JPH0210718B2 - - Google Patents

Info

Publication number
JPH0210718B2
JPH0210718B2 JP57228310A JP22831082A JPH0210718B2 JP H0210718 B2 JPH0210718 B2 JP H0210718B2 JP 57228310 A JP57228310 A JP 57228310A JP 22831082 A JP22831082 A JP 22831082A JP H0210718 B2 JPH0210718 B2 JP H0210718B2
Authority
JP
Japan
Prior art keywords
base material
oxidation pond
contact base
filled
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57228310A
Other languages
Japanese (ja)
Other versions
JPS59115787A (en
Inventor
Shinji Azuma
Yoshihiro Sumimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Engineering Co Ltd
Original Assignee
Toray Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Engineering Co Ltd filed Critical Toray Engineering Co Ltd
Priority to JP57228310A priority Critical patent/JPS59115787A/en
Publication of JPS59115787A publication Critical patent/JPS59115787A/en
Publication of JPH0210718B2 publication Critical patent/JPH0210718B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は酸化池型廃水処理装置に関するもので
ある。 更に詳しくは網状接触基材を充填した酸化池型
廃水処理装置に関するものである。 (従来の技術) 従来、一般廃水処理などにおいて酸化池法が実
施されている。 この方法はパドル式あるいはロータ式エアレー
シヨンなどにより池の廃水を強制循環させてバク
テリアと藻類の働きを利用して生物学的に浄化処
理を行うものであり、一般にはエアレーシヨン時
間が24時間以上、MLSSが3000〜5000mg/、
BOD負荷が0.05〜0.06Kg/Kg・HLSS・日、返送
汚泥比が50〜150%というような処理条件の下で
実施され、その利点として、運転管理が容易、余
剰汚泥量が少ないということの他に、負荷変動が
かなり大きな場合にも好適ということが指摘され
ている。 (発明が解決しようとする課題) ところが、1日間というような短期間における
負荷変動に対してほぼ十分に対処し得ても、週あ
るいは季節間というような長期間における負荷変
動に対しては十分に対処し得ない欠点があつた。 すなわち長期間における比較的大きな負荷変動
が発生すると、低負荷になつたときに懸濁固形物
が解体して沈降しなくなり、このため低負荷から
高負荷に変動したときに処理能力が著しく低下し
てしまい十分に対処し得ないという欠点があつ
た。 本発明はこのような従来の欠点に鑑みて発明さ
れたものであり、その目的とするところは、1日
間というような短期間における負荷変動に対して
はもちろんのこと、週あるいは季節間というよう
な長期間における負荷変動に対しても十分に対処
し得て、常に良好に浄化処理することができる酸
化池型廃水処理装置を得ようとするにある。 (課題を解決するための手段) この目的を達成する本発明に係る酸化池型廃水
処理装置は、酸化池中に、循環水流と略平行に網
状接触基材群を充填し、かつ下記式で求められる
充填率(X)を10%〜30%にしたことを特徴とす
るものである。 X=MV/Pv×100 ここに、Mvは、縦寸法がl1、横寸法がl2の前記
網状接触基材の複数枚を50mm〜200mmの範囲のピ
ツチで等間隔に枠組構造体全長に亘つて装着して
なる基材ユニツトの幅寸法をl3、かつ前記基材ユ
ニツトの酸化池への充填個数ををnとした場合、
l1×l2×l3×nにより求められる網状接触基材の
見掛充填全容積(m3)を示すと共に、Pvは酸化
池の全容積(m3)を示す。 以下、実施例に基づいて本発明を具体的に説明
するに、第1図において、同一容積の酸化池1
a,1b,1cにはそれぞれロータ2a,2bが
配設され、第1分水槽3から各池に供給された廃
水がこれらロータ2a,2bで、図示矢印方向へ
強制循環されてエアレーシヨンしうるように設け
られていると共にポンプ4を介して各池から汚水
を第2分水槽5へ送ることができるように設けら
れている。 なお各池1a,1b,1cには後述するように
して求められる充填率を同一に保ちながら、その
充填位置が互いに異なるように網状接触基材群が
充填されている。 すなわち酸化池1aにおいては、第2図におい
て示すように、網状接触基材6群を枠組構造体7
で固定してユニツト化した基材ユニツト8が、ロ
ータ2a側直線水路Aに3セツト充填されている
と共にロータ2b側直線水路Bに2セツト充填さ
れている。また、酸化池1bにおいては、ロータ
2a側直線水路Aに2セツト充填され、かつロー
タ2b側直線水路Bには3セツト充填されてい
る。更に、酸化池1cにおいては、コーナ部水路
C,Dそれぞれに1セツト充填されていると共に
ロータ2a側直線水路Aに1セツト及びロータ2
b側直線水路Bに2セツト充填されている。なお
これら池1a,1b,1cに充填されている基材
ユニツト8はほぼ水中に没するように、かつ網状
接触基材6が循環水流とほぼ平行するように充填
されており、そして各池1a,1b,1cにおけ
る充填率は10%〜30%の範囲から選ばれた1つの
値に設定されている。なおここでいう充填率と
は、網状接触基材6群の見掛充填全容積に対する
酸化池の全容積の比をパーセンテージで表わした
ものであり、たとえば酸化池1aの全容積をPv
(m3)とし、この池1aに充填されている網状接
触基材6群の見掛充填全容積をMv(m3)とする
と、その充填率(X)は100Mv/Pvで求められ、
Mvは、第2図において示されている縦寸法がl1
横寸法がl2の網状接触基材6の複数枚を50mm〜
200mmの範囲のピツチPで等間隔に枠組構造体7
全長に亘つて装着してなる基材ユニツト8の幅寸
法をl3とした場合、l1×l2×l3により求められる基
材ユニツト8単体の見掛充填全容積(mv)m3に、
酸化池1aへの充填固数(n)、すなわち、この
例においてはn=5をかけ合わして求められる。 本発明はこのように酸化池1a,1b,1cに
10%〜30%の範囲の充填率が得られるように網状
接触基材6を充填することを必須とするものであ
り、これにより酸化池中においても網状接触基材
6に常に良好に生物膜を付着させることができ、
そして前記生物膜が従来法における浮遊汚泥
(MLSS)と異なり凝集性が大で解体しないとい
う性質を有しているから大きな負荷変動に対して
も十分に対処して得て常に安定した処理を行うこ
とができるのである。 すなわち酸化池1a,1b,1cで処理され、
ポンプ4を介して第2分水槽5へ送られた汚水は
ここから沈殿池9へ送られて生物膜系余剰汚泥が
良好に分離され、次いでこの分離汚泥が酸化池1
a,1b,1cへ返送されて浮遊汚泥化される
が、この汚泥が前記池中の生物膜系汚泥と混合さ
れることにより相対的に沈降性の大きい汚泥が低
負荷の状態においても得られ、而して大巾な負荷
変動に対しても安定した処理を行うことができる
のである。 なお網状接触基材以外の接触基材、たとえば一
般の板接触基材などを充填しても十分な生物膜を
付着させることができないので上述したような本
発明による効果が得られない。 また、網状接触基材の固定ピツチ(P)を50mm
以下にすると、嫌気化すると同時に抵抗が大きく
なり、かつ200mm以上にすると、生物膜量が不足
するから、50mm〜200mmの範囲にする必要がある。 本発明においては、網状接触基材6は池の循環
水流と平行するように充填するのが好ましく、こ
のように充填しないとロータ2a,2bによる循
環流速を低下させて生物膜と廃水との接触が悪く
なり、かつ溶存酸素の供給不十分になると共に返
送された汚泥が浮遊汚泥化されずに池内で沈降し
てしまうので良好な処理を行うことが困難にな
る。なおその充填位置については酸化池1cのよ
うにコーナ部水路C,Dに充填するよりも酸化池
1a,1bのように、直線水路A,Bのみに充填
する方が好ましい。またその充填率(X)につい
ても10%〜30%以外の範囲に設けると良好な処理
を行うことが困難になる。すなわち10%以下の場
合においては十分な生物膜量が得られず、また30
%以上の場合においては循環流速の低下が著し
く、従つて、良好な処理が困難になる。 (実施例) 直線水路A,B及びコーナ部水路C,Dに基材
ユニツト8を充填した酸化池1cにおいて人工下
水を循環流速vが0.3m/s〜2m/s、エアレ
ーシヨン時(下水滞留時間)が24時間、基材ユニ
ツト8における合成樹脂製網状接触基材6の固定
ピツチ(P)が50mm〜200mm、前記基材6の網目
の大きさが5mm〜20mm、かつその線径が1mm〜3
mm、そして負荷を月、火、水、木の各曜日におい
ては10mg/、金曜日においては30mg/、土曜
日及び日曜日においては50mg/というようにく
り返して変動させて処理した場合においては、そ
の充填率(X)と処理水との関係が表1のように
なつた。
