JPH02107947A - External corrosion detector for buried metal pipeline - Google Patents

External corrosion detector for buried metal pipeline

Info

Publication number
JPH02107947A
JPH02107947A JP26040988A JP26040988A JPH02107947A JP H02107947 A JPH02107947 A JP H02107947A JP 26040988 A JP26040988 A JP 26040988A JP 26040988 A JP26040988 A JP 26040988A JP H02107947 A JPH02107947 A JP H02107947A
Authority
JP
Japan
Prior art keywords
hollow part
pressure
buried
corrosion
metal pipeline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26040988A
Other languages
Japanese (ja)
Other versions
JPH0640064B2 (en
Inventor
Kenji Kondo
憲二 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP63260409A priority Critical patent/JPH0640064B2/en
Publication of JPH02107947A publication Critical patent/JPH02107947A/en
Publication of JPH0640064B2 publication Critical patent/JPH0640064B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

PURPOSE:To enable detection (estimation) of an external corrosion of a metal pipeline simply by a method wherein a box body having a closed hollow part is buried at a position near the outer surface of a buried metal pipeline to introduce a pressure fluid into the hollow part of the box body and then, a change in pressure is monitored. CONSTITUTION:A box body 2 has closed hollow parts 3a-3c with wall thicknesses thereof of T1-T3 and formed to meet a requirement of Ts>T3>T2>T1 when a pipe thickness of a metal pipeline 1 is represented by Ts. A through hole 6 pierces each of the hollow parts, then, a pressure fluid introduction tube 7 is connected thereto as sealed while being opened at a manhole 8 at the other end of the tube 7. Then, a pressure fluid is introduced from the tube 7 leading to the hollow part 3a within the manhole 8 to apply a specified pressure to the hollow part 3a and a change in the pressure is checked with a manometer. When the pressure lowers, it is learned that a tiny hole is caused in the wall of the hollow part 3a. The same test is conducted for the hollow part 3b and then, that 3c. Thus, it is possible to presume that a corrosion of the same degree as that on the wall surface of the hollow part 3c occurs on the outer surface of the metal pipeline 1 with a confirmation that the pressure at the hollow part 3c can not be maintained.

Description

【発明の詳細な説明】 厳栗上段扛凰分裏 この発明は埋設金属管路の外面腐食度を、埋設部を掘削
することなく、かつ管路を破壊することなく、簡単に検
知することができる装置に関するものである。
[Detailed Description of the Invention] This invention enables the degree of corrosion on the external surface of a buried metal conduit to be easily detected without excavating the buried portion and without destroying the conduit. This is related to a device that can do this.

災米■投亙 水道管やガス管などの埋設管路には高い内外圧が作用す
るため、これらの管路としては一般に高い強度を有する
鋼管やダクタイル管などの、外面が塗料またはライニン
グで被覆された金属管が用いられる。しかし、このよう
な埋設金属管路の場合、長期にわたって使用すると、そ
の外面の被覆が経時劣化してしまい、その結果、埋設部
の土質事情や電蝕によって管路の外面が腐食し、腐食の
進行によって輸送流体の漏洩を招いたり、内外圧に対す
る強度が不足して管路が破壊してしまう。
Buried pipes such as water pipes and gas pipes are subject to high internal and external pressures, so these pipes are generally made of high strength steel pipes or ductile pipes whose outer surfaces are coated with paint or lining. A metal tube made of aluminum is used. However, in the case of such buried metal conduits, when used for a long period of time, the outer surface coating deteriorates over time, and as a result, the outer surface of the conduit corrodes due to the soil condition of the buried part or electrolytic corrosion, which leads to corrosion. As it progresses, the transport fluid may leak, or the pipe line may be destroyed due to lack of strength against internal and external pressure.

したがって、前記のような埋設金属管路の維持管理にお
いては、その取替え時期の把握が管理者(作業者)にと
って重要な任務となる。
Therefore, in the maintenance and management of buried metal pipes as described above, it is an important task for managers (workers) to know when to replace them.

