
(3)多孔質な電極上で、導電性高分子を形成しうる電
解重合可能な単量体を支持電解質および抗体または抗原
の存在下に水溶液中にて電解重合し、形成された導電性
高分子中に抗体または抗原を包括固定することを特徴と
する免疫センサ用動作電極の製造方法。
(3) On a porous electrode, an electrolytically polymerizable monomer capable of forming a conductive polymer is electrolytically polymerized in an aqueous solution in the presence of a supporting electrolyte and an antibody or an antigen. A method for producing a working electrode for an immunosensor, which comprises comprehensively immobilizing an antibody or an antigen in a molecule.
JP63262971A 1988-10-20 1988-10-20 Working electrode for immunity sensor and manufacture thereof Pending JPH02110363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63262971A JPH02110363A (en) 1988-10-20 1988-10-20 Working electrode for immunity sensor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63262971A JPH02110363A (en) 1988-10-20 1988-10-20 Working electrode for immunity sensor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02110363A true JPH02110363A (en) 1990-04-23

Family

ID=17383092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63262971A Pending JPH02110363A (en) 1988-10-20 1988-10-20 Working electrode for immunity sensor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02110363A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2289339A (en) * 1994-05-12 1995-11-15 Cambridge Life Sciences Flow-through electrochemical immunoassay biosensor
US6866821B2 (en) * 1996-03-29 2005-03-15 Byk Gulden Italia S.P.A. Automatic diagnostic apparatus
JP2006507497A (en) * 2002-11-21 2006-03-02 コミッサリア ア レネルジー アトミーク Methods for attaching proteins to pyrrole-based polymers and their use to produce sensors
JP2016505391A (en) * 2012-10-27 2016-02-25 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method for producing a nanoporous layer on a substrate
JPWO2016043078A1 (en) * 2014-09-19 2017-08-31 国立大学法人 新潟大学 Substrate antigen simultaneous detection biosensor, electrode, substrate antigen simultaneous detection method, and program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2289339A (en) * 1994-05-12 1995-11-15 Cambridge Life Sciences Flow-through electrochemical immunoassay biosensor
GB2289339B (en) * 1994-05-12 1998-09-16 Cambridge Life Sciences Flow-through electrochemical biosensor
US6866821B2 (en) * 1996-03-29 2005-03-15 Byk Gulden Italia S.P.A. Automatic diagnostic apparatus
JP2006507497A (en) * 2002-11-21 2006-03-02 コミッサリア ア レネルジー アトミーク Methods for attaching proteins to pyrrole-based polymers and their use to produce sensors
JP2016505391A (en) * 2012-10-27 2016-02-25 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method for producing a nanoporous layer on a substrate
JPWO2016043078A1 (en) * 2014-09-19 2017-08-31 国立大学法人 新潟大学 Substrate antigen simultaneous detection biosensor, electrode, substrate antigen simultaneous detection method, and program

Similar Documents

Publication Publication Date Title
US4839017A (en) Potential-causing membrane for immunosensor
Cosnier Affinity biosensors based on electropolymerized films
Muramatsu et al. Piezoelectric immuno sensor for the detection of Candida albicans microbes
US9846137B2 (en) Sensors for the detection of analytes
Ali et al. A fast and sensitive potentiometric glucose microsensor based on glucose oxidase coated ZnO nanowires grown on a thin silver wire
AU740236B2 (en) Molecular wire injection sensors
US20090181441A1 (en) Porous silicon-polymer composites for biosensor applications
US20040157319A1 (en) Molecular wire injection sensors
Li et al. Ionic‐Liquid‐Doped Polyaniline Inverse Opals: Preparation, Characterization, and Application for the Electrochemical Impedance Immunoassay of Hepatitis B Surface Antigen
Ali et al. Functionalised zinc oxide nanotube arrays as electrochemical sensors for the selective determination of glucose
JP2005501254A (en) Method for manufacturing a highly sensitive potentiometric sensor
WO2022262014A1 (en) Three-dimensional hydrogel-graphene-based biosensor and preparation method therefor
CA1241057A (en) Potential-causing element for immunosensor
Dabrowski et al. Surface enhancement of a molecularly imprinted polymer film using sacrificial silica beads for increasing L-arabitol chemosensor sensitivity and detectability
JPH02110363A (en) Working electrode for immunity sensor and manufacture thereof
Palmqvist et al. Development of a simple detector for microbial metabolism, based on a polypyrrole dc resistometric device
Singh et al. Biosensors development based on potential target of conducting polymers
Ouerghi et al. Electrodeposited biotinylated polypyrrole as an immobilization method for impedimetric immunosensors
Ramanaviciene et al. Molecularly imprinted polypyrrole for sensor design
CN110243909B (en) Fixed connection type self-plasticizing polymer film lead ion selective electrode based on multi-wall carbon nano tube
JP5403520B2 (en) Electrospun fiber mat composite and glucose sensor
RU2032908C1 (en) Device for determination of biologically active compounds in biological fluids and process of manufacture of sensitive element
Hosseini et al. Fabrication of molecularly imprinted polymer coated carbon nanotubes modified gold electrode for determination of cholesterol
JPS63222256A (en) Immobilization of biofunctional substance and electrode using the same
Onoda et al. Detection of environmental pollutants with oxidoreductases