(Industrial Application Field) The present invention relates to an oxidation pond type wastewater treatment device. More specifically, the present invention relates to an oxidation pond type wastewater treatment device filled with a reticulated contact base material. (Prior Art) Conventionally, the oxidation pond method has been implemented in general wastewater treatment, etc. This method uses paddle-type or rotor-type aeration to forcefully circulate pond wastewater and perform biological purification treatment using the action of bacteria and algae. Generally, the aeration time is 24 hours or more, and MLSS is 3000~5000mg/,
It is carried out under treatment conditions such as a BOD load of 0.05 to 0.06 Kg/Kg/HLSS/day and a return sludge ratio of 50 to 150%.The advantages include easy operation management and a small amount of surplus sludge. It has also been pointed out that it is suitable even when load fluctuations are quite large. (Problem to be Solved by the Invention) However, even if load fluctuations over a short period of time such as one day can be dealt with almost satisfactorily, load fluctuations over a long period of time such as a week or between seasons cannot be adequately dealt with. There were drawbacks that could not be addressed. In other words, if relatively large load fluctuations occur over a long period of time, suspended solids will disintegrate and no longer settle when the load becomes low, resulting in a significant drop in processing capacity when the load changes from low to high. The problem was that it could not be adequately addressed. The present invention was invented in view of these conventional drawbacks, and its purpose is not only to deal with load fluctuations over a short period of time such as one day, but also to deal with load fluctuations over a week or season. An object of the present invention is to provide an oxidation pond type wastewater treatment device that can sufficiently cope with load fluctuations over a long period of time and can always perform a good purification process. (Means for Solving the Problems) An oxidation pond type wastewater treatment device according to the present invention that achieves this object has a network-like contact base material group filled in the oxidation pond approximately parallel to the circulating water flow, and the following formula: It is characterized in that the required filling rate (X) is 10% to 30%. X=MV/Pv×100 Here, Mv is the number of sheets of the above-mentioned reticulated contact base material whose vertical dimension is l 1 and horizontal dimension is l 2 at equal intervals in the range of 50 mm to 200 mm over the entire length of the framework structure. When the width dimension of the base material unit that has been installed is l 3 and the number of the base material units filled into the oxidation pond is n,
Indicates the apparent filling total volume (m 3 ) of the reticulated contact substrate determined by l 1 ×l 2 ×l 3 ×n, and Pv indicates the total volume (m 3 ) of the oxidation pond. Hereinafter, the present invention will be specifically explained based on Examples. In FIG. 1, an oxidation pond 1 with the same volume
Rotors 2a and 2b are respectively disposed in a, 1b and 1c, and the wastewater supplied from the first water division tank 3 to each pond is forcedly circulated in the direction of the arrow in the figure by these rotors 2a and 2b so that it can be aerated. It is also provided so that wastewater can be sent from each pond to the second water division tank 5 via the pump 4. Each of the ponds 1a, 1b, and 1c is filled with a group of reticular contact base materials such that the filling positions are different from each other while maintaining the same filling rate, which will be described later. That is, in the oxidation pond 1a, as shown in FIG.
Three sets of base material units 8, which are fixed and formed into a unit, are filled in the linear water channel A on the rotor 2a side, and two sets are filled in the linear water channel B on the rotor 2b side. In addition, in the oxidation pond 1b, two sets of straight water channels A on the rotor 2a side are filled, and three sets of straight water channels B on the rotor 2b side are filled. Furthermore, in the oxidation pond 1c, one set is filled in each of the corner waterways C and D, one set is filled in the straight waterway A on the rotor 2a side, and one set is filled in the straight waterway A on the rotor 2a side.
Two sets are filled in straight water channel B on the b side. The base material units 8 filled in these ponds 1a, 1b, 1c are filled so that they are almost submerged in the water, and the reticulated contact base material 6 is filled almost parallel to the circulating water flow. , 1b, and 1c are set to one value selected from the range of 10% to 30%. The filling rate here is expressed as a percentage of the ratio of the total volume of the oxidation pond to the total apparent filling volume of the six groups of reticular contact base materials.For example, if the total volume of the oxidation pond 1a is Pv