すなわち、取替え時期が遅れると、漏洩や破壊が起きて
地域住民および管路の輸送流体を利用する需要者等に多
大の影響、損害を及ぼすことになるし、取替え時期が早
すぎると、まだ十分使用できる管を廃棄することになり
、経済的損失が大きくなる。
In other words, if the replacement time is delayed, leakage or destruction will occur, causing great impact and damage to local residents and customers who use the fluid transported in the pipeline, while if the replacement time is too early, there is still insufficient water available. Usable pipes will be discarded, resulting in a large economic loss.

埋設金属管路の取替え時期の把握には、腐食した管の経
年後の残存管厚を測定するのが一般的であり、この管厚
を測定するために従来からとられてきた方法としては、 (1)、試料採取による管厚測定方法 (2)、超音波厚み計による管厚測定方法がある。
To determine when to replace buried metal pipes, it is common to measure the remaining thickness of corroded pipes over time, and the conventional methods for measuring this pipe thickness are as follows: There are (1) a method for measuring pipe thickness by sampling, (2) a method for measuring pipe thickness by using an ultrasonic thickness meter.

(1)の方法は金属管路の埋設部を掘削して管路の外面
を露出させるとともに、該露出した部分の管内流体輸送
を遮断(断水等)した後、ドリル等によって管に孔をあ
けて管片の一部を採取し、この採取した試料の断面から
管厚を測定する。
Method (1) involves excavating the buried part of the metal conduit to expose the outer surface of the conduit, and after blocking fluid transport within the pipe (water cutoff, etc.) in the exposed part, a hole is made in the pipe using a drill, etc. A part of the tube piece is sampled, and the tube thickness is measured from the cross section of this sample.

(2)の方法は(1)と同様に金属管路の埋設部を掘削
して管路の外面を露出させるとともに、該露出した部分
の外面の一部を研摩した後、研摩部に超音波厚み計のセ
ンサを装着し、超音波によって管厚を測定する。
Method (2) is similar to (1) in that the buried part of the metal pipe is excavated to expose the outer surface of the pipe, a part of the outer surface of the exposed part is polished, and then ultrasonic waves are applied to the polished part. A thickness gauge sensor is attached to measure the tube thickness using ultrasonic waves.

発明が解決しようとする課題 ところで、前記従来の2つの管厚測定方法においては、
次のような問題点がある。
Problems to be Solved by the Invention By the way, in the two conventional pipe thickness measurement methods,
There are the following problems.

(1)の方法の場合 ■、金属管路の埋設部を掘削して管路の外面を露出しな
ければならないので、掘削やその埋戻し復旧に多大の労
力、費用を必要とする。また、交通障害など地域住民に
及ぼす影響も大きい。
In the case of method (1), the buried portion of the metal pipe must be excavated to expose the outer surface of the pipe, which requires a great deal of labor and expense for excavation and backfilling. In addition, the impact on local residents, such as traffic disturbances, is significant.

■0作業中に管内の輸送流体を遮断しなければならない
ので、該流体を利用する需要者等に多大の影響、損害を
及ぼす。
(2) Since the transport fluid in the pipe must be shut off during the work, it causes great influence and damage to the users who use the fluid.

■、試料を採取した部分の補修または管の取替えを必要
とするので、費用が多大となる。
(2) It is necessary to repair the part where the sample was taken or replace the tube, which increases the cost.

(2)の方法の場合 ■、(1)の方法の■と同じ ■、埋設金属管路に孔食のような微小面積の腐食が存在
する場合、超音波厚み計では正確な管厚を測定すること
ができない。
In the case of method (2) ■, same as method (1) ■, if there is corrosion in a minute area such as pitting corrosion in the buried metal pipe, the ultrasonic thickness meter measures the pipe thickness accurately. Can not do it.

■、測測定る管路の外面の一部を研摩しなければならな
いので、外面腐食がはなはだしい場合は労力、費用が多
大となる。
(2) It is necessary to polish a part of the outer surface of the pipe to be measured, so if the outer surface is severely corroded, the labor and cost will be enormous.

