JPH02106698A - Electromagnetic acceleration device - Google Patents

Electromagnetic acceleration device

Info

Publication number
JPH02106698A
JPH02106698A JP25878488A JP25878488A JPH02106698A JP H02106698 A JPH02106698 A JP H02106698A JP 25878488 A JP25878488 A JP 25878488A JP 25878488 A JP25878488 A JP 25878488A JP H02106698 A JPH02106698 A JP H02106698A
Authority
JP
Japan
Prior art keywords
rail
outer layer
rails
superconducting
superconduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25878488A
Other languages
Japanese (ja)
Inventor
Toshiyuki Yamanaka
敏行 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP25878488A priority Critical patent/JPH02106698A/en
Publication of JPH02106698A publication Critical patent/JPH02106698A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41BWEAPONS FOR PROJECTING MISSILES WITHOUT USE OF EXPLOSIVE OR COMBUSTIBLE PROPELLANT CHARGE; WEAPONS NOT OTHERWISE PROVIDED FOR
    • F41B6/00Electromagnetic launchers ; Plasma-actuated launchers
    • F41B6/006Rail launchers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Linear Motors (AREA)

Abstract

PURPOSE:To enable reduction of incurring of the Joule loss of a rail part by a method wherein a pair of rails have a double structure type rail in which a rail inner layer formed by a conduction material and a rail outer layer formed by a superconduction material are adhered to each other for bonding. CONSTITUTION:An ordinary conduction material is used for inner layer rails 1 and 2, and outer layer rails 3 and 4 formed by a superconduction material is adhered and bonded to the respective inner layer rails. In prior to operation, the outer layer rails 3 and 4 formed by the superconduction material are cooled to temperature lower than a critical temperature intrinsic to the material and brought into a superconduction state. A current I flows through a source circuit system and the outer layer rail 3 under a superconduction state, and flows through an armature 7 after the passage of it through the inner layer rail 1 in a position in the vicinity of the armature 7 mounted to a flying body 6. Further, the current flows through the outer layer 4 under a superconduction state to the original power circuit system after the flow of it through the inner layer rail 2 on the opposite side. In this case, regardless of the position of the flying body 6 (independently of the magnitude of L), a Joule loss in rail structure during energization is only that incurring during the flow of it across the parts, having a thickness (t), of the inner layers 1 and 2 and that incurring at the armature 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレールガン式電磁加速装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a railgun type electromagnetic accelerator.

〔従来の技術〕[Conventional technology]

従来のレールガン式1磁加速装置の原理図を第4図に示
す。すなわち第4図の一対の4亀材衷のレール14.1
5の間に飛翔体6を設置し、飛翔体6のfj!に都に導
電材製のアーマチャ7を設け(飛翔体が導電性材料より
成る場合にはアーマチャが不要のm会もめる)この状態
で′1流■を訛すことによシ磁場Bを飛翔体6後万に発
生させ、この磁場Bとアーマチャ7に流れる′域流工の
相互作用に基ず< gtd力F (F=I xB )に
よシ飛翔体6に’urJ方に刃口速し、所要の速反Vを
得る。
FIG. 4 shows a principle diagram of a conventional rail gun type single magnetic accelerator. In other words, a pair of four-legged rails 14.1 in Figure 4.
A flying object 6 is installed between 5 and fj! of the flying object 6. In this state, an armature 7 made of a conductive material is installed at the base (if the flying object is made of a conductive material, an armature is not required). 6, and based on the interaction of this magnetic field B and the flow force flowing through the armature 7, <gtd force F (F=I xB) causes the projectile 6 to have a blade velocity in the direction , obtain the required quick reaction V.

従って、両速射出を要する場合には、第−極面には通t
’4流工を大にし又、レール14.15長さを長くする
必要がある。
Therefore, when dual-speed injection is required, the -th pole surface has a through hole of t.
'It is necessary to increase the size of the 4th line and increase the length of the rail 14.15.

尚、第4図は加速原理を説明するためのものであシ、レ
ール14,15自身に作用する電磁力等に対する補強構
造や、レール14.15相互間の絶縁構造、冷却構造等
は図示していない。
Note that FIG. 4 is for explaining the acceleration principle, and the reinforcement structure against electromagnetic force acting on the rails 14 and 15 themselves, the insulation structure between the rails 14 and 15, the cooling structure, etc. are not shown. Not yet.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

飛翔体6を射出する時、電源エネルギーは飛翔体の運動
エネルギーとして効率的に与えられるべきであるが、種
々のエネルギーロスが存在スる。
When ejecting the flying object 6, the power source energy should be efficiently provided as kinetic energy to the flying object, but various energy losses occur.