(m 3 ), and the apparent total filling volume of the six groups of reticular contact base materials filled in this pond 1a is Mv (m 3 ), then the filling rate (X) is calculated as 100Mv/Pv,
Mv has the vertical dimension l 1 shown in Fig. 2,
Multiple pieces of mesh contact base material 6 with horizontal dimension l2 from 50mm
Frame structure 7 is placed at equal intervals with a pitch P within a range of 200 mm.
If the width dimension of the base unit 8 installed over the entire length is l 3 , then the apparent total filling volume (mv) of the base unit 8 alone, which is determined by l 1 × l 2 × l 3 , is ,
It is obtained by multiplying the solid number (n) filled into the oxidation pond 1a, that is, in this example, n=5. The present invention thus provides oxidation ponds 1a, 1b, and 1c.
It is essential to fill the reticulated contact base material 6 so as to obtain a filling rate in the range of 10% to 30%, and as a result, even in the oxidation pond, the reticulated contact base material 6 is always well maintained with biofilm. can be attached,
Furthermore, unlike the suspended sludge (MLSS) used in conventional methods, the biofilm has a property of high coagulation and does not disintegrate, so it can sufficiently cope with large load fluctuations and always provides stable treatment. It is possible. That is, it is treated in oxidation ponds 1a, 1b, 1c,
The sewage sent to the second water division tank 5 via the pump 4 is sent from there to the settling tank 9, where excess biofilm-based sludge is separated well, and then this separated sludge is sent to the oxidation tank 1.
A, 1b, 1c are returned to floating sludge, but by mixing this sludge with the biofilm sludge in the pond, sludge with relatively high settling properties can be obtained even under low load conditions. Therefore, stable processing can be performed even with wide load fluctuations. Note that even if a contact base material other than the reticulated contact base material, such as a general plate contact base material, is filled, sufficient biofilm cannot be attached, so that the effects of the present invention as described above cannot be obtained. In addition, the fixing pitch (P) of the mesh contact base material was set to 50 mm.
If it is less than 200 mm, the resistance will become large at the same time as it becomes anaerobic, and if it is more than 200 mm, the amount of biofilm will be insufficient, so it is necessary to keep it in the range of 50 mm to 200 mm. In the present invention, it is preferable to fill the reticulated contact base material 6 so as to be parallel to the circulating water flow in the pond. If it is not filled in this way, the circulating flow rate by the rotors 2a and 2b will be reduced and the contact between the biofilm and the wastewater will be reduced. The quality of the sludge deteriorates, the supply of dissolved oxygen becomes insufficient, and the returned sludge does not become floating sludge but settles in the pond, making it difficult to perform good treatment. Regarding the filling position, it is preferable to fill only the straight waterways A and B as in the oxidation ponds 1a and 1b rather than filling the corner waterways C and D as in the oxidation pond 1c. Also, if the filling rate (X) is set outside the range of 10% to 30%, it will be difficult to perform good processing. In other words, if the amount is less than 10%, sufficient biofilm amount cannot be obtained, and 30%
% or more, the circulation flow rate decreases significantly and, therefore, it becomes difficult to achieve good treatment. (Example) Artificial sewage was circulated in an oxidation pond 1c in which straight waterways A and B and corner waterways C and D were filled with base material units 8, at a flow rate v of 0.3 m/s to 2 m/s, during aeration (sewage residence time ) for 24 hours, the fixing pitch (P) of the synthetic resin net contact base material 6 in the base unit 8 is 50 mm to 200 mm, the mesh size of the base material 6 is 5 mm to 20 mm, and the wire diameter is 1 mm to 3
mm, and when the load is repeatedly varied such as 10 mg/day on Monday, Tuesday, Wednesday, and Thursday, 30 mg/day on Friday, and 50 mg/day on Saturday and Sunday, the filling rate is The relationship between (X) and treated water was as shown in Table 1.

