JPH02109500A - Frequency characteristic measuring instrument for speaker - Google Patents

Frequency characteristic measuring instrument for speaker

Info

Publication number
JPH02109500A
JPH02109500A JP26262988A JP26262988A JPH02109500A JP H02109500 A JPH02109500 A JP H02109500A JP 26262988 A JP26262988 A JP 26262988A JP 26262988 A JP26262988 A JP 26262988A JP H02109500 A JPH02109500 A JP H02109500A
Authority
JP
Japan
Prior art keywords
spectrum
speaker
signal
fourier transform
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26262988A
Other languages
Japanese (ja)
Inventor
Yozo Takahashi
高橋 洋三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onkyo Corp
Original Assignee
Onkyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onkyo Corp filed Critical Onkyo Corp
Priority to JP26262988A priority Critical patent/JPH02109500A/en
Publication of JPH02109500A publication Critical patent/JPH02109500A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To measure a large input quickly by applying inverse Fourier transform to an object spectrum required for the measurement, giving a time function signal to a speaker, applying Fourier transform to an electric signal from a microphone so as to obtain a response spectrum. CONSTITUTION:An object spectrum generating means 2 generates a spectrum required for the measurement such as a spectrum whose low frequency is cut off. The object spectrum is received by an inverse Fourier transform means 4, which generates a time function signal having the object spectrum. In this case, the time function is given to the speaker 6. The output sound from the speaker 6 is converted into an electric signal by a microphone 8. A Fourier transform means 10 analyzes the electric signal into the frequency spectrum and an output means 12 displays it. Thus, the measurement is implemented quickly to measure a large input.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、スピーカの周波数特性を測定する装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device for measuring the frequency characteristics of a speaker.

[従来の技術] スピーカの周波数特性を測定する場合、従来は、ビート
フレケンシーオシレータの出力をスピーカに与え、スピ
ーカの出力音をマイクで拾って、レベルレコーダで記録
していた。すなわち、ビーi・フレケンシーオシレータ
の発振周波数を変化させて測定を行うものである。
[Prior Art] Conventionally, when measuring the frequency characteristics of a speaker, the output of a beat frequency oscillator is given to the speaker, the output sound of the speaker is picked up by a microphone, and the sound is recorded by a level recorder. That is, the measurement is performed by changing the oscillation frequency of the B-i frequency oscillator.

[発明が解決しようとする課題] しかしながら、このような従来の測定では、レベルレコ
ーダの速度が遅いため、オシレータの発振周波数もそれ
に合わせて、遅く変化させなければならなかった。この
ため、信号を与えている時間が長くなり、大入力の測定
においては、スピーカコイルが焼切れてしまう等の問題
点があった。
[Problems to be Solved by the Invention] However, in such conventional measurements, since the speed of the level recorder is slow, the oscillation frequency of the oscillator must be changed slowly accordingly. For this reason, the time during which the signal is applied becomes long, and when measuring a large input, there are problems such as the speaker coil being burnt out.

このことは、特に、高域用スピーカ(トイター)におい
て顕著であり、トイターでは、IOW以上の人力を与え
て測定を行うことは極めて困難であった。
This is particularly noticeable in high-frequency speakers (toitors), and it is extremely difficult to perform measurements using more than IOW of human power with toitors.

この発明は、上記の問題を解決して、大入力の測定を迅
速に行うことのできる周波数特性測定装置を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and provide a frequency characteristic measuring device that can quickly measure large inputs.

[課題を解決するための手段] 請求項1に係る測定装置の全体構成を第1図に示す。こ
の測定装置は、目的スペクトル発生手段2、目的スペク
トルを有する時間関数信号を発生する逆フーリエ変換手
段4、スピーカ6、スピーカ6からの出力音を電気信号
に変換するマイク8、電気信号を周波数スペクトルに分
析し応答スペクトルを得るフーリエ変換手段10.応答
スペクトルを表示する出力手段12を備えている。
[Means for Solving the Problems] The overall configuration of a measuring device according to a first aspect of the present invention is shown in FIG. This measuring device includes a target spectrum generating means 2, an inverse Fourier transform means 4 that generates a time function signal having a target spectrum, a speaker 6, a microphone 8 that converts the output sound from the speaker 6 into an electrical signal, and a frequency spectrum of the electrical signal. 10. Fourier transform means for analyzing and obtaining a response spectrum. It is equipped with an output means 12 for displaying the response spectrum.

