JPH02108981A - Automatic monitor device for gapless arrester - Google Patents

Automatic monitor device for gapless arrester

Info

Publication number
JPH02108981A
JPH02108981A JP63262238A JP26223888A JPH02108981A JP H02108981 A JPH02108981 A JP H02108981A JP 63262238 A JP63262238 A JP 63262238A JP 26223888 A JP26223888 A JP 26223888A JP H02108981 A JPH02108981 A JP H02108981A
Authority
JP
Japan
Prior art keywords
current
voltage
arrester
lightning arrester
power loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63262238A
Other languages
Japanese (ja)
Other versions
JP2661194B2 (en
Inventor
Yukiya Sakuraba
桜庭 幸哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP63262238A priority Critical patent/JP2661194B2/en
Publication of JPH02108981A publication Critical patent/JPH02108981A/en
Application granted granted Critical
Publication of JP2661194B2 publication Critical patent/JP2661194B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

PURPOSE:To monitor the deterioration and life of a lightning rod securely and automatically by deciding the deterioration, thermal stability, and processing energy of the lightning rod as to a leak current or power loss. CONSTITUTION:The arrester 2 is connected to a system bus 1 and its voltage is detected by a voltage detector 3; and the low-voltage side operation counter 4 of the arrester 2 detects the number of times of arrester operation as the number of times of the making of the contact and a current transformer 5 detects the current of the arrester 2. A measuring circuit 6 measures the leak current I or finds the power loss W of the arrester 2 from the detected current I from the current transformer 5 or the detected voltage V of the detector 3. Then the monitor device 7 detects whether or not there is the deterioration due to the current I when the output contact of the counter 4 is off and the voltage V is normal at the time of the measurement of the current I and also decides that the current I or loss W is caused by the voltage V if the voltage V is abnormal when the output contact is on. The decided current I or loss W is used to decide the stability and processing energy of the arrester 2.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、ギャップ無し避雷器の自動監視装置に関する
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to an automatic monitoring device for gapless surge arresters.

B1発明の概要 本発明は、避雷器の劣化、寿命を自動監視するにおいて
、 避雷器の漏れ電流又は電力損失について避雷動作の有無
及び系統母線電圧の正常異常の条件から劣化判定と熱安
定性判定と処理エネルギー判定を行うことにより、 避雷器の劣化、寿命を確実に監視し、しかもその程度監
視もできるようにしたものである。
B1 Summary of the Invention The present invention automatically monitors the deterioration and lifespan of a lightning arrester by determining deterioration and thermal stability of the leakage current or power loss of the lightning arrester based on the presence or absence of lightning protection operation and the normal/abnormal condition of the system bus voltage. By making energy judgments, it is possible to reliably monitor the deterioration and lifespan of lightning arresters, and also to monitor the extent of such deterioration.

C1従来の技術 酸化亜鉛を主成分とする非直線抵抗体を避雷素子とずろ
ギャップ無し避雷器は、避雷動作によるサージエネルギ
ー吸収や経年変化等によって劣化が進むと同じ課電圧に
も漏れ電流が増加し、電力損失の増大から熱不安定にな
って寿命に至る。
C1 Conventional technology A lightning arrester with a non-linear resistor mainly composed of zinc oxide and a no-gap lightning arrester will cause an increase in leakage current for the same applied voltage as it deteriorates due to surge energy absorption due to lightning protection operation or aging. , thermal instability occurs due to increased power loss, leading to the end of its life.

この避雷器の熱バランスは第3図に示ケようになり、放
熱特性Aは避雷素子を収納ずろ碍管等の構造から決まり
、周囲温度の上昇に対して放熱量が飽和してくる。一方
、発熱特性Bは避雷素子の発熱性能になり、周囲温度の
上昇に対して発熱量が指数関数的に上昇してくる。そし
て、発熱特性Bは素子の劣化が進むにつれて特性B′の
ように発熱量が増大してくる。この発熱特性Bが放熱特
性Aよりも低い範囲にあれば熱的に安定しており、避雷
器の寿命は規定のサージエネルギーを吸収するb熱的に
安定に保たれるものと言える。
The heat balance of this lightning arrester is as shown in FIG. 3, and the heat dissipation characteristic A is determined by the structure of the insulator tube that houses the lightning arrester, and the amount of heat dissipation becomes saturated as the ambient temperature rises. On the other hand, the heat generation characteristic B is the heat generation performance of the lightning arrester element, and the amount of heat generated increases exponentially as the ambient temperature rises. In heat generation characteristic B, as the deterioration of the element progresses, the amount of heat generated increases as shown in characteristic B'. If this heat generation characteristic B is in a lower range than the heat radiation characteristic A, it is thermally stable, and it can be said that the lifetime of the lightning arrester is maintained thermally stable as long as it absorbs the specified surge energy.