【表】 また酸化池1cから、基材ユニツト8を全セツ
ト取除いて同種の下水を同一の循環流速、エアレ
ーシヨン時間及び負荷変動で処理したところ、そ
の処理水質は10mg/〜25mg/であつた。 このことからして明らかのように本発明によれ
ば負荷が大巾に変動しても常に規定値(20mg/
)以下に処理することができる。 なおこのようなすぐれた効果が得られることを
更に確かめるために、従来法のように浮遊汚泥の
みによりMLSS960mg/を自然沈降させて10倍
濃縮する場合と本発明のように返送浮遊汚泥と池
中の生物膜系汚泥とを混合した混合汚泥により
MLSS985mg/を10倍濃縮する場合と比較検討
を行つたところ、前者においては約1時間を要し
たのに対し後者においては約15分であつた。 (発明の効果) このように本発明によれば従来法に比して約1/
4の時間で濃縮することができるから短いサイク
ルで沈殿池9から酸化池1a,1b,1cへ分離
汚泥10を返送し得てその量を増加させることが
でき、而して低負荷はもちろんのこと高負荷にお
いても良好に処理することができると共に短期
間、長期間における負荷変動に左右されずに常に
良好に処理することができる。 なお本発明においては、負荷が0.02Kg/m3・日
〜0.06Kg/m3・日の場合においては充填率(X)
を15%〜20%に、また0.05Kg/m3・日〜0.01Kg/
m3・日の場合においては20%〜30%にするのが好
ましい。
[Table] Furthermore, when the entire set of base unit 8 was removed from the oxidation pond 1c and the same type of sewage was treated with the same circulation flow rate, aeration time, and load fluctuation, the treated water quality was 10 mg/~25 mg/ . As is clear from this, according to the present invention, even if the load fluctuates widely, it always remains at the specified value (20mg/
) can be processed as follows. In order to further confirm that such excellent effects can be obtained, two methods were used: a conventional method in which 960 mg of MLSS was allowed to settle naturally and concentrated 10 times using only suspended sludge, and a method in which MLSS of 960 mg/ml was concentrated 10 times using suspended sludge and returned suspended sludge in a pond as in the present invention. By mixing sludge with biofilm sludge of
A comparative study was conducted with the case where 985 mg of MLSS was concentrated 10 times, and it was found that the former took about 1 hour, while the latter took about 15 minutes. (Effect of the invention) As described above, according to the present invention, compared to the conventional method, the
Since the sludge can be concentrated in 4 hours, the separated sludge 10 can be returned from the settling tank 9 to the oxidation tanks 1a, 1b, and 1c in a short cycle, increasing the amount of sludge, which not only reduces the load but also increases the amount of separated sludge. In particular, it can perform good processing even under high loads, and can always perform good processing regardless of short-term or long-term load fluctuations. In addition, in the present invention, when the load is 0.02Kg/ m3・day to 0.06Kg/ m3・day, the filling rate (X)
15% to 20%, and 0.05Kg/m 3・day to 0.01Kg/
In the case of m 3 days, it is preferably 20% to 30%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る酸化池型廃水処
理装置の概略構成図、第2図は基材ユニツト8の
斜視図である。 1a,1b,1c:酸化池、6:網状接触基
材。
FIG. 1 is a schematic configuration diagram of an oxidation pond type wastewater treatment apparatus according to an embodiment of the present invention, and FIG. 2 is a perspective view of a base material unit 8. 1a, 1b, 1c: oxidation pond, 6: reticulated contact base material.

