JPH02106492A - Control thrust distributing device - Google Patents

Control thrust distributing device

Info

Publication number
JPH02106492A
JPH02106492A JP63258785A JP25878588A JPH02106492A JP H02106492 A JPH02106492 A JP H02106492A JP 63258785 A JP63258785 A JP 63258785A JP 25878588 A JP25878588 A JP 25878588A JP H02106492 A JPH02106492 A JP H02106492A
Authority
JP
Japan
Prior art keywords
thrust
control
total
vehicle
navigation body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63258785A
Other languages
Japanese (ja)
Other versions
JP2749833B2 (en
Inventor
Ikuo Yamamoto
郁夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP63258785A priority Critical patent/JP2749833B2/en
Publication of JPH02106492A publication Critical patent/JPH02106492A/en
Application granted granted Critical
Publication of JP2749833B2 publication Critical patent/JP2749833B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To secure the superior constant-point holding function and route holding function by carrying out the thrust distribution of a plurality of thrust generators under the condition that the fuel consumption reduces to the min., when the constant-point holding and route holding of a navigation body (aeroplane, underwater navigation body, vessel, etc.) are carried out. CONSTITUTION:The position, angle, and speed information of a navigation body are detected by a detector 1, and the set position, set angle, and the set speed information are outputted by a setting device 2, and the command signals for the total thrust force and total moment which are necessary for constant- point-holding the navigation body 7 at a set position or for route-holding the navigation body 7 at a set route are outputted from the above-described signals by a control command calculator 3. Each driving means 5 for a plurality of thrust generators 6 is allowed to output a thrust distribution signal so that the total thrust and total moment can be secured with the min. fuel consumption by a control thrust optimum distributor 4 according to the command signals, and the movement of the navigation body 7 is controlled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は航走体(飛行体、水中航走体、船舶等)の制御
推力配分装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a control thrust distribution device for a moving vehicle (a flying vehicle, an underwater vehicle, a ship, etc.).

〔従来の技術〕[Conventional technology]

航走体には、運動制御用の推力発生器(スラスタ、舵、
プロ(う等)が設けられ、推力発生器駆動手段により推
力発生器を駆動してその推力にょ9航走体の運動をコン
トロールしている。
The vehicle is equipped with thrust generators (thrusters, rudders,
A thrust generator is provided, and the thrust generator is driven by a thrust generator drive means to control the motion of the propellant by the thrust generator.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、このような従来の航走体の運動コントロ
ール装置においては、航走体を設定位置に定点保持ある
いは設定航路に航路保持するために必要なトータル推力
(Forceコマンド)とトータルモーメン) (Mo
mentコマンド)のコマンド信号を受けて、推力発生
器の駆動手段に対して、燃料消費が最小となるように最
適な推力配分を行うための制御推力配分装置は未だ存在
せず、その実現が長い間待ち望まれていた。
However, in such a conventional motion control device for a vehicle, the total thrust (Force command) and total moment (Mo
There is still no control thrust distribution device that receives the command signal (ment command) and distributes the thrust optimally to the drive means of the thrust generator so that fuel consumption is minimized, and it has been a long time since it was realized. It was long awaited.

本発明は、上記問題を解決し優れた定点保持制御、航路
保持制御を可能にした航走体の制御推力配分装置を提供
することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a control thrust distribution device for a mobile vehicle that solves the above problems and enables excellent fixed point keeping control and course keeping control.

〔課題を解決するための手段〕[Means to solve the problem]

本発明にかかる制御推力配分装置は複数の運動制御用推
力発生器を有する航走体において、航走体の位置、角度
、速度情報を検出する検出器1と。
A control thrust distribution device according to the present invention includes a detector 1 for detecting position, angle, and speed information of a moving object in a moving object having a plurality of thrust generators for motion control.