請求項2に係る測定装置の全体構成を第2図に示す。こ
の測定装置は、周波数掃引信号を発生する信号発生手段
50.所定の周波数帯域を通過させないフィルタ手段5
2、フィルタ手段52の出力を受けるスピーカ6、スピ
ーカ6からの出力音を電気信号に変換するマイク8、電
気信号を周波数スペクトルに分析し応答スペクトルを得
るフーリエ変換手段10、応答スペクトルを表示する出
力手段12を備えている。
FIG. 2 shows the overall configuration of a measuring device according to a second aspect of the present invention. This measuring device includes signal generating means 50 for generating a frequency sweep signal. Filter means 5 that does not pass a predetermined frequency band
2. A speaker 6 that receives the output of the filter means 52, a microphone 8 that converts the output sound from the speaker 6 into an electrical signal, a Fourier transform means 10 that analyzes the electrical signal into a frequency spectrum and obtains a response spectrum, and an output that displays the response spectrum. Means 12 are provided.

[作用コ 第1図において、目的スペクトル発生手段2により、測
定に必要とするスペクトル、例えば、低域がカットされ
たスペクトルが発生される。この目的スペクトルを受け
て、逆フーリエ変換手段4は、目的スペクトルを有する
時間関数信号を発生する。この時間関数信号は、スピー
カ6に与えられる。スピーカ6からの出力音は、マイク
8によって電気信号に変換される。フーリエ変換手段l
Oは、この電気信号を周波数スペクトルに分析し、出力
手段12はそれを表示する。
[Operation] In FIG. 1, the target spectrum generating means 2 generates a spectrum necessary for measurement, for example, a spectrum with the low frequency cut off. In response to this target spectrum, the inverse Fourier transform means 4 generates a time function signal having the target spectrum. This time function signal is given to the speaker 6. The sound output from the speaker 6 is converted into an electrical signal by the microphone 8. Fourier transform means
O analyzes this electrical signal into a frequency spectrum, and output means 12 displays it.

また、第2図において、信号発生手段50は、周波数掃
引した信号を発生する。フィルタ手段52は、信号発生
手段50からの出力を受けて、所定の周波数帯域の成分
(たとえば、低周波域)を通過させないものである。
Further, in FIG. 2, the signal generating means 50 generates a frequency swept signal. The filter means 52 receives the output from the signal generation means 50 and does not allow components in a predetermined frequency band (eg, low frequency range) to pass through.

[実施例] 第3図に、この発明の一実施例による測定装置のハード
ウェア構成を示す。CPU22は、ROM20に格納さ
れたプログラムに従い、演算を行うと共に、各機器を制
御する。ROM20に記憶されたプログラムを、第4図
にフローチャートで示す。
[Embodiment] FIG. 3 shows the hardware configuration of a measuring device according to an embodiment of the present invention. The CPU 22 performs calculations and controls each device according to a program stored in the ROM 20. The program stored in the ROM 20 is shown in a flowchart in FIG.

まず、ステップS、において、スピーカ6に与える測定
最大入力MAXを、キーボード42がら入力する。次に
、ステップS、において、測定レンジを入力する。この
実施例においては、■2000Hz〜20KH25■2
0Hz 〜20KHz、■20Hz 〜20KHzの3
つの測定レンジt−用意している。選択された測定レン
ジ、すなわち目標スペクトルが、CRT32に表示され
る(ステップS、)。CPU22は、逆フーリエ変換を
行い、この目標スペクトルを有する信号波形を演算する
。この実施例では、正弦波の信号波形を演算するように
している。CPU22は、この信号波形の演算を、ディ
ジタルデータの形式で演算し、RAM24に記憶する。
First, in step S, the maximum measurement input MAX to be applied to the speaker 6 is input using the keyboard 42. Next, in step S, a measurement range is input. In this example, ■2000Hz~20KH25■2
3 of 0Hz ~ 20KHz, ■20Hz ~ 20KHz
Two measurement ranges are available. The selected measurement range, ie, the target spectrum, is displayed on the CRT 32 (step S). The CPU 22 performs inverse Fourier transform and calculates a signal waveform having this target spectrum. In this embodiment, a sine wave signal waveform is calculated. The CPU 22 calculates this signal waveform in the form of digital data and stores it in the RAM 24.