そこで、この発明は、前記従来のもののもつ問題点を解
決し、金属管路の埋設部を掘削することなく、かつ試料
採取のように管路を破壊することなく、簡単にその外面
腐食度を検知することができる装置を提供することを目
的とする。
Therefore, the present invention solves the problems of the conventional methods and easily measures the degree of corrosion on the outer surface of metal pipes without excavating the buried part of the pipe or destroying the pipe as in the case of sample collection. The purpose is to provide a device that can detect

課題を解 するための手 前記目的を達成するため、この発明は、埋設金属管路の
外面近くの位置に、密閉中空部を有し、金属管路と同一
材質で、かつ別体の筐体を、その一部もしくは全体の壁
厚を金属管路の管厚より薄く形成して埋設し、この筐体
の密閉中空部に該中空部加圧用の圧力流体導入管の一端
を密封状態で接続するとともに、該導入管の他端をマン
ホールや側溝などの空間に開口させたことを特徴とする
In order to achieve the above object, the present invention has a sealed hollow part near the outer surface of the buried metal conduit, and a separate casing made of the same material as the metal conduit. is buried with a part or the entire wall thickness thinner than that of the metal conduit, and one end of the pressure fluid introduction pipe for pressurizing the hollow part is connected in a sealed state to the sealed hollow part of this casing. At the same time, the other end of the introduction pipe is opened into a space such as a manhole or a side gutter.

詐ニーー月− 空間において開口した圧力流体導入管の他端から筐体の
密閉中空部へ圧力流体を導入し一4= て該中空部に所定圧をかけ、その圧力が維持できるかを
確認する。密閉中空部で圧力を維持できない場合は該中
空部の回りの筐体の外面に腐食により孔、亀裂等が発生
したことがわかり、このことからほぼ同一条件下に埋設
されている金属管路の外面が筐体の最小壁厚と同程度腐
食していることが推定される。
Introduce pressure fluid from the other end of the pressure fluid introduction pipe opened in the space into the sealed hollow part of the casing, apply a predetermined pressure to the hollow part, and check whether the pressure can be maintained. . If pressure cannot be maintained in a sealed hollow part, it is found that holes, cracks, etc. have occurred due to corrosion on the outer surface of the casing around the hollow part, and this indicates that metal pipes buried under almost the same conditions It is estimated that the outer surface is corroded to the same extent as the minimum wall thickness of the casing.

方、密閉中空部で圧力を維持できる場合は金属管路の外
面には腐食が発生していないか、または、腐食が発生し
たとしても筐体の最小壁厚以下であることがわかり、土
庄や流体圧などの内外圧を考慮して金属管路はまだ使用
できることが推定される。
On the other hand, if the pressure can be maintained in the sealed hollow part, it can be seen that there is no corrosion on the outer surface of the metal conduit, or even if corrosion occurs, it is less than the minimum wall thickness of the casing, and Tonosho and It is assumed that metal conduits can still be used in consideration of internal and external pressures such as fluid pressure.

夫」1件 第1〜3図において1は地中に埋設された複数の管から
なる金属管路、2は該管路と同一材質で、かつ別体の筐
体で、金属管路1の外面近くの位置に埋設されている。
In Figures 1 to 3, 1 is a metal conduit consisting of a plurality of pipes buried underground, and 2 is a separate housing made of the same material as the conduit. It is buried near the outside surface.

筐体2は複数の密閉中空部3a、3b、3cを有し、そ
の少なくとも一面の壁(図面では前後側壁)の厚さがT
1.T2.T3と金属管路1を形成する管の厚さよりい
ずれも薄く形成されている。すなわち、金属管路1を形
成する管の厚さを例えばT5とすると、T5>T3>T
2>T工となるように形成される。筐体2の外面には図
示省略したが金属管路1と同一の防食被覆が施されてい
る。筐体2と金属管路1とは第2図に示すように、局部
電池作用による電気化学的腐食(電蝕)の条件を同一に
するため導線5で接続され、同一電位レベルに保たれて
いる。
The casing 2 has a plurality of sealed hollow parts 3a, 3b, and 3c, and the thickness of at least one wall (the front and rear walls in the drawing) is T.
1. T2. Both are formed thinner than the thickness of the tube forming T3 and the metal conduit 1. That is, if the thickness of the tube forming the metal conduit 1 is, for example, T5, then T5>T3>T
2>T-shaped. Although not shown, the outer surface of the casing 2 is coated with the same anti-corrosion coating as the metal conduit 1. As shown in Fig. 2, the casing 2 and the metal conduit 1 are connected by a conductor 5 and kept at the same potential level in order to equalize the conditions for electrochemical corrosion (galvanic corrosion) due to local battery action. There is.

筐体2の各中空部3a、3b、3cと連通する連通孔6
がその底壁を貫通して形成され、これら連通孔6には硬
質樹脂など耐食性、耐圧性の圧力流体導入管7の一端が
適宜な封止手段により密封状態で接続されている。導入
管7の他端はマンホール8に開口されている。
Communication holes 6 communicating with each hollow part 3a, 3b, 3c of the housing 2
are formed through the bottom wall thereof, and one end of a pressure fluid introduction pipe 7 made of a hard resin or the like having corrosion resistance and pressure resistance is connected to these communication holes 6 in a sealed state by an appropriate sealing means. The other end of the introduction pipe 7 is opened into a manhole 8 .

導入管7は中空部3a、3b、3eへ圧力流体を導入し
て該中空部を加圧するためのものであるため、その耐久
性は最も壁厚の大きい中空部3cを形成する筐体2の壁
より少なくともすぐれていることが必要である。マンホ
ール8に開口した導入管7の他端は通常、栓で閉塞され
ている。また、実施例のように何本もの導入管7の他端
が1つのマンホール8に集められ開口される場合には、
どの導入管7がどこに埋設した筐体2の中空部のものか
不明なので、このようなときは該他端部に必要な識別表
示を付しておくのが望ましい。
Since the introduction pipe 7 is for introducing pressure fluid into the hollow parts 3a, 3b, and 3e to pressurize the hollow parts, its durability is the same as that of the casing 2 that forms the hollow part 3c with the largest wall thickness. It needs to be at least better than the wall. The other end of the introduction pipe 7 that opens into the manhole 8 is normally closed with a plug. In addition, when the other ends of a number of introduction pipes 7 are collected into one manhole 8 and opened as in the embodiment,
Since it is unknown which introduction pipe 7 is buried in which hollow part of the casing 2, in such a case, it is desirable to attach a necessary identification mark to the other end.

前記において金属管路1の外面腐食度を検知するには、
マンホール8内で作業者が導入管7の他端を開栓し、金
属管路の管厚T5よりまず最も壁厚の薄い筐体2の中空
部3aに圧力流体を導入して該中空部に所定圧をかけ。
In order to detect the degree of corrosion on the outer surface of the metal conduit 1 in the above,
An operator opens the other end of the introduction pipe 7 in the manhole 8, and introduces pressure fluid into the hollow part 3a of the casing 2, which has the thinnest wall thickness than the pipe thickness T5 of the metal conduit, and into the hollow part. Apply the specified pressure.

その圧力が維持できるか否かを例えばマンホール8内の
導入管7の他端に設置した圧力ゲージ等で確認する。
Whether or not the pressure can be maintained is checked using, for example, a pressure gauge installed at the other end of the introduction pipe 7 inside the manhole 8.

中空部3aで圧力を維持できなく、該中空部内の圧力が
所定圧より低下する場合は、中空部3aの回りの筐体2
の外面に腐食により微小孔や亀裂等が発生したことがわ
かる。中空部3aは密閉されているため、筐体2の中空
部3aの内面からの腐食は考えられず、前記孔などの発
生が筐体2の外面腐食によるものであることは明らかで
ある。
If the pressure cannot be maintained in the hollow part 3a and the pressure in the hollow part falls below the predetermined pressure, the casing 2 around the hollow part 3a
It can be seen that micropores and cracks were generated on the outer surface of the steel due to corrosion. Since the hollow portion 3a is sealed, corrosion from the inner surface of the hollow portion 3a of the casing 2 is unlikely, and it is clear that the occurrence of the holes is due to corrosion on the outer surface of the casing 2.

中空部3aでの圧力の維持ができないことが確認された
ら、次に中空部3bに導入管7より圧力流体を導入して
その圧力が維持できるか否かを確認する。そして、中空
部3bでも圧力の維持ができないことが確認されたら。
If it is confirmed that the pressure in the hollow part 3a cannot be maintained, then pressurized fluid is introduced into the hollow part 3b from the introduction pipe 7 to check whether the pressure can be maintained. Then, when it is confirmed that the pressure cannot be maintained in the hollow part 3b as well.

さらに中空部3cに導入管7より圧力流体を導入してそ
の圧力が維持できるか否がを確認する。
Further, pressure fluid is introduced into the hollow portion 3c from the introduction pipe 7, and it is confirmed whether the pressure can be maintained.

中空部3cでの圧力の維持ができないことが確認される
と、中空部3cの壁厚さT3は金属管路1のそれよりは
薄いものの、通常これと非常に近い厚さに形成され、か
つ筐体2が金属管路1とほぼ同一条件下に埋設されてい
るため、中空部3cの回りの筐体2の外面に腐食により
微小孔や亀裂等が発生したことがわかると、このことか
ら金属管路1の外面にも同程度の腐食、つまり金属管路
の管厚の大部分に達する程の腐食が発生していることが
推定されるのである。勿論、圧力の維持ができないのが
中空部3a又は3bまでで、中空部3cでは維持できる
場合は、腐食の発生が前記維持できない中空部3a又は
3bの壁厚まで達していることが推定でき、金属管路1
の腐食度、すなわち腐食の進行度を知ることができるこ
ととなる。したがって、前記のように中空部3cで維持
できる場合には金属管路1はまだかなりの管厚を有する
ことがわかり、当面使用できると推定される。また、定
期的に圧力維持の確認を行うことにより、腐食の進行速
度を知ることができ、金属管路1の使用限度時期の推定
も可能となる。
When it is confirmed that the pressure cannot be maintained in the hollow part 3c, the wall thickness T3 of the hollow part 3c is thinner than that of the metal conduit 1, but is usually formed to a thickness very close to this, and Since the casing 2 is buried under almost the same conditions as the metal conduit 1, it can be seen that micro holes and cracks have occurred on the outer surface of the casing 2 around the hollow part 3c due to corrosion. It is presumed that the same degree of corrosion has occurred on the outer surface of the metal conduit 1, that is, corrosion to the extent that it reaches most of the thickness of the metal conduit. Of course, if the pressure cannot be maintained up to the hollow part 3a or 3b, but can be maintained in the hollow part 3c, it can be assumed that the corrosion has reached the wall thickness of the hollow part 3a or 3b, which cannot be maintained. Metal conduit 1
This means that it is possible to know the degree of corrosion, that is, the degree of progress of corrosion. Therefore, it can be seen that the metal conduit 1 still has a considerable thickness if it can be maintained in the hollow part 3c as described above, and it is presumed that it can be used for the time being. Furthermore, by periodically checking whether the pressure is maintained, it is possible to know the rate of progress of corrosion, and it is also possible to estimate the usage limit of the metal conduit 1.

前記実施例では複数の中空部3a、3b、3cを有する
筐体2の例を示したが、筐体製作の簡素化のため単数の
中空部を有する筐体を製作してこの筐体を複数個隣接さ
せて埋設してもよく、また限界値のみを知るためであれ
ば、検知の簡素化のため単数の中空部を有する筐体を1
個だけ埋設してもよい。しかも、検知精度を向上させる
ために、壁厚が等しい筐体を複数個隣接して埋設しても
よい。さらに、導入管7の他端が開口する空間としてマ
ンホール8を挙げたが、ほかに側溝などとしてもよいこ
とは言うまでもない。
In the above embodiment, an example of the casing 2 having a plurality of hollow parts 3a, 3b, and 3c was shown, but in order to simplify the manufacturing of the casing, a casing having a single hollow part is manufactured and a plurality of casings are made. If the purpose is to know only the limit value, a housing with a single hollow part may be buried to simplify detection.
You may bury just one. Furthermore, in order to improve detection accuracy, a plurality of casings having equal wall thickness may be buried adjacently. Furthermore, although the manhole 8 has been mentioned as the space where the other end of the introduction pipe 7 opens, it goes without saying that it may also be a side gutter or the like.

また、前記実施例では中空部3a、3b、3cおよび筐
体2を角形の形状とし、かつ該中空部を一体に形成した
が、これは−例を示したにすぎず、同様の作用効果を得
ることができれば、形状、構造は問わず、第4,5図に
示すような別のものでもよい。
Further, in the above embodiment, the hollow portions 3a, 3b, 3c and the casing 2 have a rectangular shape, and the hollow portions are formed integrally, but this is only an example, and similar effects can be achieved. As long as it can be obtained, other shapes and structures such as those shown in FIGS. 4 and 5 may be used regardless of the shape and structure.

第4図の実施例は筐体2′を中空円筒状にし、かつ一体
に設けた十字状の仕切り10により周方向にそれぞれ壁
厚がT 4 > T a > T 2>T1の中空部3
’a、 3’b、 3’c、 3’dを形成している(
 T 4 < T 5)。尚、図示省略したが筐体2′
に前記のような連通孔が形成され、圧力流体導入管が接
続されるのは前記実施例と同様である。
In the embodiment shown in FIG. 4, the casing 2' is made into a hollow cylindrical shape, and the hollow part 3 in the circumferential direction has a wall thickness of T 4 > Ta > T 2 > T1 due to the cross-shaped partition 10 provided integrally.
'a, 3'b, 3'c, 3'd are formed (
T4 < T5). Although not shown, the housing 2'
As in the previous embodiment, the communication hole as described above is formed and the pressure fluid introduction pipe is connected thereto.

第5図の実施例では筐体2#をそれぞれ金属管路1と同
一材質の筐体本体11と蓋体12から製作している。筐
体本体11には壁(底壁)厚がT 3 > T 2 >
 T 1の上端開口の中空部3”a、3“b、3“Cが
形成されている(T□〈T、)。中空部3“a、3“b
、3”cの上端開口を覆うように蓋体12がシール材1
3を介在させて装着され、ボルトナツト15により締め
付は固定されている。
In the embodiment shown in FIG. 5, the casing 2# is made of a casing body 11 and a lid 12 made of the same material as the metal conduit 1, respectively. The housing body 11 has a wall (bottom wall) thickness of T 3 > T 2 >
Hollow parts 3"a, 3"b, 3"C of the upper end opening of T1 are formed (T□<T,). Hollow parts 3"a, 3"b
, 3"c, the lid body 12 covers the upper end opening of the sealing material 1.
3 interposed therebetween, and is fixedly tightened with bolts and nuts 15.

筐体本体11および蓋体12が溶接可能な金属材料から
なるのであれば、ボルトナツト15に代えて蓋体12を
筐体本体11に直接、溶接で溶着してもよい。そして、
この例では蓋体12に前記のような連通孔が形成され、
圧力流体導入管が接続される。
If the housing body 11 and the lid body 12 are made of a weldable metal material, the lid body 12 may be directly welded to the housing body 11 instead of the bolts and nuts 15. and,
In this example, the communication hole as described above is formed in the lid body 12,
A pressure fluid introduction pipe is connected.

見匪勿羞米 この発明は前記のような構成からなるので、次のような
効果がある。
Since this invention has the above-described structure, it has the following effects.

■、金属管路の埋設部を掘削することなく、かつ管路を
破壊することなく、簡単に金属管路の外面腐食度を検知
することができる。
(2) The degree of corrosion on the outer surface of a metal conduit can be easily detected without excavating the buried portion of the metal conduit and without destroying the conduit.

■、しかもその作業に要する労力、費用も従来のものよ
り少なくてすみ、作業性、経済性が極めてよい。
(2) Moreover, the labor and cost required for the work are less than those of conventional methods, and the workability and economy are extremely good.

■、地域住民にもほとんど影響を及ぼさないし、また輸
送流体の遮断(断水等)もしなくてよいから輸送流体を
利用する需要者等にも迷惑がかからない。
■It has almost no impact on local residents, and since there is no need to cut off the transport fluid (water outage, etc.), there is no inconvenience to customers who use the transport fluid.

■、新設埋設管路は勿論のこと、既設埋設管路に対して
も実施することができる。そのうえ、埋設管路の外面近
くの任意の位置での検知が可能である。
(2) It can be carried out not only for newly installed underground pipelines but also for existing underground pipelines. Moreover, detection at any location near the outer surface of the buried pipeline is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す正面図、第2図は第
1図の■−■線に沿う拡大側断面図、第3図は同上の筐
体を示し、(A)はその拡大正断面図、(B)は(A)
のII[B−I[[B線に沿う拡大横断面図、第4,5
図はそれぞれ筐体の別の実施例を示す拡大側断面図であ
る。 1・・・金属管路     2・・・筐体3a、3b、
3c・・・密閉中空部 5・・・導線      6・・・連通孔7・・・圧力
流体導入管 8・・・マンホール特許出願人 株式会社
 栗本鐵工所
FIG. 1 is a front view showing one embodiment of the present invention, FIG. 2 is an enlarged side sectional view taken along the line ■-■ in FIG. 1, and FIG. Enlarged front cross-sectional view, (B) is (A)
II[B-I[[Enlarged cross-sectional view along line B, Nos. 4 and 5
Each figure is an enlarged side sectional view showing another embodiment of the housing. 1... Metal conduit 2... Housing 3a, 3b,
3c... Sealed hollow part 5... Conductive wire 6... Communication hole 7... Pressure fluid introduction pipe 8... Manhole patent applicant Kurimoto Iron Works Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、埋設金属管路の外面近くの位置に、密閉中空部を有
し、金属管路と同一材質で、かつ別体の筐体を、その一
部もしくは全体の壁厚を金属管路の管厚より薄く形成し
て埋設し、この筐体の密閉中空部に該中空部加圧用の圧
力流体導入管の一端を密封状態で接続するとともに、該
導入管の他端をマンホールや側溝などの空間に開口させ
たことを特徴とする埋設金属管路の外面腐食度検知装置
1. A separate casing, which has a sealed hollow part near the outer surface of the buried metal conduit and is made of the same material as the metal conduit, and whose wall thickness is partially or entirely similar to that of the metal conduit. One end of the pressure fluid introduction pipe for pressurizing the hollow part is connected in a sealed state to the sealed hollow part of this casing, and the other end of the introduction pipe is connected to a space such as a manhole or side gutter. A device for detecting the degree of corrosion on the external surface of a buried metal conduit, characterized in that it has an opening.
JP63260409A 1988-10-18 1988-10-18 External corrosion detection device for buried metal pipelines Expired - Fee Related JPH0640064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63260409A JPH0640064B2 (en) 1988-10-18 1988-10-18 External corrosion detection device for buried metal pipelines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63260409A JPH0640064B2 (en) 1988-10-18 1988-10-18 External corrosion detection device for buried metal pipelines

Publications (2)

Publication Number Publication Date
JPH02107947A true JPH02107947A (en) 1990-04-19
JPH0640064B2 JPH0640064B2 (en) 1994-05-25

Family

ID=17347524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63260409A Expired - Fee Related JPH0640064B2 (en) 1988-10-18 1988-10-18 External corrosion detection device for buried metal pipelines

Country Status (1)

Country Link
JP (1) JPH0640064B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7552643B2 (en) 2006-12-08 2009-06-30 Centre For Nuclear Energy Research (CNER) Device and system for corrosion detection
WO2010126429A1 (en) * 2009-04-30 2010-11-04 Scs Engineering Ab Device to indicate critical corrosion of a metallic structure
JP2017003380A (en) * 2015-06-09 2017-01-05 積水化学工業株式会社 Method for installing water leakage detection system, water leakage detection system, and water leakage detection method
CN117554277A (en) * 2024-01-11 2024-02-13 北京工业大学 External corrosion acceleration test device considering internal pressure of buried water supply pipeline

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492050A (en) * 1972-04-22 1974-01-09
JPS4918496A (en) * 1972-06-12 1974-02-18
JPS5624509A (en) * 1979-08-08 1981-03-09 Ebara Corp Method and apparatus for monitoring decrease of wall thickness
JPS5693032A (en) * 1979-12-27 1981-07-28 Kuroki Kogyosho:Kk Detection of developing crack depth in roll for transferring hot metal piece
JPS5719370A (en) * 1980-07-07 1982-02-01 Toyota Motor Corp Sliding member
JPS57135340A (en) * 1980-12-31 1982-08-20 Basf Ag Method of and apparatus for monitoring generation and development of crack in mechanical parts and component parts

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492050A (en) * 1972-04-22 1974-01-09
JPS4918496A (en) * 1972-06-12 1974-02-18
JPS5624509A (en) * 1979-08-08 1981-03-09 Ebara Corp Method and apparatus for monitoring decrease of wall thickness
JPS5693032A (en) * 1979-12-27 1981-07-28 Kuroki Kogyosho:Kk Detection of developing crack depth in roll for transferring hot metal piece
JPS5719370A (en) * 1980-07-07 1982-02-01 Toyota Motor Corp Sliding member
JPS57135340A (en) * 1980-12-31 1982-08-20 Basf Ag Method of and apparatus for monitoring generation and development of crack in mechanical parts and component parts

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7552643B2 (en) 2006-12-08 2009-06-30 Centre For Nuclear Energy Research (CNER) Device and system for corrosion detection
WO2010126429A1 (en) * 2009-04-30 2010-11-04 Scs Engineering Ab Device to indicate critical corrosion of a metallic structure
US8578781B2 (en) 2009-04-30 2013-11-12 Scs Engineering Ab Device to indicate critical corrosion of a metallic structure
EP2425228A4 (en) * 2009-04-30 2015-11-18 Scs Engineering Ab Device to indicate critical corrosion of a metallic structure
JP2017003380A (en) * 2015-06-09 2017-01-05 積水化学工業株式会社 Method for installing water leakage detection system, water leakage detection system, and water leakage detection method
CN117554277A (en) * 2024-01-11 2024-02-13 北京工业大学 External corrosion acceleration test device considering internal pressure of buried water supply pipeline
CN117554277B (en) * 2024-01-11 2024-03-29 北京工业大学 External corrosion acceleration test device considering internal pressure of buried water supply pipeline

Also Published As

Publication number Publication date
JPH0640064B2 (en) 1994-05-25

Similar Documents

Publication Publication Date Title
CA3004049C (en) Real time integrity monitoring of on-shore pipes
Makar et al. Inspecting systems for leaks, pits, and corrosion
EP2425228B1 (en) Device to indicate critical corrosion of a metallic structure
KR20110038010A (en) Sensing device for sensing leakage of pipe connecting portion
US6772622B2 (en) Disbonded coating cathodic protection monitoring coupon
KR100888392B1 (en) Gas leak pipe mounting structure for casing of underground laying gas pipe
US7095222B2 (en) Leak detection method and system in nonmetallic underground pipes
CN101122994A (en) Pipe inspection maintenance and fee determination method
JPH02107947A (en) External corrosion detector for buried metal pipeline
CN212111117U (en) Underground pipeline corrosion monitoring structure
KR101058141B1 (en) Leakage detection device for piping connection
Reed et al. Techniques for monitoring structural behaviour of pipeline systems
JP4698318B2 (en) Anticorrosion state monitoring method and system
KR20100100361A (en) A punching pipe using the cover for a saddle corporation cock
JPS621209B2 (en)
CN111270713A (en) Ultrasonic thickness measurement probe mounting structure, tunnel immersed tube and mounting method
JP2626906B2 (en) Buried conduit for metal pipes suggesting usage limits
JP3272651B2 (en) Inspection method of buried piping
KR20080109455A (en) Pipe for easy checking of detecting a breakage and pipeline location
Chastain-Howley Transmission main leakage: how to reduce the risk of a catastrophic failure
JPS60111949A (en) Method for detecting coating defect of coated embedded pipe
KR102460155B1 (en) Smart valve chamber
Rothman et al. Detection and considerations of corrosion problems of prestressed concrete cylinder pipe
CN109778198B (en) Strip magnesium anode anti-corrosion mounting structure in sleeve and corrosion degree detection method
CN102679048B (en) Multilayer compound pipeline capable of predicting and pre-warning corrosion depth of pipeline

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees