JPH02109542A - Method for decreasing influence of eddy current by magnetic field gradient of mri - Google Patents

Method for decreasing influence of eddy current by magnetic field gradient of mri

Info

Publication number
JPH02109542A
JPH02109542A JP63261848A JP26184888A JPH02109542A JP H02109542 A JPH02109542 A JP H02109542A JP 63261848 A JP63261848 A JP 63261848A JP 26184888 A JP26184888 A JP 26184888A JP H02109542 A JPH02109542 A JP H02109542A
Authority
JP
Japan
Prior art keywords
gradient
magnetic field
slice
impressed
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63261848A
Other languages
Japanese (ja)
Inventor
Kazuya Hoshino
星野 和哉
Nobuyuki Miura
信幸 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Healthcare Japan Corp
Original Assignee
Yokogawa Medical Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Medical Systems Ltd filed Critical Yokogawa Medical Systems Ltd
Priority to JP63261848A priority Critical patent/JPH02109542A/en
Publication of JPH02109542A publication Critical patent/JPH02109542A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To decrease the influence of eddy current by a magnetic field gradient by means of scan sequence with which the eddy current component of a long time constant hardly remains by adopting the pulse sequence in which the gradient magnetic fields to be impressed to a slice axis and a lead axis are so inverted as to be the same in positive and negative numbers while the same codes are obtd. at every view with respect to the same slice to operate the gradient magnetic fields. CONSTITUTION:The pulse sequence by an even number of sheets of multislices indicates only the magnetic field gradient pulses to be applied to the RF axis, the x axis and the z axis. The slide gradient impressed by inverting the code from the code of the slice gradient 2 impressed by inverting the code to the slide gradient 2 impressed to the 1st slice in the 2nd slice is 22 and the rephase gradient impressed by inverting the code to the rephase gradient 2' in the 2nd slice is 22'. Similarly, the dephase gradient impressed by inverting the code to the dephase gradient 3 is 23 and the lead gradient impressed by inverting the code to the lead gradient 7 is 27. The positive gradient magnetic field is impressed at the time of the odd slide and the negative gradient magnetic field at the time of the even slice in such a manner.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はMRIの勾配磁場の切り替え時に発生する磁界
勾配による渦電流の影響を低減する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for reducing the influence of eddy currents due to magnetic field gradients generated when switching gradient magnetic fields in MRI.

(従来の技術) 原子核を静磁場中におくと、原子核は磁界の強さと原子
核の種類によって異なる定数に比例した角速度で歳差運
動をする。この静磁場に垂直な軸に前記の周波数の高周
波回転磁場を印加すると磁気共鳴が起こり、前記定数を
有する特定の原子核の集団は共鳴条件を満足する高周波
磁場によって準位間の遷移を生じ、エネルギー準位の高
い方の準位に遷移する。共鳴後高い準位に励起された原
子核は低い準位に戻ってエネルギーの放射を行う。
(Prior art) When an atomic nucleus is placed in a static magnetic field, it precesses at an angular velocity proportional to a constant that varies depending on the strength of the magnetic field and the type of nucleus. Magnetic resonance occurs when a high-frequency rotating magnetic field of the above-mentioned frequency is applied to an axis perpendicular to this static magnetic field, and a group of specific atomic nuclei having the above-mentioned constant undergoes a transition between levels due to the high-frequency magnetic field that satisfies the resonance condition, resulting in energy Transition to the higher level. After resonance, the atomic nucleus excited to a higher level returns to a lower level and radiates energy.

核磁気共鳴画像診断装置(以下MRIという)はこの特
定の原子核による核磁気共鳴(以下NMRという)現象
を観察して被検体の断層を撮像する装置である。
A nuclear magnetic resonance imaging apparatus (hereinafter referred to as MRI) is an apparatus that observes the nuclear magnetic resonance (hereinafter referred to as NMR) phenomenon caused by this specific atomic nucleus and images a tomographic image of a subject.

MRIにおいてフーリエ変換法に用いる高周波磁場及び
勾配磁場印加のパルスシーケンスを第3図に示す。(イ
)図において、X+  y+Z軸にそれぞれGx、Gy
、Gzの勾配磁場を与え、高周波磁場をX軸に印加する
状態を示している。(ロ)図はそれぞれの磁場を印加す
るタイミングを示す図である。期間1において、励起パ
ルス1とスライス勾配2によりz−0を中心とするZ方
向に垂直なスライス面内のスピンが選択的に励起される
FIG. 3 shows a pulse sequence for applying a high frequency magnetic field and a gradient magnetic field used in the Fourier transform method in MRI. (a) In the figure, Gx and Gy are on the X+y+Z axes, respectively.
, Gz, and a high frequency magnetic field is applied to the X axis. (b) The figure shows the timing of applying each magnetic field. In period 1, spins in a slice plane centered at z-0 and perpendicular to the Z direction are selectively excited by excitation pulse 1 and slice gradient 2.

期間2のリフェーズ勾配2′はスライス勾配2により乱
れたスピンの位相を元に戻すためのものである。同じ期
間2のデイフェーズ勾配3はスピンの位相を乱れさせて
反転パルス4で反転させるためのものである。期間2で
は更にy方向の位置に比例してスピンの位相をずらせて
やるためのワープ勾配5を印加しており、ワーブ勾配5
は毎周期その強度を変えて印加されている。その後反転
パルス4を与えて磁気モーメントを揃え、その後に現れ
るSE信号6を観察する。7は乱れた位相を揃え、SE
信号6を生じさせるためのリード勾配で、デイフェーズ
勾配3の面積と等しくなったところにSE信号6が現れ
る。励起パルス1の後にFID信号8が現れ、信号とし
て用いることができるが、直ぐ減衰してしまうので、S
N比の点から得策とはいえない。このシーケンスをビュ
ーといい、パルス繰り返し周期TR後に再び励起パルス
1を加えて、次のビューを開始する。
The rephase gradient 2' in the period 2 is for restoring the phase of the spins disturbed by the slice gradient 2. The day phase gradient 3 in the same period 2 is for disturbing the phase of the spins and inverting them with the inversion pulse 4. In period 2, a warp gradient 5 is applied to further shift the phase of the spin in proportion to the position in the y direction, and the warp gradient 5
is applied with varying intensity every cycle. Thereafter, an inversion pulse 4 is applied to align the magnetic moments, and the SE signal 6 that appears thereafter is observed. 7 aligns the disturbed phase and SE
The SE signal 6 appears at the lead slope for generating the signal 6, which is equal to the area of the day phase slope 3. FID signal 8 appears after excitation pulse 1 and can be used as a signal, but it attenuates quickly, so S
This is not a good idea in terms of N ratio. This sequence is called a view, and after the pulse repetition period TR, excitation pulse 1 is applied again to start the next view.

このように印加される磁場勾配の波形はステップ波形を
しており、勾配磁場の切り替え時にマグネットの高伝導
材に渦電流が発生し、この渦電流により勾配磁場が打ち
消されて弱くなり、NMR画像の画質の劣化が避けられ
ないという問題が起きている。
The waveform of the magnetic field gradient applied in this way has a step waveform, and when the gradient magnetic field is switched, an eddy current is generated in the highly conductive material of the magnet, and the gradient magnetic field is canceled by this eddy current and weakened, resulting in an NMR image. A problem has arisen in which image quality deterioration is unavoidable.

上記の渦電流の影響を低減させる方法として、従来、ス
テップ勾配を印加した後のFED信号8の位相を測定し
、渦電流による残留磁場を計算してこれを複数の指数関
数に分解し、この値を用いて、予め渦電流分を考慮した
勾配を発生させ、渦電流の補正を行っていた。この従来
の方法を第4図に示す。図において、(イ)図は補正を
行わない場合の図で、(ロ)図は補正を行った場合の図
である。(イ)図においては、勾配出力10に渦電流1
1が重畳した場合の勾配磁場12の波形を示しており、
渦電流11により勾配磁場12は歪みを受けている。(
ロ)図は、勾配出力10の波形を予め補正した勾配出力
10′に渦電流11が加わって、補正された勾配磁場1
2′を出力している状態を示している。
Conventionally, as a method to reduce the influence of the above eddy current, the phase of the FED signal 8 after applying a step gradient is measured, the residual magnetic field due to the eddy current is calculated, and this is decomposed into multiple exponential functions. Using this value, a gradient was generated in advance that took the eddy current component into account, and the eddy current was corrected. This conventional method is shown in FIG. In the figures, (a) is a diagram without correction, and (b) is a diagram with correction. (a) In the figure, eddy current 1 is applied to gradient output 10.
It shows the waveform of the gradient magnetic field 12 when 1 is superimposed,
The gradient magnetic field 12 is distorted by the eddy currents 11 . (
b) The figure shows a gradient magnetic field 1 which is obtained by adding an eddy current 11 to a gradient output 10' whose waveform has been corrected in advance.
2' is output.

(発明が解決しようとする課題) ところで、上記のような補正方法には次のような問題が
ある。
(Problems to be Solved by the Invention) However, the above correction method has the following problems.

(+)場所依存性 渦電流は場所により発生が異なるのでマグネット内で完
全に補正することはできない。
(+) Location-dependent eddy currents occur differently depending on location, so they cannot be completely corrected within the magnet.

(if)長時定数測定の困難性 長時定数測定には非常に長い繰り返し時間が必要となる
(if) Difficulty in measuring long time constants Measuring long time constants requires a very long repetition time.

この対策として勾配コイルを2重にして内側のコイルの
磁場に対し外側のコイルの磁場を逆向きに印加するシー
ルド勾配磁場法が考えられるが、 (1)コストが高い。
As a countermeasure to this problem, a shield gradient magnetic field method can be considered in which the gradient coils are doubled and the magnetic field of the outer coil is applied in the opposite direction to the magnetic field of the inner coil, but (1) it is expensive.

(2)パワーの制限2発熱、騒音など小径マグネットへ
の適用が難しい。
(2) Power limitations 2 Difficult to apply to small diameter magnets due to heat generation and noise.

という問題がある。マルチスライス又はショートTRの
場合には繰り返し周期TR内に勾配が数多く発生するた
め、長時定数の成分の場合、第5図に示すように残留磁
場が次の勾配磁場印加迄尾を引いて蓄積されるとことに
なり画質の劣化につながる。第5図において、第3図と
同等の部分には同一の符号を付しである。図中13はリ
ード勾配7によって渦電流を完全に消去し切れないで残
った残り渦電流である。このように消去し切れない残り
渦電流13は蓄積されてスライス軸の残留勾配は、画像
の位置ずれ、リード軸の残留勾配は画像の伸縮に代表さ
れる画質の劣化を招く。
There is a problem. In the case of multi-slice or short TR, many gradients occur within the repetition period TR, so in the case of a long time constant component, the residual magnetic field lingers and accumulates until the next gradient magnetic field is applied, as shown in Figure 5. If this happens, the image quality will deteriorate. In FIG. 5, parts equivalent to those in FIG. 3 are given the same reference numerals. In the figure, reference numeral 13 indicates residual eddy current that remains after the eddy current has not been completely eliminated by the lead gradient 7. The remaining eddy currents 13 that cannot be completely erased are accumulated, and the residual gradient of the slice axis causes image positional deviation, and the residual gradient of the lead axis causes deterioration in image quality, typified by expansion and contraction of the image.

本発明は上記の点に鑑みてなされたもので、その目的は
、長時定数の渦電流成分の残留しにくいスキャンシーケ
ンスにより磁場勾配による渦電流の影響を低減する方法
を実現することにある。
The present invention has been made in view of the above points, and its purpose is to realize a method of reducing the influence of eddy currents due to magnetic field gradients by using a scan sequence in which eddy current components with long time constants are less likely to remain.

(課題を解決するための手段) 前記の課題を解決する本発明は、MRIの勾配磁場の切
り替え時に発生する磁界勾配による渦電流の影響を低減
する方法において、スライス軸とリード軸に印加する勾
配磁場を同一スライスに関しては毎ビュー同符号とする
ようにしながら正負同数にするよう交互に反転したパル
スシーケンスにより動作させることを特徴とするもので
ある。
(Means for Solving the Problems) The present invention solves the above-mentioned problems in a method for reducing the influence of eddy currents due to magnetic field gradients generated when switching gradient magnetic fields in MRI. This method is characterized in that the magnetic field is operated by a pulse sequence that is alternately reversed so that the magnetic field has the same sign for each view and has the same number of positive and negative values for the same slice.

(作用) スライス軸とリード軸に印加する磁場勾配を正負同数だ
け印加するように符号を反転させ、残り渦電流を互いに
打ち消させて低減させる。
(Function) The signs of the magnetic field gradients applied to the slice axis and the read axis are reversed so that the same number of positive and negative magnetic field gradients are applied, and the remaining eddy currents are canceled out and reduced.

(実施例) 以下、図面を参照して本発明の実施例を詳細に説明する
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の方法の一実施例のパルスシーケンスの
図である。図は偶数枚のマルチスライスによるパルスシ
ーケンスを示し、RF軸、X軸。
FIG. 1 is a diagram of a pulse sequence of one embodiment of the method of the invention. The figure shows a pulse sequence with an even number of multi-slices, RF axis, X axis.

Z軸に与える磁場勾配パルスのみを記しである。Only the magnetic field gradient pulse applied to the Z-axis is shown.

図において、第3図と同等な部分には同一の符号を付し
である。図中、22は第2スライスにおいて第1スライ
スに印加したスライス勾配2に対して符号を反転させて
印加したスライス勾配。
In the figure, parts equivalent to those in FIG. 3 are given the same reference numerals. In the figure, 22 is a slice gradient applied in the second slice with the sign reversed from the slice gradient 2 applied to the first slice.

22′ は第2スライスにおいてリフェーズ勾配2′に
対して符号を反転して印加したリフェーズ勾配である。
22' is a rephasing gradient applied in the second slice with the sign reversed with respect to the rephasing gradient 2'.

又、同様に23はデイフェーズ勾配3に対して符号を反
転して印加したデイフェーズ勾配で、27はリード勾配
7に対して符号を反転して印加したリード勾配である。
Similarly, 23 is a day phase gradient applied with the sign reversed to the day phase gradient 3, and 27 is a read gradient applied with the sign reversed to the lead gradient 7.

このように奇数スライスのときに正の勾配磁場を、偶数
スライスのときに負の勾配磁場を印加した場合の残り渦
電流に対する影響は第2図のようになる。図において、
第1図、第4図と同等の部分には同一の符号を付しであ
る。(イ)図は第1図の実施例のパルスシーケンスのう
ちスライス軸における残り渦電流13の状態を示す図で
、第1スライスと第2スライスの場合を分り易くするた
めに上下に並べである。(ロ)図は従来の方法のパルス
シーケンスにおける残り渦電流13の状態を示す図であ
る。
In this way, when a positive gradient magnetic field is applied for odd-numbered slices and a negative gradient magnetic field is applied for even-numbered slices, the influence on the remaining eddy current is as shown in FIG. 2. In the figure,
Components equivalent to those in FIGS. 1 and 4 are given the same reference numerals. (A) The figure shows the state of the remaining eddy current 13 in the slice axis in the pulse sequence of the embodiment of FIG. . (B) is a diagram showing the state of the remaining eddy current 13 in the pulse sequence of the conventional method.

(ロ)図の従来の場合にはスライス勾配2は第1スライ
スと第2スライスの両方の場合において正なので、残り
渦電流13もどちらも正のため、シーケンスが進むにつ
れて残り渦電流13が累積されて増加するが、(イ)図
の実施例の方法の場合は、第1スライスと第2スライス
とでは残り渦電流13は正と負になっていて、シーケン
スが進んでも渦電流13は互いに打ち消しあって減少さ
れる。そのため次の勾配に重畳されることはない。
(b) In the conventional case shown in the figure, the slice gradient 2 is positive in both the first slice and the second slice, so the remaining eddy current 13 is also positive in both cases, so the remaining eddy current 13 accumulates as the sequence progresses. However, in the case of the method of the embodiment shown in FIG. They cancel each other out and decrease. Therefore, it is not superimposed on the next gradient.

第2図はスライス勾配のみについて説明したが、他のリ
フェーズ勾配2′、デイフェーズ勾配3゜リード勾配7
についても同様な動作をする。その際、同一スライス面
では、ビューによらず加える勾配の符号が一定となるよ
うにして、中心周波数にずれがある時にもアーティファ
クトが発生しないようにする。
In Fig. 2, only the slice gradient was explained, but other gradients such as rephase gradient 2', dayphase gradient 3°, lead gradient 7
The same behavior applies to . At this time, on the same slice plane, the sign of the applied gradient is made constant regardless of the view, so that artifacts do not occur even when there is a shift in the center frequency.

以上説明したように本実施例によれば、完全に補正しき
れなかった渦電流の影響を軽減することができるように
なる。
As described above, according to this embodiment, it is possible to reduce the influence of eddy currents that could not be completely corrected.

尚、本発明は上記実施例に限定されるものではない。本
実施例ではスライスの数を偶数の場合で説明したが、奇
数の場合、又はシングルスライスの場合でも差し支えな
い。その場合は各ビューの最終スライスの後に、ビュー
中において長い時定数成分を打ち消すような大きさのダ
ミー勾配を発生させて正勾配と負勾配の量を等しくシ、
偶数枚のマルチスライスと同様な効果を得るようにする
Note that the present invention is not limited to the above embodiments. In this embodiment, the case where the number of slices is an even number has been described, but there is no problem if the number of slices is an odd number or a single slice. In that case, after the last slice of each view, a dummy gradient is generated with a size that cancels out the long time constant component during the view, so that the amount of positive and negative gradients is equalized.
Achieve the same effect as an even number of multi-slices.

(発明の効果) 以上詳細に説明したように、長時定数の渦電流もリード
軸とスライス軸に加える勾配を、正勾配と負勾配の数が
等しくなるように交互に印加することにより渦電流の影
響を低減することができるようになり、実用上の効果は
大きい。
(Effects of the Invention) As explained in detail above, eddy currents with long time constants can also be generated by applying gradients to the lead axis and slice axis alternately so that the number of positive gradients and negative gradients are equal. This makes it possible to reduce the effects of this, which has a great practical effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法の実施例のパルスシーケンスの図
、第2図は実施例によって得られる残り渦電流に対する
影響の説明図、第3図はMRIのパルスシーケンスを示
す説明図、第4図は従来の渦電流による影響の補正の方
法の説明図、第5図は消去しきれない渦電流の蓄積の説
明図である。 1・・・励起パルス  2.22・・・スライス勾配2
.22’・・・リフェーズ勾配 3.23・・・デイフェーズ勾配 4・・・反転パルス  5・・・ワーブ勾配6・・・S
E倍信号  7.27・・・リード勾配8・・・FID
信号  10.10’・・・勾配出力11・・・渦電流
   12.12’・・・勾配磁場13・・・残り渦電
流 特許出願人 横河メディカルシステム株式会社劉へ2 図 (イ) 22’スライス勾配
FIG. 1 is a diagram of a pulse sequence of an embodiment of the method of the present invention, FIG. 2 is an explanatory diagram of the influence on residual eddy current obtained by the embodiment, FIG. 3 is an explanatory diagram of an MRI pulse sequence, and FIG. The figure is an explanatory diagram of a conventional method of correcting the influence of eddy currents, and FIG. 5 is an explanatory diagram of the accumulation of eddy currents that cannot be eliminated. 1...Excitation pulse 2.22...Slice gradient 2
.. 22'...Rephase gradient 3.23...Day phase gradient 4...Reverse pulse 5...Warb gradient 6...S
E times signal 7.27...Lead slope 8...FID
Signal 10.10'...Gradient output 11...Eddy current 12.12'...Gradient magnetic field 13...Remaining eddy current Patent applicant Yokogawa Medical Systems Co., Ltd. Liu 2 Figure (A) 22' slice gradient

Claims (1)

【特許請求の範囲】[Claims] MRIの勾配磁場の切り替え時に発生する磁界勾配によ
る渦電流の影響を低減する方法において、スライス軸と
リード軸に印加する勾配磁場を同一スライスに関しては
毎ビュー同符号とするようにしながら正負同数にするよ
う交互に反転したパルスシーケンスにより動作させるこ
とを特徴とするMRIの磁界勾配による渦電流の影響を
低減する方法。
In a method for reducing the influence of eddy currents caused by magnetic field gradients generated when switching gradient magnetic fields in MRI, the gradient magnetic fields applied to the slice axis and read axis are made to have the same sign and negative numbers for each view for the same slice. A method for reducing the effects of eddy currents due to magnetic field gradients in MRI, characterized in that the method operates with an alternately reversed pulse sequence.
JP63261848A 1988-10-18 1988-10-18 Method for decreasing influence of eddy current by magnetic field gradient of mri Pending JPH02109542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63261848A JPH02109542A (en) 1988-10-18 1988-10-18 Method for decreasing influence of eddy current by magnetic field gradient of mri

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63261848A JPH02109542A (en) 1988-10-18 1988-10-18 Method for decreasing influence of eddy current by magnetic field gradient of mri

Publications (1)

Publication Number Publication Date
JPH02109542A true JPH02109542A (en) 1990-04-23

Family

ID=17367587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63261848A Pending JPH02109542A (en) 1988-10-18 1988-10-18 Method for decreasing influence of eddy current by magnetic field gradient of mri

Country Status (1)

Country Link
JP (1) JPH02109542A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0752596A2 (en) * 1995-07-04 1997-01-08 Gec-Marconi Limited Magnetic resonance methods and apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0752596A2 (en) * 1995-07-04 1997-01-08 Gec-Marconi Limited Magnetic resonance methods and apparatus
EP0752596A3 (en) * 1995-07-04 1997-04-16 Marconi Gec Ltd Magnetic resonance methods and apparatus
US5675256A (en) * 1995-07-04 1997-10-07 Picker International, Inc. Magnetic resonance methods and apparatus

Similar Documents

Publication Publication Date Title
US5402067A (en) Apparatus and method for rare echo imaging using k-space spiral coverage
EP1089087B1 (en) Reduction of ghost artifacts due to a Maxwell term phase error caused by a data acquisition read gradient in MRI
EP0644437B1 (en) Correction of read-gradient polarity in EPI and GRASE MRI
Duerk et al. Theoretical aspects of motion sensitivity and compensation in echo‐planar imaging
US5541514A (en) Method for operating a magnetic resonance imaging apparatus
US6819104B2 (en) Systems and methods for improving quality of images generated by a medical imaging device
EP0177990B1 (en) Fast method and device for determining an nmr distribution in a region of a body
US4682110A (en) Method of reducing artefacts in images formed by means of fourier zeugmatography
EP0714034A1 (en) Magnetic resonance methods and apparatus
US6359436B1 (en) Selective excitation method and apparatus utilizing non-linear error in a gradient for magnetic resonance imaging
EP0955556B1 (en) Ghost artifact reduction in fact spin echo MRI sequences
JPH07155309A (en) Magnetic resonance imaging system
WO1995017850A1 (en) Grase mri with read gradient polarity correction and t2 measurement
US4706023A (en) Method of reducing artefacts in images formed by means of Fourier zeugmatography
US5089784A (en) Method for restricting region for magnetic resonance imaging
US5109197A (en) Nuclear magnetic resonance multi-echo imaging method and apparatus
US6882150B2 (en) Diffusion weighted multiple spin echo (rare) sequence with periodically amplitude-modulated crusher gradients
US6075362A (en) Dual contrast fast spin echo with alternating phase-encode
JPH02109542A (en) Method for decreasing influence of eddy current by magnetic field gradient of mri
JP4319035B2 (en) Magnetic resonance imaging system
US6175236B1 (en) Method for acquiring spatially and spectrally selective MR images
JP3868754B2 (en) Magnetic resonance imaging system
JP2950165B2 (en) Nuclear magnetic resonance imaging equipment
JP2616358B2 (en) MR imaging device
JP3770562B2 (en) Magnetic resonance imaging system