この実施例では、1024ポイントのデータを記憶する
ようにしている。
In this embodiment, 1024 points of data are stored.

次に、この波形データに基づき、仮測定を行う(ステッ
プSS)。仮測定は、フーリエ変換手段である高速フー
リエ変換器38の、アッテネータレベルを決めるために
行うものである。仮測定は、IWのレベルにて行う。
Next, provisional measurements are performed based on this waveform data (step SS). The provisional measurement is performed to determine the attenuator level of the fast Fourier transformer 38, which is the Fourier transform means. Temporary measurements are made at the IW level.

仮測定の後、本測定を行う。RAM24に記憶されてい
るディジタル波形データが、D/A変換器26において
、アナログ波形に変換される。この出力波形は、アンプ
28を介して、スピーカ6に与えられる。まず、最初は
、ステップS、において入力された測定最大入力MAX
がスピーカ6に与えられるように、アンプ28のゲイン
がCPU22により調整される。
After the preliminary measurement, perform the actual measurement. Digital waveform data stored in RAM 24 is converted into an analog waveform in D/A converter 26. This output waveform is given to the speaker 6 via the amplifier 28. First, the measurement maximum input MAX input in step S
The gain of the amplifier 28 is adjusted by the CPU 22 so that the signal is given to the speaker 6.

スピーカ6からの出力音は、マイク8、マイクアンプ3
4を介して、A/D変換器36に与えられて、ディジタ
ル信号に変換される。このディジタル信号は、FFT3
8においてアナライズされ、応答スペクトルが演算され
る。CPU22は、この応答スペクトルを出力手段であ
るCRT32に表示させる(ステップSt)。
The output sound from speaker 6 is from microphone 8 and microphone amplifier 3.
4 to an A/D converter 36, where it is converted into a digital signal. This digital signal is processed by FFT3
8, the response spectrum is calculated. The CPU 22 causes the CRT 32, which is an output means, to display this response spectrum (step St).

次に、レベルを3dBづつ下げて、同様の測定を8回行
う。
Next, lower the level by 3 dB and repeat the same measurement eight times.

最後に、各レベルにおける、応答スペクトルを出力手段
であるプリンタ30から出力する。2000Hz〜20
KHzにおける測定結果を、第5図に示す。
Finally, the response spectrum at each level is output from the printer 30, which is an output means. 2000Hz~20
The measurement results at KHz are shown in FIG.

この実施例においては、 2000Hz〜20KHzの
測定で20m5.200Hz 〜20KHzの測定で2
00m5.20Hz 〜20KHzの測定で2000m
5で行うことができる。したがって、100W以上の入
力による周波数特性も測定可能である。
In this example, 20m for measurements from 2000Hz to 20KHz.20m for measurements from 200Hz to 20KHz.
00m5.2000m with measurement of 20Hz ~ 20KHz
It can be done in 5. Therefore, it is also possible to measure frequency characteristics with an input of 100 W or more.

なお、他の実施例においては、20Hz〜20KHzの
周波数成分を有するスエブトサイン波(Swept s
in wave)を、RAM24にディジタルデータと
して記憶しておき、CPU22の演算によって、20〜
200Hzまたは20〜2000Hzの周波数成分を取
除くようにしてもよい。
Note that in other embodiments, a swept sine wave (Swept sine wave) having a frequency component of 20 Hz to 20 KHz is used.
in wave) is stored in the RAM 24 as digital data, and the CPU 22 calculates the
Frequency components of 200 Hz or 20 to 2000 Hz may be removed.

また、上記の実施例では、第1図、第2図に示す機能を
、マイクロプロセッサを用いてソフトウェアにより実現
したが、論理回路等のハードウェアのみによって構成し
てもよい。
Furthermore, in the embodiments described above, the functions shown in FIGS. 1 and 2 are realized by software using a microprocessor, but they may also be implemented only by hardware such as logic circuits.