航走体の設定位置、設定角度、設定速度情報を出力する
設定器2と、検出器1と設定器2の情報を比較し航走体
を設定位置あるいは設定航路に保持するために必要なト
ータル推力とトータルモーメントのコマンド信号を出力
する制御コマンド演算器3と、制御コマンド演算器3か
らのコマンド信号を入力し最小燃料消費で前記トータル
推力とトータルモーメントを確保するように複数個の推
力発生器のそれぞれの駆動手段に推力配分信号を出力す
る制御推力最適配分器4と、前記制御推力最適配分器4
からの出力信号を入力し推力発生器を駆動する駆動手段
5と、推力発生器6を具備することを特徴とする。
A setter 2 outputs information on the set position, set angle, and set speed of the vehicle, and compares the information from the detector 1 and the setter 2 to determine the total required to maintain the vehicle at the set position or on the set route. a control command calculator 3 that outputs command signals of thrust and total moment; and a plurality of thrust generators that input command signals from the control command calculator 3 to ensure the total thrust and total moment with minimum fuel consumption. a control thrust optimum distributor 4 which outputs a thrust distribution signal to each driving means of the control thrust optimum distributor 4;
The present invention is characterized in that it is equipped with a driving means 5 that inputs an output signal from the engine and drives the thrust generator, and a thrust generator 6.

じ作用〕 本発明の航走体の制御推力配分装置によれば、制御コマ
ンド演算器3によシ航走体を設定位置に定点保持あるい
は設定航路に航路保持するために必要なトータル推力(
Forcoコマンド)とトータルモーメント(Mom@
ntコマンド)のコマンド信号を発生させ、制御推力最
適配分器4により、最小燃料消費で前記トータル推力と
トータルモーメントを確保するように複数の推力発生器
のそれぞれの駆動手段に推力配分信号を出力するため、
航走体の定点保持制御あるいは航路保持制御が可能にな
る。
According to the control thrust distribution device for a vehicle of the present invention, the control command calculator 3 calculates the total thrust (
Forco command) and total moment (Mom@
nt command), and the control thrust optimum distributor 4 outputs a thrust distribution signal to each driving means of the plurality of thrust generators so as to secure the total thrust and total moment with minimum fuel consumption. For,
It becomes possible to control the vehicle to maintain a fixed point or maintain a course.

〔実施例〕〔Example〕

本発明の実施例を第1図〜第4図に示す。 Examples of the present invention are shown in FIGS. 1 to 4.

第1図は本発明に係る航走体の制御推力配分装置のシス
テム図を示す。第1図において検出器1によシ航走体の
位置、角度、速度情報を検出し、設定器2により設定位
置、設定角度、設定速度情報を出力する。検出器1、設
定器2からの信号は制御コマンド演算器3に送られる。
FIG. 1 shows a system diagram of a control thrust distribution device for a vehicle according to the present invention. In FIG. 1, a detector 1 detects the position, angle, and speed information of the vehicle, and a setting device 2 outputs the set position, set angle, and set speed information. Signals from the detector 1 and setting device 2 are sent to a control command calculator 3.

制御コマンド演算器3は航走体7を設定位置に定点保持
あるいは設定航路に航路保持するために必要なトータル
推力(Forcoコマンド)トド−タルモーメント(M
omentコマンド)のコマンド信号を出力する。
The control command calculator 3 calculates the total thrust (Forco command) and total moment (M
oment command) is output.

上記制御コマンド演算器3からのコマンド信号を受けて
制御推力最適配分器4は最小燃料消費で前記トータル推
力及びトータルモーメントを確保するように複数個の推
力発生器のそれぞれの駆動手段に推力配分信号を出力す
る。そして推力発生器駆動手段5により推力発生器6を
駆動し航走体7の運動制御を行なう。
In response to the command signal from the control command calculator 3, the control thrust optimum distributor 4 sends a thrust distribution signal to each driving means of the plurality of thrust generators so as to secure the total thrust and total moment with minimum fuel consumption. Output. Then, the thrust generator 6 is driven by the thrust generator driving means 5 to control the motion of the mobile vehicle 7.

その制御推力最適配分器4の配分アルゴリズムは次の通
シである。
The distribution algorithm of the control thrust optimum distribution unit 4 is as follows.

航走体7の運動は3次元空間運動となシ、X軸。The motion of the vehicle 7 is a three-dimensional spatial motion, along the X axis.

y軸、2軸まわシの6つの自由度をもつ。よって推力発
生器6の推力は次の6つの等式条件を満たさなければな
らない。
It has six degrees of freedom: the y-axis and two rotational axes. Therefore, the thrust of the thrust generator 6 must satisfy the following six equation conditions.