従来、避雷器の自動監視装置としては、サージエネルギ
ーの吸収による避雷動作回数の記録、電流記録計による
放電電流値の記録、漏れ電流測定を行う方法が知られて
いる。
Conventionally, as automatic lightning arrester monitoring devices, methods are known that record the number of lightning arrester operations by absorbing surge energy, record discharge current values with a current recorder, and measure leakage current.

D0発明が解決しようとする課題 従来の自動監視装置において、動作回数の記録による劣
化、寿命の判定は、動作回数と動作時刻のオンライン監
視はできるが、サージの大きさが判らないためサージ回
数と寿命の相関性がとれず、確実な劣化、寿命の判定が
難しい問題があった。
D0 Problems to be Solved by the Invention In conventional automatic monitoring devices, deterioration and lifespan can be determined by recording the number of operations. Although it is possible to monitor the number of operations and operation time online, it is difficult to determine the number of surges because the size of the surge is not known. There was a problem in that it was difficult to determine the reliability of deterioration and lifespan because there was no correlation between lifespans.

一方、電流記録による判定は、サージの大きさを記録で
きるが多数回の動作記録が難しく、前述の方法と同様に
確実な判定を難しくする。
On the other hand, determination by current recording can record the magnitude of the surge, but it is difficult to record multiple operations, making it difficult to make reliable determinations like the above-mentioned method.

また、漏れ電流測定による判定は、熱安定性を直接にオ
ンライン監視ができるが、電流増がサージ吸収によるも
のか劣化によるものかさらに系統電圧の異常によるもの
かの判定ができないため、謝った判定をすることがある
In addition, although thermal stability can be directly monitored online when making a judgment based on leakage current measurement, it is not possible to judge whether the increase in current is due to surge absorption, deterioration, or abnormality in the grid voltage, so it is difficult to judge Sometimes I do.

本発明の目的は、避雷器の劣化、寿命を確実にしかもそ
の程度まで含めて自動監視できるようにした自動監視装
置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an automatic monitoring device that can reliably and automatically monitor the deterioration and life span of a lightning arrester.

81課題を解決するための手段と作用 本発明は上記目的を達成するため、避雷器の避雷動作回
数を出力オン信号で得る動作回数計と、避雷器の電流を
検出する変流器と、避雷器が接続される系統母線の電圧
を検出する電圧検出器と、前記変流器の検出電流と電圧
検出器の検出電圧から避雷器の漏れ電流又は電力損失を
測定する測定回路と、前記動作回数計が避雷動作中でな
いことの検出状態かつ電圧検出器が系統電圧の正常の検
出状態にあるときの前記漏れ電流又は電力損失について
避雷器の劣化判定を行う手段と、前記動作回数計が避雷
動作中の検出状態又は電圧検出器が系統電圧の異常検出
状態にあるときに前記漏れ電流又は電力損失の時間変化
率から避雷器の熱的安定性を判定する手段及び処理エネ
ルギーを判定する手段を有する監視装置とを備え、避雷
器の漏れ電流又は電力損失について避雷動作の有無と系
統電圧の正常、異常を条件として劣化判定と熱安定性と
処理エネルギー判定を区別することで確実な判定とその
程度判定を得る。
81 Means and Effects for Solving the Problems In order to achieve the above object, the present invention provides an operation counter that obtains the number of lightning arrester operations using an output ON signal, a current transformer that detects the current of the lightning arrester, and a lightning arrester connected to each other. a voltage detector that detects the voltage of the system bus bar to be operated; a measurement circuit that measures the leakage current or power loss of the lightning arrester from the detected current of the current transformer and the detected voltage of the voltage detector; means for determining deterioration of the lightning arrester with respect to the leakage current or power loss when the lightning arrester is in a detection state that the lightning arrester is not in operation and the voltage detector is in the normal detection state of the grid voltage; a monitoring device having means for determining the thermal stability of the lightning arrester from the time rate of change of the leakage current or power loss when the voltage detector is in an abnormality detection state of the system voltage and means for determining the processing energy; Regarding lightning arrester leakage current or power loss, reliable judgment and extent judgment can be obtained by distinguishing between deterioration judgment, thermal stability, and processing energy judgment based on the presence or absence of lightning arrester operation and whether the system voltage is normal or abnormal.

F、実施例 第1図は本発明の一実施例を示す装置構成図である。系
統母線1にギャップ無し避雷器2が接続されるにおいて
、母線lの電圧がPD又はPTによる電圧検出器3によ
って検出され、避雷器2の低圧側の動作回数計4によっ
て避雷動作回数が接点オン回数として検出され、さらに
変流器5によって避雷器2の電流が検出される。測定回
路6は変流器5からの検出電流Iと電圧検出器3の検出
電圧Vによる漏れ電流IRの測定、又は避雷器2の電力
損失Wを求める。
F. Embodiment FIG. 1 is an apparatus configuration diagram showing an embodiment of the present invention. When the gapless lightning arrester 2 is connected to the system bus 1, the voltage of the bus 1 is detected by the voltage detector 3 using PD or PT, and the number of lightning arrester operations is determined as the number of times the contact is turned on by the operation count meter 4 on the low voltage side of the lightning arrester 2. The current of the arrester 2 is detected by the current transformer 5. The measurement circuit 6 measures the leakage current IR based on the detected current I from the current transformer 5 and the detected voltage V from the voltage detector 3, or obtains the power loss W of the lightning arrester 2.

監視装置7は、動作回数計4の動作出力接点のオン回数
データと、測定回路6からの漏れ電流IR又は電力損失
W及び検出電圧Vから避雷器2の劣化、寿命を判定する
。監視装置7の監視動作は第2図に示す監視フローチャ
ートに従って行われる。
The monitoring device 7 determines the deterioration and lifespan of the lightning arrester 2 from the data on the number of ON times of the operation output contact of the operation counter 4, the leakage current IR or power loss W from the measurement circuit 6, and the detected voltage V. The monitoring operation of the monitoring device 7 is performed according to the monitoring flowchart shown in FIG.

第2図において、漏れ電流IRを測定回路6から取込み
(ステップSt)、この漏れ電流■8の測定時に動作回
数計4の出力接点がオン状態にあったか否かをチエツク
しくステップS2)、この出力接点がオフ状態であれば
系統電圧Vからその電圧異常の有無をチエツクしくステ
ップS3)、正常にあるときに当該漏れ電流IRに対す
る劣化判定プログラムを起動して劣化の有無判定を行う
(ステップS4)。この判定は漏れ電流■7と予め設定
される劣化判定レベルとの大小、比較によって行われる
か、又は電力損失Wとその判定レベルとの比較によって
行われる。ステップS4での判定結果に劣化でないと判
定されたとき(ステップS5)、ステップStに戻って
次回の漏れ電流又は電力損失データ取込みを行う。この
ステップS5の判定語用が劣化となったとき、劣化判定
出力を表示さらにオンラインにより監視室に伝送を行う
(ステップS6)。
In FIG. 2, the leakage current IR is taken in from the measuring circuit 6 (step St), and it is checked whether the output contact of the operation counter 4 was in the on state at the time of measuring this leakage current (step S2), and this output If the contact is in the OFF state, the presence or absence of voltage abnormality is checked from the system voltage V (step S3), and if it is normal, a deterioration determination program for the leakage current IR is activated to determine the presence or absence of deterioration (step S4). . This determination is made by comparing the leakage current (7) with a preset deterioration determination level, or by comparing the power loss W with its determination level. When it is determined in step S4 that there is no deterioration (step S5), the process returns to step St and the next leakage current or power loss data is acquired. When the judgment word in step S5 is deterioration, the deterioration judgment output is displayed and transmitted online to the monitoring room (step S6).

従って、漏れ電流In又は電力損失からの劣化判定には
避雷器2が避雷動作をしていない状態かつ系統電圧が正
常にあることを条件にして行われ、これら条件を取除い
た確実な劣化も定を得ることができる。
Therefore, deterioration determination from leakage current In or power loss is performed under the conditions that lightning arrester 2 is not acting as a lightning arrester and the grid voltage is normal, and reliable deterioration can also be determined with these conditions removed. can be obtained.

次に、動作回数計の接点がオン状態にあるとき(ステッ
プS2)、このときの漏れ電流■6又は電力損失Wはサ
ージ吸収によるものと判定する(ステップS7)。また
、系統電圧が異常になるとき(ステップS3)、このと
きの漏れ電流■8又は電力損失Wは系統電圧の異常によ
るものと判定する(S8)。これら判定結果及びそのと
きの漏れ電流■8又は電力損失は避雷器の熱安定性判定
(ステップS9)及び処理エネルギー判定(SIO)に
使用される。
Next, when the contact of the operation counter is in the on state (step S2), it is determined that the leakage current (6) or power loss W at this time is due to surge absorption (step S7). Further, when the system voltage becomes abnormal (step S3), it is determined that the leakage current (8) or the power loss W at this time is due to the abnormality of the system voltage (S8). These determination results and the leakage current (8) or power loss at that time are used for the thermal stability determination of the lightning arrester (step S9) and the processing energy determination (SIO).

熱安定性判定は、漏れ電流IR又は電力損失Wを一定時
間(1分〜12時間程度)監視17、その時間変化率d
rR/dt又はdw/dtの大小によって熱安定性を判
定する。この判定は例えば漏れ電流では dll/dt>0 では熱暴走の状態と判定し、 dlR/dt=0 では熱暴走の恐れがあって注意を必要とする判定を得て
継続監視を促し、 dlR/dt<0 では熱安定性あるとの3段階の判定を行う。このような
熱安定性判定で熱安定性有り又はその恐れがあるとの判
定(ステップ511)ではステップStに戻り、熱暴走
状態では熱暴走判定出力の表示及びオンライン伝送(ス
テップ5I2)による系統切換え等の保護を促す。
Thermal stability is determined by monitoring leakage current IR or power loss W for a certain period of time (approximately 1 minute to 12 hours) 17 and its rate of change over time d
Thermal stability is determined by the magnitude of rR/dt or dw/dt. For example, in the case of leakage current, if dll/dt>0, it will be determined that there is thermal runaway, and if dlR/dt=0, it will be determined that there is a risk of thermal runaway and caution is required, prompting continued monitoring, and dlR/dt=0. When dt<0, a three-step judgment is made to determine that the material is thermally stable. In such a thermal stability judgment, if it is determined that thermal stability exists or there is a risk of thermal stability (step 511), the process returns to step St, and in a thermal runaway state, the system is switched by displaying the thermal runaway judgment output and transmitting it online (step 5I2). We encourage the protection of such things.

従って、サージ発生又は異常電圧発生時の漏れ電流■8
又は電力損失Wから避雷器が熱暴走に至るか否かの熱安
定性をチエツクし、通常時の劣化判定に加えてサージ吸
収時又は系統電圧異常による避雷器の正常、異常を監視
することができる。
Therefore, leakage current when a surge or abnormal voltage occurs■8
Alternatively, it is possible to check the thermal stability of the lightning arrester to determine whether thermal runaway occurs due to power loss W, and in addition to determining deterioration during normal conditions, it is possible to monitor whether the lightning arrester is normal or abnormal during surge absorption or due to system voltage abnormality.

次に、処理エネルギー判定は、サージ吸収又は異常電圧
発生時の漏れ電流IR又は電力損失Wとその直後又は直
前の電流IR又は電力損失Wとの差△IR又は△Wから
避雷器の処理エネルギーEE=f、(△IR) E = f ! (△W) を求め、この処理エネルギー出力(ステップ513)に
よって避雷器の処理エネルギーの大小及び積算値の大小
から避雷器寿命の判定に利用する。
Next, the processing energy is determined from the difference △IR or △W between the leakage current IR or power loss W at the time of surge absorption or abnormal voltage occurrence and the current IR or power loss W immediately after or immediately before, the processing energy of the lightning arrester EE= f, (△IR) E = f! (ΔW) is obtained, and this processing energy output (step 513) is used to determine the lifetime of the lightning arrester based on the magnitude of the processing energy of the lightning arrester and the magnitude of the integrated value.

従って、避雷器の処理エネルギーの大部分になるサージ
吸収時及び異常電圧発生時のエネルギーからの寿命判定
を可能にする。
Therefore, it is possible to determine the lifespan from the energy during surge absorption and abnormal voltage generation, which constitute most of the processing energy of the lightning arrester.

G1発明の効果 以上のとおり、本発明によれば、避雷器の動作状態及び
系統母線電圧の正常、異常状態を条件にして漏れ電流又
は電力損失についての避雷器の劣化判定、熱安定性判定
及び処理エネルギー判定を区別するようにしたため、漏
れ電流又は電圧損失からの避雷器の自動監視に誤った判
定を無くすと共に避雷器の環境条件に応じた適切な判定
及び劣化、寿命の程度を含めて正確な判定ができる効果
がある。
G1 Effects of the Invention As described above, according to the present invention, it is possible to determine the deterioration of a lightning arrester regarding leakage current or power loss, to determine thermal stability, and to process energy under the conditions of the operating state of the lightning arrester and the normal or abnormal state of the system bus voltage. Since the judgments are differentiated, it is possible to eliminate erroneous judgments in automatic monitoring of lightning arresters from leakage current or voltage loss, and to make appropriate judgments according to the environmental conditions of the lightning arrester, as well as accurate judgments including the degree of deterioration and life span. effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す装置構成図、第2図は
第1図における監視回路の監視フローチャート、第3図
はギャップ無し避雷器の熱バランス特性図である。 1・・母線、2・・・避雷器、3・・・検出器、4・・
・動作回数計、5・・・交流器、6・・・測定回路、7
・・・監視装置。 第1図 実施例の装置構成図 外2名 第2図 実施例の監視フローチャート 第3図 避電器の熱バランス特性図 温度□
FIG. 1 is a device configuration diagram showing an embodiment of the present invention, FIG. 2 is a monitoring flowchart of the monitoring circuit in FIG. 1, and FIG. 3 is a heat balance characteristic diagram of a gapless arrester. 1...Bus bar, 2...Surge arrester, 3...Detector, 4...
・Operation counter, 5... AC generator, 6... Measuring circuit, 7
...Monitoring device. Fig. 1 Equipment configuration of the embodiment 2 people outside the diagram Fig. 2 Monitoring flowchart of the embodiment Fig. 3 Heat balance characteristic diagram of the earth arrester Temperature □

Claims (1)

【特許請求の範囲】[Claims] (1)避雷器の避雷動作回数を出力オン信号で得る動作
回数計と、避雷器の電流を検出する変流器と、避雷器が
接続される系統母線の電圧を検出する電圧検出器と、前
記変流器の検出電流と電圧検出器の検出電圧から避雷器
の漏れ電流又は電力損失を測定する測定回路と、前記動
作回数計が避雷動作中でないことの検出状態かつ電圧検
出器が系統電圧の正常の検出状態にあるときの前記漏れ
電流又は電力損失について避雷器の劣化判定を行う手段
と、前記動作回数計が避雷動作中の検出状態又は電圧検
出器が系統電圧の異常検出状態にあるときに前記漏れ電
流又は電力損失の時間変化率から避雷器の熱的安定性を
判定する手段及び処理エネルギーを判定する手段を有す
る監視装置とを備えたことを特徴とするギャップ無し避
雷器の自動監視装置。
(1) An operation counter that obtains the number of lightning arrester operations using an output-on signal, a current transformer that detects the current of the arrester, a voltage detector that detects the voltage of the system bus to which the arrester is connected, and the current transformer. A measurement circuit that measures the leakage current or power loss of the lightning arrester from the detected current of the lightning arrester and the detected voltage of the voltage detector; means for determining deterioration of the lightning arrester with respect to the leakage current or power loss when the lightning arrester is in the state of detection, and means for determining the leakage current when the operation counter is in the detection state of lightning protection operation or the voltage detector is in the abnormality detection state of the system voltage. Alternatively, an automatic monitoring device for a gapless lightning arrester, comprising: a monitoring device having means for determining the thermal stability of the surge arrester from the time rate of change of power loss, and a means for determining processing energy.
JP63262238A 1988-10-18 1988-10-18 Automatic monitoring device for lightning arrester without gap Expired - Lifetime JP2661194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63262238A JP2661194B2 (en) 1988-10-18 1988-10-18 Automatic monitoring device for lightning arrester without gap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63262238A JP2661194B2 (en) 1988-10-18 1988-10-18 Automatic monitoring device for lightning arrester without gap

Publications (2)

Publication Number Publication Date
JPH02108981A true JPH02108981A (en) 1990-04-20
JP2661194B2 JP2661194B2 (en) 1997-10-08

Family

ID=17372997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63262238A Expired - Lifetime JP2661194B2 (en) 1988-10-18 1988-10-18 Automatic monitoring device for lightning arrester without gap

Country Status (1)

Country Link
JP (1) JP2661194B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04370687A (en) * 1991-06-18 1992-12-24 Mitsubishi Electric Corp Monitoring device for deterioration of zinc oxide type lightning arrester
CN103457237A (en) * 2013-08-16 2013-12-18 苏州市电通电力电子有限公司 Damage warning and protecting method and device for high-energy voltage dependent resistor overvoltage protector
CN104360127A (en) * 2014-06-25 2015-02-18 许继电气股份有限公司 Method and system for acquiring arrester online monitoring voltage
CN105866592A (en) * 2016-05-18 2016-08-17 国网山西省电力公司电力科学研究院 System and method for acquiring dynamic reactive power compensation response waveforms
CN111880027A (en) * 2020-07-08 2020-11-03 贵州电网有限责任公司 Live-line test system for pole-mounted zinc oxide arrester

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102175936B (en) * 2011-01-19 2014-02-05 广东电网公司电力科学研究院 Unrestrictive expected operation life assessment method for distribution network lightning arrester under given confidence level

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04370687A (en) * 1991-06-18 1992-12-24 Mitsubishi Electric Corp Monitoring device for deterioration of zinc oxide type lightning arrester
CN103457237A (en) * 2013-08-16 2013-12-18 苏州市电通电力电子有限公司 Damage warning and protecting method and device for high-energy voltage dependent resistor overvoltage protector
CN104360127A (en) * 2014-06-25 2015-02-18 许继电气股份有限公司 Method and system for acquiring arrester online monitoring voltage
CN104360127B (en) * 2014-06-25 2018-03-16 许继电气股份有限公司 Arrester on-line monitoring is with voltage acquisition methods and obtains system
CN105866592A (en) * 2016-05-18 2016-08-17 国网山西省电力公司电力科学研究院 System and method for acquiring dynamic reactive power compensation response waveforms
CN105866592B (en) * 2016-05-18 2018-01-02 国网山西省电力公司电力科学研究院 Dynamic passive compensation response wave shape acquisition system and acquisition method
CN111880027A (en) * 2020-07-08 2020-11-03 贵州电网有限责任公司 Live-line test system for pole-mounted zinc oxide arrester
CN111880027B (en) * 2020-07-08 2022-05-17 贵州电网有限责任公司 Live-line test system for pole-mounted zinc oxide arrester

Also Published As

Publication number Publication date
JP2661194B2 (en) 1997-10-08

Similar Documents

Publication Publication Date Title
US5483165A (en) Battery system and method for determining a battery condition
US6020721A (en) Indirect thermal sensing system for a battery charger
US7199557B2 (en) Apparatus, methods and computer program products for estimation of battery reserve life using adaptively modified state of health indicator-based reserve life models
US7453368B2 (en) Surge protector life cycle monitor system and method
CN111416316A (en) Lightning arrester arrangement with aging determination unit
CN101782611A (en) On-line detector of surge protector
CA1218108A (en) Surge arrester equipped for monitoring functions and method of use
JPH02108981A (en) Automatic monitor device for gapless arrester
CA2450290A1 (en) Electrical fault detection system
CN116298737A (en) Switch cabinet discharge monitoring system, method and equipment
US5627452A (en) Charging method of secondary battery
JP3167798B2 (en) Gas sensor
JPH03203523A (en) Battery activating method and device
JPH04308678A (en) Protector against thunder surge
CN114859197A (en) Online monitoring device and method for thyristor aging evaluation
CN114674460A (en) Temperature abnormity alarm method and device of reactor
CN113269941A (en) Electrical fire alarm device based on multi-information fusion judgment and control method
JPH04166775A (en) Method and instrument for measuring thermal runaway resistance
RU2626716C1 (en) Method for fire or overheat detection, and device for its implementation
US20240069112A1 (en) Battery hazard detection
JPH0862082A (en) Inspection device for pressure sensor
JP4188627B2 (en) X-ray high voltage device
CN114235053B (en) Method for improving abnormity detection accuracy of voltage transformation equipment
JPS60131476A (en) Method and device for deciding on quality of insulator of electric equipment
JPS60158390A (en) Method of determining operational possibility of neutron source region detector