この内大きなものとしてレール14.15におけるジュ
ール損が挙げられる。第5図(、)に示す加速初期にお
いては、レール中の通電距離が短かいのでジュール損は
小さいが、同図(b)の加速後期になると通電距離[有
])が欠くなυジュール損が大きい。
Among these, the Joule loss in the rails 14 and 15 is the largest one. At the early stage of acceleration shown in Figure 5(,), the energizing distance in the rail is short, so the joule loss is small, but in the late acceleration period shown in Figure 5(b), the energizing distance [exist]) is insufficient and υ joule loss. is large.

従がって、飛翔体60硝速射出を求める場付、レール1
4.15の長さは長くなりジーール偵は大きくなる。そ
の試詳例を第6図に示す。第6図の縦軸は一般的な銅レ
ールにより一定屯流通也で等加速度加速するとした場合
のノーール損/飛翔体運動エネルギーを、横@は射出適
度を表わす。第6図によシ、高速を必要とする場合程、
ソー−ル須対策無しには、効率的なシステムとすること
はできないことが明らかである。
Therefore, when determining the velocity of projectile 60 shot, rail 1
4. The length of 15 becomes longer and Zeal Detective becomes larger. A detailed example of the test is shown in Figure 6. The vertical axis in FIG. 6 represents the noll loss/projectile kinetic energy when a general copper rail is used to accelerate the missile at a constant velocity and constant velocity, and the horizontal axis @ represents the ejection mode. According to Figure 6, when high speed is required,
It is clear that an efficient system cannot be achieved without taking measures against the source.

このような対策の一つとして、第7図に示すように多段
加速システムがある。これは長くないレール14−1.
15−1〜14−rs、15nより、実質的には長大レ
ール構造とし、ジュール倒の観点からは第5図のンに例
示した通電距離(6)を艮〈ならないようにしている。
As one such measure, there is a multi-stage acceleration system as shown in FIG. This is not a long rail 14-1.
From 15-1 to 14-rs and 15n, the rail structure is substantially long, and from the viewpoint of reducing the number of joules, the current conduction distance (6) illustrated in FIG.

しかし、この場合、多段連結部の構造、設ft梢度等飛
翔体6の滑らかな運動を妨げる要因が多く、これらの対
米が必要となる。
However, in this case, there are many factors that impede smooth movement of the flying object 6, such as the structure of the multi-stage connecting portion and the height of the height of the installation height, and it is necessary to adjust these factors.

〔課題を解決するだめの手段〕[Failure to solve the problem]

(1)  第1の本発明に係る゛電磁加速装置は、一対
のレールと、該レールに接続する域源、スイッチ系から
成る電磁加速装置において、前記一対のレールは41を
材料から成るレール内層と、超伝導材料から成るレール
外層を密着接合せしめた二重溝造式レールをイすること
を特徴とする。
(1) An electromagnetic accelerator according to a first aspect of the present invention is an electromagnetic accelerator comprising a pair of rails, an area source connected to the rails, and a switch system, in which the pair of rails has a rail inner layer 41 made of a material. It is characterized by a double grooved rail in which the outer layer of the rail made of superconducting material is closely bonded.

(2)  第2の本発明に係るt蝿加速装置は、第1の
本発明に係る装置J/lにおいて、内層レールと外層レ
ールの間に冷却通路を設けたことを特徴とする。
(2) The fly accelerator according to the second invention is characterized in that, in the apparatus J/l according to the first invention, a cooling passage is provided between the inner layer rail and the outer layer rail.

(3)第3の本発明に係る電磁71i1速装盆は、第l
の本発明に係る装置において、外層レールと超伏4′!
を刀貯蔵装置と超伝導ケーブルと超伝導水久電匠スイッ
チを連結するとともに、外層レールと超伝導ケーブルと
超伝導水久奄流スイッチを短絡するように連結すること
を特徴とする。
(3) The electromagnetic 71i 1-speed loading tray according to the third aspect of the present invention is
In the device according to the invention, the outer layer rail and the super-lowered 4'!
The sword storage device, the superconducting cable, and the superconducting Mizukudensho switch are connected together, and the outer layer rail, the superconducting cable, and the superconducting Mizukudensho switch are connected so as to be short-circuited.