Claims (1)

【特許請求の範囲】 1 酸化池中に、循環水流と略平行に網状接触基
材群を充填し、かつ下記式で求められる充填率
(X)を10%〜30%にしたことを特徴とする酸化
池型廃水処理装置。 X=Mv/Pv×100 ここに、Mvは、縦寸法がl1、横寸法がl2の前記
網状接触基材の複数枚を50mm〜200mmの範囲のピ
ツチで等間隔に枠組構造体全長に亘つて装着して
なる基材ユニツトの幅寸法をl3、かつ前記基材ユ
ニツトの酸化池への充填個数をnとした場合、l1
×l2×l3×nにより求められる網状接触基材の見
掛充填全容積(m3)を示すと共に、Pvは酸化池
の全容積(m3)を示す。
[Claims] 1. A system characterized by filling an oxidation pond with a group of reticular contact base materials substantially parallel to the circulating water flow, and setting the filling rate (X) determined by the following formula to 10% to 30%. Oxidation pond type wastewater treatment equipment. X=Mv/Pv×100 Here, Mv is a plurality of sheets of the above-mentioned reticulated contact base material having a vertical dimension of l 1 and a horizontal dimension of l 2 , arranged at equal intervals in the range of 50 mm to 200 mm over the entire length of the framework structure. When the width dimension of the base material unit that has been installed is l 3 and the number of base material units filled into the oxidation pond is n, then l 1
Indicates the total apparent filling volume (m 3 ) of the reticulated contact base material determined by ×l 2 ×l 3 ×n, and Pv indicates the total volume (m 3 ) of the oxidation pond.
JP57228310A 1982-12-22 1982-12-22 Oxidation basin type waste water treating device Granted JPS59115787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57228310A JPS59115787A (en) 1982-12-22 1982-12-22 Oxidation basin type waste water treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57228310A JPS59115787A (en) 1982-12-22 1982-12-22 Oxidation basin type waste water treating device

Publications (2)

Publication Number Publication Date
JPS59115787A JPS59115787A (en) 1984-07-04
JPH0210718B2 true JPH0210718B2 (en) 1990-03-09

Family

ID=16874433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57228310A Granted JPS59115787A (en) 1982-12-22 1982-12-22 Oxidation basin type waste water treating device

Country Status (1)

Country Link
JP (1) JPS59115787A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2814193B2 (en) * 1993-12-28 1998-10-22 旭サカイ株式会社 Water treatment equipment
DE10350503A1 (en) * 2003-10-29 2005-06-16 Herding Gmbh Filtertechnik Reactor for anaerobic wastewater treatment
CN105110456B (en) * 2015-10-09 2017-07-11 大连宇都环境技术材料有限公司 Low energy consumption filler is intercepted and persuasion system
WO2017203684A1 (en) * 2016-05-27 2017-11-30 鹿島建設株式会社 Methane fermentation treatment system and methane fermentation treatment method

Also Published As

Publication number Publication date
JPS59115787A (en) 1984-07-04

Similar Documents

Publication Publication Date Title
US6811700B2 (en) Integrated hydroponic and fixed-film wastewater treatment systems and associated methods
Semmens et al. COD and nitrogen removal by biofilms growing on gas permeable membranes
EP1607374B1 (en) Method for operating anaerobic ammonium oxidation vessel and anaerobic ammonium oxidation equipment
JPS6223497A (en) Sewage treatment apparatus by activated sludge bed
US9598296B2 (en) Decanted bio-balanced reactor and method
US3386911A (en) Waste treatment for phosphorous removal
US3623976A (en) Liquid wastes treatment method
JP2659167B2 (en) Sewage denitrification dephosphorization method and apparatus
US6387267B1 (en) Liquid waste treatment bioreactor process and apparatus
JPH0210718B2 (en)
EP0396142A1 (en) Process and apparatus for controlling biological processes for phosphor and nitrogen removal in activated sludge plants
US8012353B2 (en) Method and apparatus for simultaneous clarification and endogenous post denitifrication
CN210457847U (en) Sewage full-effect treatment system based on MBBR and magnetic separation
CN102791640B (en) Method and device for biologically treating organic wastewater
Su et al. Treatment of piggery wastewater by contact aeration treatment in coordination with the anaerobic fermentation of three‐step piggery wastewater treatment (TPWT) process in Taiwan
SG186810A1 (en) Sewage treatment apparatus
Matsche Control of Bulking Sludge–Practical Experiences in Austria
CN107250058B (en) Method and apparatus for biological treatment of organic wastewater
Wessman et al. Increasing the capacity for treatment of chemical plant wastewater by replacing existing suspended carrier media with Kaldnes Moving Bed (TM) media at a plant in Singapore
US7976703B2 (en) Treating unit for simultaneous removal of carbon and nitrogen from wastewater and treating apparatus having the same
EP0812807B1 (en) Process and reactor for continuously microbiologically treating highly loaded wastewater
Liao Salmonid hatchery wastewater treatment
EP0866774A2 (en) Single-tank sewage treatment plant
JP2834765B2 (en) Wastewater treatment method
JPH0659479B2 (en) Biological nitrification denitrification equipment