[発明の効果] 請求項1、請求項2に係る測定装置は、フーリエ変換手
段により応答スペクトルを得るようにしているので、従
来の装置より測定を迅速に行うことができる。したがっ
て、大入力の測定が可能な、測定装置を提供することが
できる。
[Effects of the Invention] The measuring apparatus according to claims 1 and 2 obtains a response spectrum using a Fourier transform means, and therefore can perform measurements more quickly than conventional apparatuses. Therefore, a measuring device capable of measuring large inputs can be provided.

また、目的スペクトルもしくはフィルタ手段により、帯
域制限を掛けているので、不要なスペクトル成分がスピ
ーカに与えられることがなく、正確な測定を行うことが
できる。
Further, since the band is limited by the target spectrum or the filter means, unnecessary spectral components are not applied to the speaker, and accurate measurement can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は請求項1に係る測定装置の全体構成を示す図、
第2図は請求項2に係る測定装置の全体構成を示す図、
第3図は一実施例による測定装置のハードウェア構成を
示す図、第4図はROM20に記憶されたプログラムの
フローチャート、第5図は測定した応答スペクトルを示
す図である。 2・・・目的スペクトル発生手段 4・・・逆フーリエ変換手段 6・・・スピーカ 8・・・マイク 10・・・フーリエ変換手段 12・・・出力手段 50・・・信号発生手段 52・・・フィルタ手段 第1図 Z 菓 図 第2 図 第 図
FIG. 1 is a diagram showing the overall configuration of a measuring device according to claim 1,
FIG. 2 is a diagram showing the overall configuration of a measuring device according to claim 2,
FIG. 3 is a diagram showing the hardware configuration of a measuring device according to an embodiment, FIG. 4 is a flowchart of a program stored in the ROM 20, and FIG. 5 is a diagram showing a measured response spectrum. 2...Objective spectrum generating means 4...Inverse Fourier transform means 6...Speaker 8...Microphone 10...Fourier transform means 12...Output means 50...Signal generating means 52... Filter means Fig. 1 Z Filter means Fig. 2 Fig.

Claims (2)

【特許請求の範囲】[Claims] (1)測定に必要とする目的スペクトルを発生する目的
スペクトル発生手段、 目的スペクトルに基づき、目的スペクトルを有する時間
関数信号を発生し、スピーカに与える逆フーリエ変換手
段、 スピーカからの出力音を電気信号に変換するマイク、 電気信号を周波数スペクトルに分析し、応答スペクトル
を得るフーリエ変換手段、 応答スペクトルを表示する出力手段、 を備えたことを特徴とする周波数特性測定装置。
(1) Target spectrum generating means for generating the target spectrum required for measurement; Inverse Fourier transform means for generating a time function signal having the target spectrum based on the target spectrum and applying it to the speaker; and converting the output sound from the speaker into an electrical signal. A frequency characteristic measuring device comprising: a microphone that converts an electrical signal into a frequency spectrum; a Fourier transform means that analyzes an electrical signal into a frequency spectrum and obtains a response spectrum; and an output means that displays a response spectrum.
(2)周波数掃引信号を発生する信号発生手段、信号発
生手段の出力に接続され、所定の周波数帯域を通過させ
ないフィルタ手段、 フィルタ手段の出力を受けるスピーカ、 スピーカからの出力音を電気信号に変換するマイク、 電気信号を周波数スペクトルに分析し、応答スペクトル
を得るフーリエ変換手段、 応答スペクトルを表示する出力手段、 を備えたことを特徴とする周波数特性測定装置。
(2) Signal generation means that generates a frequency sweep signal, filter means that is connected to the output of the signal generation means and does not allow a predetermined frequency band to pass through, a speaker that receives the output of the filter means, and converts the output sound from the speaker into an electrical signal. A frequency characteristic measuring device characterized by comprising: a microphone that analyzes an electrical signal into a frequency spectrum, a Fourier transform means for obtaining a response spectrum by analyzing the electric signal, and an output means for displaying the response spectrum.
JP26262988A 1988-10-18 1988-10-18 Frequency characteristic measuring instrument for speaker Pending JPH02109500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26262988A JPH02109500A (en) 1988-10-18 1988-10-18 Frequency characteristic measuring instrument for speaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26262988A JPH02109500A (en) 1988-10-18 1988-10-18 Frequency characteristic measuring instrument for speaker

Publications (1)

Publication Number Publication Date
JPH02109500A true JPH02109500A (en) 1990-04-23

Family

ID=17378449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26262988A Pending JPH02109500A (en) 1988-10-18 1988-10-18 Frequency characteristic measuring instrument for speaker

Country Status (1)

Country Link
JP (1) JPH02109500A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5555311A (en) * 1994-04-01 1996-09-10 Electronic Engineering And Manufacturing, Inc. Electro-acoustic system analyzer
CN104618846A (en) * 2015-02-12 2015-05-13 歌尔声学股份有限公司 Electronic product loudspeaker and microphone testing system and testing method
CN106937234A (en) * 2017-03-20 2017-07-07 上海与德科技有限公司 The method of testing and device of audio components

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410720A (en) * 1977-06-27 1979-01-26 Nippon Columbia Method of and device for measuring speaker characteristics
JPS5597800A (en) * 1979-01-20 1980-07-25 Matsushita Electric Ind Co Ltd Speaker characteristic measuring unit
JPS60146158A (en) * 1984-01-11 1985-08-01 Onkyo Corp Dynamic non-linear distortion measurement
JPS6150015A (en) * 1984-08-20 1986-03-12 Matsushita Electric Ind Co Ltd Sound-quality evaluating apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410720A (en) * 1977-06-27 1979-01-26 Nippon Columbia Method of and device for measuring speaker characteristics
JPS5597800A (en) * 1979-01-20 1980-07-25 Matsushita Electric Ind Co Ltd Speaker characteristic measuring unit
JPS60146158A (en) * 1984-01-11 1985-08-01 Onkyo Corp Dynamic non-linear distortion measurement
JPS6150015A (en) * 1984-08-20 1986-03-12 Matsushita Electric Ind Co Ltd Sound-quality evaluating apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5555311A (en) * 1994-04-01 1996-09-10 Electronic Engineering And Manufacturing, Inc. Electro-acoustic system analyzer
CN104618846A (en) * 2015-02-12 2015-05-13 歌尔声学股份有限公司 Electronic product loudspeaker and microphone testing system and testing method
CN106937234A (en) * 2017-03-20 2017-07-07 上海与德科技有限公司 The method of testing and device of audio components

Similar Documents

Publication Publication Date Title
US4346268A (en) Automatic audiological analyzer
CN105959892A (en) Method and system used for testing loudspeakers
US5902252A (en) Device and process for measuring acoustic reflectance
JPH02109500A (en) Frequency characteristic measuring instrument for speaker
US7831413B2 (en) Sound field measuring method and sound field measuring device
JP2001141764A (en) Signal analyzer
JPH05118906A (en) Method and device for acoustic measurement
JPH055760Y2 (en)
JP3277440B2 (en) Acoustic characteristics measurement device
KR100475739B1 (en) system for testing character of filter
JPH01151400A (en) Method and device for measuring harmonic distortion of speaker
JPH06110485A (en) Reverberation adding device
US5555311A (en) Electro-acoustic system analyzer
JPH1020020A (en) Delay unit for high frequency signal and ground test device for radio altimeter
US20240178799A1 (en) Amplifier
JPH02201273A (en) Device for measuring nonlinear element
JP3711971B2 (en) Musical sound effect parameter determination method, musical sound effect detection device, musical sound effect imparting device, and program
JPH0894690A (en) Servo analyzer
JPH0334700A (en) Tone quality evaluating device
JP2982419B2 (en) Design support equipment
JPH0763638A (en) Driving/controlling apparatus for oscillator
JP2001159560A (en) Laser doppler vibration meter
JPH06167981A (en) Musical sound synthesizing device
CN115792610A (en) Excitation system frequency response measurement system and method based on band-limited white noise excitation
JPS62149300A (en) Measuring method for power linearity of speaker