(4)  第4の不発明に係る電磁加速装置は、第2の
不発明に顕る装置において、外層レールと超伝導′―力
貯成装置と超伝導ケーブルと、超伝導水久屯流スイッチ
を連絡するとともに、外層レールと超伝導ケーブルと超
伝導永久NL流スイッチを短絡するように迷路すること
を特徴とする。
(4) The electromagnetic accelerator according to the fourth non-invention is the device manifested in the second non-invention, which includes an outer layer rail, a superconducting force storage device, a superconducting cable, and a superconducting water flow switch. It is characterized by a maze that connects the outer layer rail, the superconducting cable, and the superconducting permanent NL flow switch.

〔作用〕[Effect]

不発明は (1)  導′屯材料製の内層レール(従来のレールに
相当)の外側に超伏4材料製の外層レールをぞ層接合し
た二ノー構造式レールを採用するため、レール部のノー
ールfjt fC大幅に低ばてきる。
The non-inventiveness is (1) the use of a two-layer rail in which an outer layer rail made of a super-flat material is bonded to the outside of an inner layer rail made of a conductive material (equivalent to a conventional rail), so the rail part is Nord fjt fC will be significantly lower.

2) 超伝導状態の外l−レールが何らかの熱的外乱に
起因するクエンチを生ずること全防止するための、冷却
通路を設け/+ため、超伝導の安定化を増大できる。
2) The stabilization of superconductivity can be increased by providing cooling passages to completely prevent the superconducting outer l-rail from quenching due to any thermal disturbances.

(3)超伏導電力貯蔵装置、超伝導ケーブル、超伝導永
久1i電流スイッチを採用した全系超伝導システムを採
用するため、設計配置上の目出度が増大する。
(3) Since a full-system superconducting system is adopted that employs a superconducting power storage device, a superconducting cable, and a superconducting permanent 1i current switch, the conspicuousness of the design layout increases.

〔実施例〕〔Example〕

第1図に本発明装置の原理的構造を示す。同ノーレール
1.2には通常の44材料を用い、こハらに超伝導材料
よシ成る外層レール3,4を腎漸コ妾合する。運転に先
立って、超伝導材料から成る外層レール3,4をその材
料固有の臨界温度(T(J以下に冷却し超伝導状態にす
る。(冷却構造は図示しない。) 第2図は飛翔体6の加速運動の模様全初期と後期のめる
二点を代表例としてとり出しくa) 、 (bJに示す
。電流工は框源回路系を通り、逓伝4吠7藝の外層レー
ル3を通少、飛翔体6に付設さnたアーマチャ7の近傍
にて、内層レール1を経て、アーマチャ7を通る。更に
反対側の内1−レール2を性で、Mi伝導状態の外l−
レール4を過少、元の屯源回路系へと流れる。この持回
(す(b)よシ理解できるように、飛翔体6の位置がど
こKあろうと(Lの大小に無関係に)通電時のレール構
造におけるノ。
FIG. 1 shows the basic structure of the device of the present invention. The normal 44 material is used for the Norrail 1.2, and outer layer rails 3 and 4 made of superconducting material are attached to the outer layer rails 3 and 4. Prior to operation, the outer layer rails 3 and 4 made of a superconducting material are cooled to a critical temperature (T (J) or less unique to that material) to a superconducting state. (The cooling structure is not shown.) Figure 2 shows a flying object. Let us take two points as representative examples, including the early and late stages of the acceleration motion of 6.A) and (bJ). In the vicinity of the armature 7 attached to the flying object 6, it passes through the inner layer rail 1 and then through the armature 7.Furthermore, with the inner layer rail 2 on the opposite side, the outer layer in the Mi conducting state is
A small amount flows through rail 4 to the original tunyuan circuit system. As can be understood from this (b), no matter where the flying object 6 is located (regardless of the size of L), the difference in the rail structure when energized is the same.

ル損は、内層レール1.2の厚さ(1)の部分を横切る
時に発生するもの及びアーマチャ?で発生するものだけ
である。従って、高速射出が要求される場合でレール長
が長くなる場合には、本発明装置に4<ジュール損低減
の効果は極めて大である。
Losses that occur when crossing the thickness (1) of the inner rail 1.2 and the armature? Only those that occur in Therefore, when high-speed injection is required and the rail length is long, the effect of reducing 4<joule loss in the apparatus of the present invention is extremely large.

従って従来案(第7図)のような多段レール構造にする
必要もなく、前述のような多段化に起因する問題も発生
しない。
Therefore, there is no need for a multi-tiered rail structure as in the conventional scheme (FIG. 7), and the problems caused by the multi-tiering as described above do not occur.

第1図(e)は、本発明の他の実施例を示すものでめり
、内層レールと外層レールの間に付却通路5全形成する
。超伝導状態にある外I−レール3,4は、熱的外乱に
よって常法4転移(クエンチ)する場合があシ、この発
生はシステムの運転継続を不可能に至らしめる。従って
、万一常伝導転移しても、それが拡大、伝播しないよう
に抑制すると共に、超伝導に1111帰させねばならな
い。′4di加速装K(レールガンンの場合、上記の熱
的外乱の最大の発生源は、内層レール1,2でのジュー
ル損及び、飛翔体6及びアーマチャ7と内層レール1゜
2との摺動熱、アーク発熱でおるから、これらの外層レ
ール3,4への熱的外乱の侵入を防止する目的で、超伝
導状態を保持するに十分な除熱量を有する冷却通路5を
設けることによシ、システムの運転信頼性を向上させる
FIG. 1(e) shows another embodiment of the present invention, in which a charging passage 5 is entirely formed between the inner layer rail and the outer layer rail. The outer I-rails 3, 4 which are in a superconducting state may be quenched due to thermal disturbances, and this occurrence makes it impossible to continue operating the system. Therefore, even if normal conduction transition should occur, it must be suppressed so that it does not expand or propagate, and it must be returned to superconductivity. '4di accelerator K (in the case of a rail gun, the biggest sources of the above thermal disturbance are the Joule loss in the inner rails 1 and 2, and the sliding between the projectile 6 and armature 7 and the inner rail 1°2). In order to prevent thermal disturbances from entering these outer layer rails 3 and 4, a cooling passage 5 having a sufficient amount of heat removal to maintain the superconducting state is provided. , improve the operational reliability of the system.

第3図は前述の二層構造式レール慣通をゼする電磁加速
装fit(レールガン)に、その通電用厄諒として超伝
導電力貯蔵装置8を採用し、そ扛と外層レール3,4と
を連結する超伝導ケーブル9、超伝導永久′dL流スイ
ッチ10を設け、更に@記外層レール3,4を短絡する
超伝導ケーブル11゜超伝導永久′?lL流スイッチ1
2を設けたシステムである。このシステムの運転は、次
の手順により行なう。永久′4流スイッチ12閉、永久
電流スイッチノ0開の状態で、外部電源13より超伝導
電力貯蔵装f8に光′4する。光電完了時点で、永久−
流スイッチ10を閉とし、徐々く外部【源13系と切り
雌し、永久゛1流モード(8→lθ→3→12→11→
4→9→8の永久電流)に移行する。この状態で永久′
底流スイッチ12を開とすることによシ、電流は放電モ
ード(8→1o→3→1−47→2→4→9→8)とな
シ、飛翔体6を加速する。
Figure 3 shows an electromagnetic accelerator fit (railgun) that uses the aforementioned two-layer structure rail, and employs a superconducting power storage device 8 as its energizing device, and connects it to the outer layer rails 3 and 4. A superconducting cable 9 that connects the two, a superconducting permanent'dL flow switch 10, and a superconducting cable 11 that short-circuiting the outer layer rails 3 and 4. LL flow switch 1
This is a system with 2. The system is operated according to the following steps. With the permanent current switch 12 closed and the permanent current switch 0 open, light is emitted from the external power source 13 to the superconducting power storage device f8. Permanent upon completion of photoelectric
Close the flow switch 10, gradually disconnect the external source 13, and switch to permanent 1st flow mode (8→lθ→3→12→11→
Persistent current of 4 → 9 → 8). Permanently in this state
By opening the undercurrent switch 12, the current accelerates the flying object 6 in the discharge mode (8→1o→3→1-47→2→4→9→8).

本システムにより、システム全体としてのゾユル倒を一
層低減でき、先述の二ノー傳造式レールの採用効果を高
めることができる。又、常伝導ケーブル、11L源系を
用いる場合は、ノユール損金憾カ小さくするために1 
レール構造にできるだけ近接して電源を配置する必要が
あったが、本発明のように起伝導システムとすることに
より、配置設計上の自由度が傷めて増大する。
With this system, it is possible to further reduce the collapse of the system as a whole, and it is possible to enhance the effect of adopting the above-mentioned Nino Denzo type rail. In addition, when using a normal conduction cable or 11L source system, 1.
It was necessary to arrange the power supply as close as possible to the rail structure, but by using a conduction system as in the present invention, the degree of freedom in arrangement design is increased, rather than being impaired.

〔発明の効果〕〔Effect of the invention〕

本発明装置は前述のように構成式nているので、次に記
載するような効果を奏する。
Since the device of the present invention has the above-mentioned configuration formula, it produces the following effects.

■ レール部のジュール損を低減でき、砥源容童を小さ
くできる。又長いレールを要する場合でも4に段レール
にできる。
■ Joule loss in the rail section can be reduced, and the togen-yodo can be made smaller. Also, even if a long rail is required, it can be made into a four-tiered rail.

■ 超伝導の安定化が増大し、装置としての信頼性が高
くなる。
■ The stability of superconductivity will increase, making the device more reliable.

■ システム全体としてのジュール損を低減でき、を源
谷量を一ノー小さくでさる。又配置設計上の自出浅が増
大する。
■ The joule loss of the entire system can be reduced, and the source and valley amount can be reduced by one no. In addition, the problem with layout design increases.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の原塊を説明する図、第2図は本発
明装置によシソ、−ル狽が距離りに依らないことを示す
図、 第3図は本発明の他の実施例で、′1電源路まで含めて
全系超伝導としたシステム図、 第4図は従来のレールガン式電磁/Jil迷装置の原塊
を示す図、 第5図は従来のレール構造においては、ジュール損が距
離LK式存して大さくなることtd例する図、 第6図は従来のレール構造におけるジュール損’)$−
X t’ll ’c 73’(“1・   j、第7図
は従来の多段式装置系を示す図である。 1.2・・・内層レール、3,4・・・外層レール、5
・・・冷却通路、6・・・飛翔体、7・・・アーマチャ
、8・・・超伝導電力貯蔵装置、9.11・・・超伝導
ケーブル、10.12・・・超伝導永久電流スイッチ、
13・・・外m1t(II、! 4 、15・・・レー
ル、16・・・ケーブル(言伝4)、ノア・・・スイッ
チ(言伝4)%14−1〜ノ4−n、ノ5−ノ〜i s
 −rr−・レール(多段)、 16−1〜16−n・
・・ケーブル(言伝4)%  17−1〜17−n・・
・スイッチ(言伝4)、1B−1〜1g−n−’11m
。 出願入代雇人 弁坤土 鈴 江 武 彦 (a) (b) 第 図 (a) 射出速ff1l[kI−n/s] 第 図 (a) 第 図 (b))
Fig. 1 is a diagram illustrating the original mass of the device of the present invention, Fig. 2 is a diagram illustrating that the strength and control of the device of the present invention does not depend on distance, and Fig. 3 is another embodiment of the present invention. For example, the system diagram shows that the entire system is superconducting, including the '1 power supply path. Figure 4 shows the original mass of the conventional rail gun type electromagnetic/Jil stray device. Figure 5 shows the conventional rail structure. Figure 6 shows an example of how Joule loss increases with distance LK.
X t'll 'c 73'("1.j, Figure 7 is a diagram showing a conventional multi-stage device system. 1.2... Inner layer rail, 3, 4... Outer layer rail, 5
...Cooling passage, 6... Flying object, 7... Armature, 8... Superconducting power storage device, 9.11... Superconducting cable, 10.12... Superconducting persistent current switch ,
13...Outer m1t (II,! 4, 15...Rail, 16...Cable (Genden 4), Noah...Switch (Genden 4)%14-1~No4-n,No5- No~is
-rr-・Rail (multi-stage), 16-1 to 16-n・
・・Cable (Genden 4)% 17-1~17-n・・
・Switch (Genden 4), 1B-1~1g-n-'11m
. Takehiko Suzue (a) (b) Figure (a) Injection speed ff1l [kI-n/s] Figure (a) Figure (b))

Claims (4)

【特許請求の範囲】[Claims] (1)一対のレールと、該レールに接続するスイッチ系
から成る電磁加速装置において、前記一対のレールは導
電材料から成るレール内層と、超伝導材料から成るレー
ル外層を密着接合せしめた二重構造式レールを有するこ
とを特徴とする電磁加速装置。
(1) In an electromagnetic accelerator consisting of a pair of rails and a switch system connected to the rails, the pair of rails has a double structure in which an inner rail layer made of a conductive material and an outer rail layer made of a superconducting material are tightly bonded. An electromagnetic accelerator characterized by having a type rail.
(2)内層レールと外層レールの間に冷却通路を設けた
ことを特徴とする請求項1の電磁加速装置。
(2) The electromagnetic accelerator according to claim 1, characterized in that a cooling passage is provided between the inner layer rail and the outer layer rail.
(3)外層レールと超伝導電力貯蔵装置と超伝導ケーブ
ルと超伝導永久電流スイッチを連結するとともに、外層
レールと超伝導ケーブルと超伝導永久電流スイッチを短
絡するように連結することを特徴とする請求項1の電磁
加速装置。
(3) The outer layer rail, the superconducting power storage device, the superconducting cable, and the superconducting persistent current switch are connected, and the outer layer rail, the superconducting cable, and the superconducting persistent current switch are connected so as to be short-circuited. The electromagnetic accelerator according to claim 1.
(4)外層レールと超伝導電力貯蔵装置と超伝導ケーブ
ルと、超伝導永久電流スイッチを連絡するとともに、外
層レールと超伝導ケーブルと超伝導永久電流スイッチを
短絡するように連絡することを特徴とする請求項2の電
磁加速装置。
(4) The outer layer rail, the superconducting power storage device, the superconducting cable, and the superconducting persistent current switch are connected to each other, and the outer layer rail, the superconducting cable, and the superconducting persistent current switch are connected to short-circuit each other. The electromagnetic accelerator according to claim 2.
JP25878488A 1988-10-14 1988-10-14 Electromagnetic acceleration device Pending JPH02106698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25878488A JPH02106698A (en) 1988-10-14 1988-10-14 Electromagnetic acceleration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25878488A JPH02106698A (en) 1988-10-14 1988-10-14 Electromagnetic acceleration device

Publications (1)

Publication Number Publication Date
JPH02106698A true JPH02106698A (en) 1990-04-18

Family

ID=17325029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25878488A Pending JPH02106698A (en) 1988-10-14 1988-10-14 Electromagnetic acceleration device

Country Status (1)

Country Link
JP (1) JPH02106698A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109059629A (en) * 2018-08-20 2018-12-21 北京机械设备研究所 A kind of track of the electromagnetic railgun cooling based on deionized water
CN109059628A (en) * 2018-08-15 2018-12-21 北京机械设备研究所 A kind of electromagnetic railgun track with cooling hole

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109059628A (en) * 2018-08-15 2018-12-21 北京机械设备研究所 A kind of electromagnetic railgun track with cooling hole
CN109059629A (en) * 2018-08-20 2018-12-21 北京机械设备研究所 A kind of track of the electromagnetic railgun cooling based on deionized water

Similar Documents

Publication Publication Date Title
Lee et al. Review of maglev train technologies
US3589300A (en) Magnetic suspension system
KR101137968B1 (en) Magnetically levitated system and magnetically levitated vehicle system using superconductor
CN107221401A (en) A kind of superconducting magnet system and its quench guard method
US10604898B2 (en) Rail-bound maglev train
JPH02106698A (en) Electromagnetic acceleration device
CN109672317A (en) A kind of electronic door drive of modularization translation and its drive control method based on linear motor
JP3640941B2 (en) Linear motor cooling system
CN207449664U (en) A kind of passive type levitated superconducting magnet train
US5586504A (en) Dual-keel electrodynamic maglev system
US11171479B2 (en) Superconducting magnet device and method for limiting current decrease in case of abnormality therein
Kalsi et al. Iron-core superconducting magnet design and test results for maglev application
Ghassemi et al. Thermal and electromagnetic analysis of an electromagnetic launcher
Yao et al. Hydrodynamic lubrication of a liquid conducting film controlled by magnetic pressure at rail–Armature interface
JP3836700B2 (en) Emergency degaussing device for magnetic levitation train
CN113928127A (en) Vibration reduction and balance control system of high-temperature superconducting magnetic levitation train
Ohtsuka et al. Superconducting levitated high speed ground transportation project in Japan
CN201749756U (en) Refrigeration system used for superconducting magnets
US4766336A (en) High efficiency rapid fire augmented electromagnetic projectile launcher
JPH04109803A (en) Carrier
CN206758316U (en) The electromagnetic relay of high pressure resistant large current load
Chu et al. Design, manufacture and performance evaluation of HTS electromagnets for the hybrid magnetic levitation system
CN112509778B (en) High-temperature superconducting magnet device for superconducting maglev train and use method
Schneider et al. Experiments with brush armatures: New technical solutions
Chen et al. Optimised design consideration of suspension choppers in Maglev train using SiC MOSFET modules