力の等式条件: ΣFxi −Fxc =0− (2,1)l=1 ΣF□−FYe=0 1=1 822% ”−FZe = O 1;1 ・・・(2,2) ・・・(2,3) モーメントの等式条件: ここで n:推力発生器の個数 l:1番目の推力発生器 FXe”YeTFZe’推カ発生器に要求されるとx。Force equality condition: ΣFxi −Fxc = 0 − (2, 1) l = 1 ΣF□−FYe=0 1=1 822%”-FZe=O 1;1 ...(2,2) ...(2,3) Equation condition for moments: here n: Number of thrust generators l: 1st thrust generator FXe"YeTFZe'x when requested by the thrust generator.

y、z軸方向のトータル推力。Total thrust in the y and z axis directions.

Mc、No、Rc:推力発生器に要求されるヨーイング
(z@まわり)、ピッチング(y軸 まわシ)、ローリング(X軸まゎシ) のトータルモーメント。
Mc, No., Rc: Total moment of yawing (z@ rotation), pitching (y axis rotation), and rolling (X axis rotation) required for the thrust generator.

CLzl +41 r1□):航走体重心Gから推カ発
生器1までの距離。
CLzl +41 r1□): Distance from the cruising center of gravity G to the thrust generator 1.

(Fxi*Fyl+Fzl) :推力発生器lの! +
 ’I r L軸方向の推力成分。
(Fxi*Fyl+Fzl): Thrust generator l! +
'I r Thrust component in the L-axis direction.

但し、F工i 、F71 、Fxiにはそれぞれ次の許
容範囲が指定される。
However, the following allowable ranges are specified for F-i, F71, and Fxi, respectively.

0≦IF  1=2〜n           ・・・
(2,7)0≦IF  l≦−1・・・(2,8)I O≦IF  l≦Frn、           ・・
・(2,9)また、F、、十FY、十F、、≦Frn1
         ・・−(2,10)Fmi:推力発
生iの最大容量 上記許容範囲内で6つの等式条件を満足する推力成分(
F  、F xs   yi+ Fzl ) (1=1〜n)は多数
存在する。したがってひとつの評価基準を設けて、その
基準に従って各推力発生器の推力成分を決定する必要が
ある。
0≦IF 1=2~n...
(2,7) 0≦IF l≦-1... (2,8) IO≦IF l≦Frn, ・・
・(2,9) Also, F,, 10FY, 10F, ≦Frn1
...-(2,10)Fmi: Maximum capacity of thrust generation i Thrust component that satisfies the six equation conditions within the above allowable range (
There are a large number of F, F xs yi+ Fzl ) (1=1 to n). Therefore, it is necessary to provide one evaluation standard and determine the thrust component of each thrust generator according to that standard.

本アルゴリズムでは、その評価基準として、「推力発生
器の燃料消費を最小とする」ように各推力発生器の推力
成分の決定を行う。そして評価関数としては次の(2,
11)式を用いる。
In this algorithm, the thrust component of each thrust generator is determined so as to "minimize the fuel consumption of the thrust generator" as its evaluation criterion. The evaluation function is as follows (2,
11) Use formula.

F、:推力発生器lの推力 Fmi ’推力発生器1の最大容量 ここで F、 ±Fx、十F、、+F、、          
 、・(2,12)上記Jを最小化する問題を解くこと
Kより、燃料消費を最小とする推力成分(Fxt”yt
+FB) (1=1=n)の決定が行われる。方法はラ
グランジェ未定乗数法に拠る。
F, : Thrust force of thrust generator l Fmi 'Maximum capacity of thrust generator 1 where F, ±Fx, 10F,, +F,,
,・(2,12) By solving the problem of minimizing J above, the thrust component (Fxt”yt
+FB) (1=1=n) is determined. The method is based on the Lagrange undetermined multiplier method.

上記の最適化問題を解くために(2,7)〜(2,9)
式の不等式条件を次の等式条件に置き換える。
To solve the above optimization problem, (2,7) to (2,9)
Replace the inequality condition in the expression with the following equality condition.

FXI ” xxi ” Fml          
 −(2,13)F y 1 +x y I :== 
F、t             =・(2,14)F
Zt”2t=’mi             −(2
,15)(2,13)〜(2,15)式により Fxi  = Fmi  −”xl         
                   ・=(2,1
6)Fy17 Fmt −”yl          
 −・−(2,17)FZk −Fml −xzl  
         ・・・(2,18)(2,16)〜
(2,18)式を評価関数(2,11)式に代入すると
、Jは次のようKなる。
FXI “xxi” Fml
−(2,13)F y 1 +x y I :==
F, t =・(2,14)F
Zt”2t=’mi −(2
, 15) From equations (2, 13) to (2, 15), Fxi = Fmi −”xl
・=(2,1
6) Fy17 Fmt-”yl
−・−(2,17)FZk −Fml −xzl
...(2,18)(2,16)~
When the equation (2, 18) is substituted into the evaluation function equation (2, 11), J becomes K as follows.

J′を最小とするための必要条件は ・・・(2,19) また、hi(1=1〜6)を次のように定義する。The necessary conditions for minimizing J′ are ...(2,19) Furthermore, hi (1=1 to 6) is defined as follows.

h1=Σ(Fm、 −Xx、)−Fxc・(2,20)
l=1 h2=Σ”rtli−”Yi) −FYc      
・・・(2,21)1=1 h3=Σ(Fml−xzi)−Fzc       =
(2,22)i=1 (2,26)式より、 次に、新たにラグランジェ乗法λ、(1=1〜6)を導
入し、評価関数を次のように設定して、新たな評価関数
J′をXxi(1”1 + 2 +”・n ) + x
yt(1=1 +2 +”’n ) s Xzl (z
はi 12 +・・・n)について最適化する。
h1=Σ(Fm, -Xx,)-Fxc・(2,20)
l=1 h2=Σ”rtli−”Yi) −FYc
...(2,21)1=1 h3=Σ(Fml-xzi)-Fzc=
(2, 22) i = 1 From equation (2, 26), next we introduce a new Lagrange multiplication λ, (1 = 1 to 6), set the evaluation function as follows, and create a new The evaluation function J' is Xxi(1"1 + 2 +"・n) + x
yt (1=1 +2 +”'n) s Xzl (z
is optimized for i 12 +...n).

J’= J十石、λ1hi             
  ・・・(2,26)(2,13)〜(2,15)式
と(2,30)〜(2,32)式よシ、スラスタlのX
、7.Z軸方向推力成分FX、 IF、、 、F□が得
られる。
J' = J ten stones, λ1hi
... (2,26) (2,13) to (2,15) equations and (2,30) to (2,32) equations, X of thruster l
,7. Z-axis direction thrust components FX, IF, , F□ are obtained.

FxI=(−λ、+λ4tYi−λ5tZl)Fmlp
Y、=(−λ2−λ4tXi+λ6tzl”m1Fz、
=(−λ3+λ5txt−λ6tYi)Fml・・・(
2,33) ・・・(2,34) ・・・(2,35) ラグランジェ乗数λ、(1=1〜6)は(2,33)〜
(2,35)式、(2,3)〜(2,8)式より得られ
る次の連立方程式を解いて求められる。
FxI = (-λ, +λ4tYi-λ5tZl)Fmlp
Y, = (-λ2-λ4tXi+λ6tzl”m1Fz,
=(-λ3+λ5txt-λ6tYi)Fml...(
2,33) ...(2,34) ...(2,35) Lagrange multiplier λ, (1=1~6) is (2,33)~
It is obtained by solving the following simultaneous equations obtained from equations (2, 35) and equations (2, 3) to (2, 8).

\ ・・・(2,36) ・・・(2,37) ・・・(2,38) ・・・(2,39) ・・・(2,40) 評価関数を最小とする推力発生器lのX、y。\ ...(2,36) ...(2,37) ...(2,38) ...(2,39) ...(2,40) X, y of the thrust generator l that minimizes the evaluation function.

2軸方向推力酸分Fx、、FT、、F2.は(2,42
) 〜(2,45)式、(2,33)〜(2,35)式
により得られる。すなわち、要求される”+’lrZ軸
方向のトータル推力(Forceコマンド)と要求され
るヨーイング、ピッチング、ローリングのトータルモー
メントMc、Nc、Rc(Momentコマンド)よ、
り (2,42)〜(2,45)式のマトリックスを解
いてラグランジェ乗数λ1(i=1〜6)を決定し、(
2,33)〜(2,35)式よシ推力発生器lの推力成
分を求める。
Biaxial thrust acid content Fx,, FT,, F2. is (2,42
) to (2,45) and (2,33) to (2,35). In other words, the required total thrust in the +'lrZ-axis direction (Force command) and the required total moments of yawing, pitching, and rolling Mc, Nc, and Rc (Moment command).
Solve the matrix of equations (2,42) to (2,45) to determine the Lagrange multiplier λ1 (i = 1 to 6), and (
2, 33) to (2, 35) to find the thrust component of the thrust generator l.

第2図は以上の推力配分決定法をまとめたものである。Figure 2 summarizes the above thrust distribution determination method.

上記制御推力配分装置4から出力された信号は推力発生
器駆動手段5に送られ、推力発生器6を駆動させて、最
小燃料で定点保持、定航路保持を行う。
The signal output from the control thrust distribution device 4 is sent to the thrust generator driving means 5, which drives the thrust generator 6 to maintain a fixed point and maintain a constant course with minimum fuel.

第3図は本発明の制御推力配分器を適用して航走体7の
定点保持を行ったー実施声である。航走体7の絶対位置
座標(x、y、z)および角度(ヨー角ψ、ピッチ角θ
、ロール角φ)を検出器1によシ検出し、また設定器2
により航走体7の位置、角度設定(xp、yp、z、、
ψ2.θ1.φ、)を行う。検出器1、設定器2からの
信号は制御コマンド演算器3に送られる。次に制御コマ
ンド演算器3での制御コマンド(FXc、FYe、F’
2.Mc、NI!IRc)の生成法の一実施例を説明す
る。制御コマンド演算器3内の加減算器3aによシ設定
値と検出値との偏差信号を演算する。
FIG. 3 is a demonstration of the application of the controlled thrust distributor of the present invention to maintain a fixed point of the vehicle 7. Absolute position coordinates (x, y, z) and angles (yaw angle ψ, pitch angle θ
, roll angle φ) is detected by the detector 1, and the setting device 2
The position and angle settings of the vehicle 7 (xp, yp, z, .
ψ2. θ1. φ,) is performed. Signals from the detector 1 and setting device 2 are sent to a control command calculator 3. Next, the control commands (FXc, FYe, F'
2. Mc, NI! An example of a method for generating IRc) will be described. The adder/subtractor 3a in the control command calculator 3 calculates a deviation signal between the set value and the detected value.

e  :  r  −X ・・・  (1) 偏差信号elc対する一実施例として次式により制御コ
マンドUをつくる。
e : r −X (1) As an example for the deviation signal elc, a control command U is created using the following equation.

u = LPe + L、J’ edt  =−(2)
この制御−コマントuK対し前記のアルゴリズムを適用
して制御推力の最適配分を行う。制御推力最適配分器4
によシ得られた各推力発生器についての推力配分信号は
、それぞれ各推力発生器6の駆動手段へ送られ、推力発
生器6を駆動させて制御を行う。
u = LPe + L, J' edt = - (2)
The above-mentioned algorithm is applied to this control command uK to optimally allocate the control thrust. Control thrust optimal distributor 4
The thrust distribution signals obtained for each thrust generator are sent to the driving means of each thrust generator 6, and the thrust generator 6 is driven and controlled.

第4図は初期にCX 、Y 、Z )=(0,0,0)
の位置に静止した航走体2が定常外乱を受けた場合に本
発明の制御推力配分器4を使用して定点保持を行った結
果である。この場合は設定値はX、=0 、 Y =O
、Zp=0 、 cpp=−15°lθ日−15゜φ=
o’とした。
In Figure 4, initially CX , Y , Z ) = (0,0,0)
This is the result of holding a fixed point using the control thrust distributor 4 of the present invention when the moving object 2 stationary at the position receives a steady disturbance. In this case, the setting values are X, = 0, Y = O
, Zp=0, cpp=-15°lθday-15°φ=
It was o'.

〔発明の効果〕〔Effect of the invention〕

本発明は前記のように構成されているので、本発明装置
により航走体の定1点保持、航路保持を行う場合に1燃
料消費が最小になるという条件下で複数の推力発生器の
推力配分を行うことができるので、優れた定点保持、航
路保持機能を有することができる。
Since the present invention is configured as described above, the thrust of the plurality of thrust generators is generated under the condition that one fuel consumption is minimized when the device of the present invention holds a fixed point of a mobile vehicle and maintains a course. Since the distribution can be performed, it is possible to have excellent fixed point holding and route keeping functions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る制御推力配分装置のシステム図、
第2図は本発明装置の推力配分決定法をまとめた図、第
3図は本発明装置を適用した1実施例を示す図、第4図
は静止した航走体が、定常外乱をうけた場合に本発明装
置を適用した結果を示す図である。 1・・・検出器、2・・・設定器、3・・・制御コマン
ド演算器、4・・・制御推力最適配分器、5・・−推力
発生器駆動手段、6・・・推力発生器、7・・・航走体
FIG. 1 is a system diagram of a control thrust distribution device according to the present invention;
Fig. 2 is a diagram summarizing the thrust distribution determination method of the device of the present invention, Fig. 3 is a diagram showing an example in which the device of the present invention is applied, and Fig. 4 is a diagram showing a case in which a stationary mobile vehicle is subjected to a steady disturbance. FIG. 3 is a diagram showing the results of applying the device of the present invention in the case of FIG. DESCRIPTION OF SYMBOLS 1...Detector, 2...Setting device, 3...Control command calculator, 4...Control thrust optimum distribution device, 5...-Thrust generator drive means, 6...Thrust generator , 7... Navigation object.

Claims (1)

【特許請求の範囲】[Claims] 複数の運動制御用推力発生器を有する航走体において、
航走体の位置、角度速度情報を検出する検出器(1)と
航走体の設定位置、設定角度、設定速度情報を出力する
設定器(2)と、検出器(1)と設定器(2)の情報を
比較し航走体を設定位置あるいは設定航路に保持するた
めに必要なトータル推力とトータルモーメントのコマン
ド信号を出力する制御コマンド演算器(3)と、制御コ
マンド演算器(3)からのコマンド信号を入力し最小燃
料消費で前記トータル推力とトータルモーメントを確保
するように複数個の推力発生器のそれぞれの駆動手段に
推力配分信号を出力する制御推力最適配分器(4)と、
前記制御推力最適配分器(4)からの出力信号を入力し
推力発生器を駆動する駆動手段(5)と、推力発生器(
6)を具備することを特徴とする制御推力配分装置。
In a vehicle having multiple thrust generators for motion control,
A detector (1) that detects the position and angular velocity information of the vehicle; a setter (2) that outputs the set position, set angle, and set speed information of the vehicle; and the detector (1) and the setter ( a control command calculator (3) that compares the information in 2) and outputs command signals for the total thrust and total moment necessary to maintain the vehicle at a set position or on a set route; and a control command calculator (3) a control thrust optimum distributor (4) that inputs a command signal from the controller and outputs a thrust distribution signal to each drive means of the plurality of thrust generators so as to secure the total thrust and total moment with minimum fuel consumption;
a driving means (5) for driving a thrust generator by inputting an output signal from the control thrust optimum distributor (4);
6) A control thrust distribution device comprising:
JP63258785A 1988-10-14 1988-10-14 Control thrust distribution device Expired - Fee Related JP2749833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63258785A JP2749833B2 (en) 1988-10-14 1988-10-14 Control thrust distribution device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63258785A JP2749833B2 (en) 1988-10-14 1988-10-14 Control thrust distribution device

Publications (2)

Publication Number Publication Date
JPH02106492A true JPH02106492A (en) 1990-04-18
JP2749833B2 JP2749833B2 (en) 1998-05-13

Family

ID=17325041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63258785A Expired - Fee Related JP2749833B2 (en) 1988-10-14 1988-10-14 Control thrust distribution device

Country Status (1)

Country Link
JP (1) JP2749833B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997035761A1 (en) * 1996-03-22 1997-10-02 Honshu-Shikoku Bridge Authority Automatic fixed point holding system for marine vessels
US6450112B1 (en) * 1999-04-02 2002-09-17 Nautronix, Inc. Vessel control force allocation optimization
JP2008026962A (en) * 2006-07-18 2008-02-07 Mitsui Eng & Shipbuild Co Ltd Method, system and program for controlling position and direction of structure
JP2016184344A (en) * 2015-03-26 2016-10-20 三菱重工業株式会社 Arithmetic unit, moving body system, arithmetic method and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4570192B2 (en) * 2000-02-08 2010-10-27 ユニバーサル造船株式会社 Thrust generator control method and control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370303A (en) * 1986-09-11 1988-03-30 Toshiba Mach Co Ltd Position control system
JPS6387398A (en) * 1986-09-29 1988-04-18 株式会社東芝 Wheel drive system in satellite
JPS6388603A (en) * 1986-10-02 1988-04-19 Agency Of Ind Science & Technol Traveling control method for marine robot

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370303A (en) * 1986-09-11 1988-03-30 Toshiba Mach Co Ltd Position control system
JPS6387398A (en) * 1986-09-29 1988-04-18 株式会社東芝 Wheel drive system in satellite
JPS6388603A (en) * 1986-10-02 1988-04-19 Agency Of Ind Science & Technol Traveling control method for marine robot

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997035761A1 (en) * 1996-03-22 1997-10-02 Honshu-Shikoku Bridge Authority Automatic fixed point holding system for marine vessels
US6450112B1 (en) * 1999-04-02 2002-09-17 Nautronix, Inc. Vessel control force allocation optimization
JP2008026962A (en) * 2006-07-18 2008-02-07 Mitsui Eng & Shipbuild Co Ltd Method, system and program for controlling position and direction of structure
JP2016184344A (en) * 2015-03-26 2016-10-20 三菱重工業株式会社 Arithmetic unit, moving body system, arithmetic method and program

Also Published As

Publication number Publication date
JP2749833B2 (en) 1998-05-13

Similar Documents

Publication Publication Date Title
Menon et al. Integrated design of agile missile guidance and autopilot systems
US5001646A (en) Automated helicopter flight control system
Kumar et al. Tilting-rotor quadcopter for aggressive flight maneuvers using differential flatness based flight controller
Chen et al. Asymmetric error-constrained path-following control of a stratospheric airship with disturbances and actuator saturation
Gamagedara et al. Geometric controls of a quadrotor UAV with decoupled yaw control
CN112650231B (en) Under-actuated ship formation control system for realizing collision and obstacle avoidance
Chen et al. Adaptive path following control of a stratospheric airship with full-state constraint and actuator saturation
Kumar et al. Real-time optimal motion planning for autonomous underwater vehicles
Lee et al. Fully actuated autonomous flight of thruster-tilting multirotor
Gamagedara et al. Geometric adaptive controls of a quadrotor unmanned aerial vehicle with decoupled attitude dynamics
JPH05108157A (en) Method for combining control-fin command
JPH02106492A (en) Control thrust distributing device
JP2006106910A (en) Gimbal device
CN113296505A (en) Unmanned ship multi-mode path tracking control method based on speed change LOS
CN114706413B (en) Near-earth orbit micro-nano satellite centroid-changing gesture control method and system
Hima et al. Motion generation on trim trajectories for an autonomous underactuated airship
Astrov et al. Wind force model and adaptive control of catamaran model sailboat
Fu et al. The bioinspired model-based hybrid sliding-mode formation control for underactuated unmanned surface vehicles
CN112278176A (en) Ship attitude control topological structure and control system
Zhang et al. Active disturbance rejection control of underwater vehicle with omnidirectional control
Ma et al. An improved adaptive dynamic window algorithm for target tracking of unmanned surface vehicles
Rosario et al. Experimental variable structure trajectory tracking control of a surface vessel with a motion capture system
Jahangir et al. Time-optimal attitude control scheme for a spinning missile
CN117193345B (en) Autonomous landing control method for machine-ship cooperative platform based on dynamic event triggering
Wang et al. Development status of the LOS guidance strategy and realization of the USV path tracking control

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees