JPH02106084A - Distributed reflector type semiconductor laser - Google Patents

Distributed reflector type semiconductor laser

Info

Publication number
JPH02106084A
JPH02106084A JP25917788A JP25917788A JPH02106084A JP H02106084 A JPH02106084 A JP H02106084A JP 25917788 A JP25917788 A JP 25917788A JP 25917788 A JP25917788 A JP 25917788A JP H02106084 A JPH02106084 A JP H02106084A
Authority
JP
Japan
Prior art keywords
layer
type
semiconductor laser
distributed reflector
distributed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25917788A
Other languages
Japanese (ja)
Inventor
Hiroshi Wada
浩 和田
Hideaki Horikawa
英明 堀川
Hiroshi Ogawa
洋 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP25917788A priority Critical patent/JPH02106084A/en
Publication of JPH02106084A publication Critical patent/JPH02106084A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • H01S5/0264Photo-diodes, e.g. transceiver devices, bidirectional devices for monitoring the laser-output

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enable the title laser to be stably oscillated in single vertical mode thereby facilitating the automatic output control by a method wherein a distributed reflector is provided with a quadratic or higher degree diffracting lattice as well as a photodetector detecting any diffracted beams from the distributed reflector on the upper part thereof. CONSTITUTION:A distributed reflector 43 is composed of a quadratic diffracting lattice 43a and a photoconductive channel layer 45. When normal bias is given to an n type electrode 63 and a p type electrode 65 for a semiconductor laser, an active layer 53a is fed with current to cause luminescent recoupling. Then, the emitted beams are respectively reflected on the end 53b of an active region side formed by cleavage and the distributed reflector 43 to cause laser oscillation. At this time, the distributed reflector 43 increases the reflectance only on the beams in wave length of lambda so that the semiconductor laser may be single mode-operated stably in the wave length of lambda. Furthermore, photodetector 55 detects the linear diffracted beams from the distributed reflector 43 so that potential difference may be caused between a p type electrode 55d and an n type electrode 55c for the photodetector resultantly enabling the laser beams to be monitored. Through these procedures, the semiconductor laser can be oscillated in vertical mode stably thereby facilitating the automatic output control.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、例えば光通信用の光源として用い得る分布
反射形半導体レーザに関するもので、特に当該半導体レ
ーザの出力モニタ用受光器を集積した分布反射形半導体
レーザに関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a distributed reflection type semiconductor laser which can be used as a light source for optical communication, for example, and particularly relates to a distributed reflection type semiconductor laser that integrates a light receiver for monitoring the output of the semiconductor laser. This invention relates to a reflective semiconductor laser.

(従来の技術) 長距離光通信及び大容量光通信を実現するためにはスペ
クトル幅が小さい光源が不可欠であり、従って、単一縦
モード発振する半導体レーザが望まれている0分布反射
形半導体レーザは、そのような半導体レーザの一種とし
て知られており、その従来例が例えば文献(電子通信学
会技術研究報告0QE85−7 (+985) ) P
、47)に開示されている。
(Prior Art) A light source with a small spectral width is essential to realize long-distance optical communication and large-capacity optical communication. Therefore, a zero-distribution reflection type semiconductor is desired, and a semiconductor laser that oscillates in a single longitudinal mode is desired. A laser is known as a type of such a semiconductor laser, and a conventional example thereof is described in, for example, the literature (IEICE technical research report 0QE85-7 (+985)) P
, 47).

第4図(A)〜(C)は、この文献に開示されている分
布反射形半導体レーザ(以下半導体レーザと略称するこ
ともある。)の構造を概略的に示した図であり、第4図
(A)はこの半導体レーザをレーザストライプに沿って
切って示した断面図、第4図(B)はこの半導体レーザ
の活性領域13が在る部分をレーザストライプに直交す
る方向に沿って切って示した断面図、第4図(C)はこ
の半導体レーザの分布反射器15が在る部分をレーザス
トライプに直交する方向に沿って切って示した断面図で
ある。以下、これらの図を参照して従来の分布反射形半
導体レーザの構造につき簡単に説明する。
FIGS. 4(A) to 4(C) are diagrams schematically showing the structure of a distributed reflection semiconductor laser (hereinafter sometimes abbreviated as semiconductor laser) disclosed in this document. Figure 4(A) is a cross-sectional view of this semiconductor laser cut along the laser stripe, and Figure 4(B) is a cross-sectional view of the semiconductor laser cut along the direction perpendicular to the laser stripe. FIG. 4C is a cross-sectional view of a portion of this semiconductor laser where the distributed reflector 15 is located, taken along a direction perpendicular to the laser stripe. Hereinafter, the structure of a conventional distributed reflection semiconductor laser will be briefly explained with reference to these figures.

この従来の半導体レーザは、下地であるn型InP基板
11上に、活性領域13と、この活性領域からの光が結
合される分布反射器であって1次の回折格子15a ¥
r具える分布反射器15とが集積化されているものであ
った。この構造を詳細に説明すれば以下の通りである。
This conventional semiconductor laser includes an active region 13 and a first-order diffraction grating 15a, which is a distributed reflector to which light from the active region is coupled, on an n-type InP substrate 11 as a base.
r and a distributed reflector 15 were integrated. This structure will be explained in detail as follows.

n型InP基板11の所定領域上にはInGaAsP活
性層13a及びp型InP低屈折率保護層17がこの順
で積層されており、この基板11の活性#13aと導波
路方向で隣接する領域には1次の回折格子15aが形成
されていた。ざらに、このp型InP低屈折率層17よ
及び1次の回折格子15a上にはp型InGaAsP光
導波路層19、亜鉛ドープのp型InPクラッド層21
及び亜鉛ドープのp型InGaAsPキャップ層23が
この順で積層されていた。さらに、基板11の下側には
n型電極25が、キャップ層23の活性層13a(こ対
応する領域上にはn型電極27が形成され、このp側電
極27の下側にはp型InPクラッド層21に至る亜鉛
拡散領域29(図中点々模様で示す領1fi)が形成さ
れていた。
An InGaAsP active layer 13a and a p-type InP low refractive index protective layer 17 are laminated in this order on a predetermined region of the n-type InP substrate 11, and a region adjacent to the active layer 13a of this substrate 11 in the waveguide direction A first-order diffraction grating 15a was formed. Roughly, on this p-type InP low refractive index layer 17 and on the first-order diffraction grating 15a, a p-type InGaAsP optical waveguide layer 19 and a zinc-doped p-type InP cladding layer 21 are formed.
and a zinc-doped p-type InGaAsP cap layer 23 were laminated in this order. Further, an n-type electrode 25 is formed on the lower side of the substrate 11, an n-type electrode 27 is formed on the active layer 13a of the cap layer 23 (a region corresponding to this region), and a p-type electrode 27 is formed on the lower side of this p-side electrode 27. A zinc diffusion region 29 (region 1fi indicated by a dotted pattern in the figure) was formed that reached the InP cladding layer 21.

またさらにこの半導体レーザにおいては、InGaAs
P活性層13a、p型1nP低屈折率層17、p型In
GaAsP光導波路層19、p型InPクラッド層21
及びキヤ・ンブ層23から成る積層体が、ストライプ状
に然もストライプ方向と直交する方向にとった断面が逆
メサ型形状にされていた。そして基板11の、このスト
ライプ状の積層体31の両側領域にこの積層体31を埋
め込むようにp型1nP電流狭窄層33及びn型1nP
電流狭窄層35がこの順に形成されていた。
Furthermore, in this semiconductor laser, InGaAs
P active layer 13a, p-type 1nP low refractive index layer 17, p-type In
GaAsP optical waveguide layer 19, p-type InP cladding layer 21
The laminate consisting of the laminate and the can layer 23 had a stripe shape, and the cross section taken in the direction orthogonal to the stripe direction had an inverted mesa shape. Then, the P -type 1NP current stenosis layer 33 and N type 1NP so that this laminated body 31 is embedded in both sides of this striped laminated body 31 of the substrate 11.
The current confinement layer 35 was formed in this order.

ここで上述の分布反射器15は、回折格子15aとp型
1nGaAsP光導波路層19とで構成される訳である
が、周知の通り、下記0式を満足する波長λの光に対し
てのみ大きな反射率を持つ(但し0式中入は光の波長、
n *ttは分布反射器の実効屈折率、△は回折格子の
周期、mは回折光の次数(m= 1.2,3.−・・・
・・)をそれぞれ表す、)。
Here, the above-mentioned distributed reflector 15 is composed of a diffraction grating 15a and a p-type 1nGaAsP optical waveguide layer 19, but as is well known, it has a large It has a reflectance (however, the input in formula 0 is the wavelength of light,
n *tt is the effective refractive index of the distributed reflector, △ is the period of the diffraction grating, and m is the order of the diffracted light (m = 1.2, 3.-...
...), respectively.

m・λ=2 n off  ・△・・・■従ってこの半
導体レーザでは0式を満足するλを持った縦モードのみ
が安定に発揚することになる。また、この半導体レーザ
では、良好な出力特性を得るため、活性層13a上と回
折格子15a上とにp型InGaAsP光導波路層19
を設すた構造を採用しく BIG:Bundle−In
teqrated−Guideと称している。)活性領
域13と分布反射器15との間の導波路の結合を大きく
していた。
m·λ=2 n off ·△...■ Therefore, in this semiconductor laser, only the longitudinal mode with λ that satisfies Equation 0 is stably launched. In addition, in this semiconductor laser, in order to obtain good output characteristics, a p-type InGaAsP optical waveguide layer 19 is provided on the active layer 13a and the diffraction grating 15a.
BIG:Bundle-In
It is called teqrated-Guide. ) The coupling of the waveguide between the active region 13 and the distributed reflector 15 was increased.

なお、第4図に示した半導体レーザの場合は活性領域の
一方の側にのみ分布反射器が設けられた構造となってい
るが、上記文献には活性領域の両側に分布反射器を設け
たものも示されている。
Note that the semiconductor laser shown in Figure 4 has a structure in which a distributed reflector is provided only on one side of the active region, but in the above document, distributed reflectors are provided on both sides of the active region. things are also shown.

(発明が解決しようとする課題) しかしながら、上述した従来の分布反射形半導体レーザ
の構造では、自動出力制御(Δuto 已owerにo
ntrol  以下APCと略称する)を行なう場合、
モニタ光として有効なレベルのレーザ出力は活性領域の
端面若しくは分布反射器側の端面からしか得られない、
従って、受光器を外部に別途に設けなければならず、そ
のため、レーザ出力を高効率でモニタするためには受光
器の受光面と、半導体レーザの光軸とを高精度に合わせ
なければならず、その作業が非常に大変になるという問
題点があった。また、端面に対向させた受光器から半導
体レーザに戻る光(戻り光)がレーザ発揚に悪影VIを
及ぼすという問題点があった。
(Problems to be Solved by the Invention) However, in the structure of the conventional distributed reflection semiconductor laser described above, automatic output control (Δauto
ntrol (hereinafter abbreviated as APC),
Laser output at a level effective as monitor light can only be obtained from the end face of the active region or the end face on the side of the distributed reflector.
Therefore, it is necessary to separately install a photodetector externally, and therefore, in order to monitor the laser output with high efficiency, the light receiving surface of the photodetector and the optical axis of the semiconductor laser must be aligned with high precision. However, there was a problem in that the work was extremely difficult. Further, there is a problem in that the light (return light) returning from the light receiver facing the end face to the semiconductor laser has an adverse effect VI on laser emission.

また、チップ検査lこ用い得る程度のレベルのレーザ光
は端面からしか得られないから、基板上に形成した多数
の半導体レーザの特性は、基板を努開した後でないと測
定出来ない、従って、チップ選別に時間がかかるという
問題点もあった。
In addition, since laser light of a level that can be used for chip inspection can only be obtained from the end facets, the characteristics of a large number of semiconductor lasers formed on a substrate cannot be measured until after the substrate has been thoroughly tested. Another problem was that it took a long time to sort the chips.

この発明はこのような点に鑑みなされたものであり、従
ってこの発明の目的は、上述した問題点を除去し、単一
縦モード発振し容易に^PCを行なえる分布反射形半導
体レーザを提供することにある。
The present invention has been made in view of the above points, and an object of the present invention is to provide a distributed reflection semiconductor laser that eliminates the above-mentioned problems, oscillates in a single longitudinal mode, and can easily perform PC. It's about doing.

(問題点を解決するための手段) この目的の達成を図るため、この発明によれば、下地上
に活性領域と、該活性領域からの光が結合される分布反
射器とを具える分布反射形半導体レーザにおいて、 分布反射器は2次の回折格子またはこれより高次の回折
格子を具え、 この分布反射器の上方にこの分布反射器からの回折光を
受光する受光器を具えたこと を特徴とする。
(Means for Solving the Problem) In order to achieve this object, according to the present invention, a distributed reflector comprising an active region on a substrate and a distributed reflector to which light from the active region is coupled. In a type semiconductor laser, the distributed reflector includes a second-order diffraction grating or a higher-order diffraction grating, and a light receiver is provided above the distributed reflector to receive the diffracted light from the distributed reflector. Features.

(作用) この発明の分布反射形半導体レーザの作用につき具体例
を挙げで説明する。第2図は、この発明の半導体レーザ
の分布反射器が2次の回折格子を具えた場合の様子を、
特に分布反射器の周辺に着目し然もこの時の光の挙動を
併せて示したものである。なお、第2図中41は下地と
しての例えばInP基板、43aは2次の回折格子、4
5は光導波路層としての例えばInGaAsP層、47
はクラッド層としての例えばInP層である0回折格子
43aと、先導波路層45とで分布反射器43ヲ構成し
ている。また、2次の回折格子とは、下記■式中のnを
2として求まるピッチ八〇を有する回折格子のことであ
る。但し、n5ffは分布反射器43の在る部分の実効
屈折率、λは発振波長である。
(Function) The function of the distributed reflection type semiconductor laser of the present invention will be explained by giving a specific example. FIG. 2 shows the situation when the distributed reflector of the semiconductor laser of the present invention is equipped with a second-order diffraction grating.
In particular, we focused on the area around the distributed reflector, and it also shows the behavior of light at this time. In addition, 41 in FIG. 2 is an InP substrate as a base, 43a is a second-order diffraction grating, 4
5 is an InGaAsP layer as an optical waveguide layer, 47
The distributed reflector 43 is composed of a zero diffraction grating 43a, which is, for example, an InP layer as a cladding layer, and a leading waveguide layer 45. Further, the second-order diffraction grating is a diffraction grating having a pitch of 80, which is determined by setting n to 2 in the following formula (1). However, n5ff is the effective refractive index of the portion where the distributed reflector 43 is located, and λ is the oscillation wavelength.

△n=(λ・n) / 2 nafy ・・・■第2図
に示したような構造において、活性領域(図示せず)で
発した光51が2次の回折格子43aを具える分布反射
器43に入ると、入射光51の2次の回折光51aは活
性領域側に戻り、0次の回折光51bはそのまま透過し
、1次の回折光51cは入射光51に対し垂直な方向こ
の場合はInP基板41側の方向とクラッド層47等が
積層された側の方向とに回折されるという現象が生じる
。従って、端面でない側にもある程度の光が出ることに
なり特に、クラ・ンド層側に回折された光は、分布反射
器43の上方に設けである受光器(図示せず)へ入射す
るようになる。このため受光器ではこの1次回折光51
cの強度を知ることが出来、この1次回折光は活性領域
で発するレーザ光の強度に比例するのでレーザ光の強度
をモニタすることが出来るようになる。また、2次の回
折光51aが活性領域に戻ることにより分布反射器43
における反射率の選択性が生じ、この半導体レーザは従
来と同様単一縦モード発振する。
△n=(λ・n)/2 nafy... ■In the structure shown in FIG. 2, the light 51 emitted from the active region (not shown) undergoes distributed reflection with the second-order diffraction grating 43a. When entering the vessel 43, the second-order diffracted light 51a of the incident light 51 returns to the active region side, the zero-order diffracted light 51b is transmitted as is, and the first-order diffracted light 51c is directed perpendicularly to the incident light 51. In this case, a phenomenon occurs in which the light is diffracted in the direction of the InP substrate 41 side and the direction of the side on which the cladding layer 47 and the like are laminated. Therefore, a certain amount of light is emitted on the side other than the end face, and in particular, the light diffracted toward the crystalline layer side is incident on a light receiver (not shown) provided above the distributed reflector 43. become. Therefore, in the receiver, this first-order diffracted light 51
Since this first-order diffracted light is proportional to the intensity of the laser beam emitted from the active region, the intensity of the laser beam can be monitored. Further, the second-order diffracted light 51a returns to the active region, so that the distributed reflector 43
Selectivity in the reflectance occurs, and this semiconductor laser oscillates in a single longitudinal mode as in the conventional case.

回折格子を2次より高い次数の回折格子とした場合でも
、クラッド層側にはその回折格子の次数に応じた回折光
が出るので、2次の回折格子を具えた場合と同様受光器
でモニタが出来る。
Even when the diffraction grating is a diffraction grating of an order higher than the second order, diffracted light corresponding to the order of the diffraction grating is emitted on the cladding layer side, so it can be monitored with a light receiver in the same way as when a second order diffraction grating is provided. I can do it.

(実施例) 以下、図面を参照してこの発明の分布反射形半導体レー
ザの実施例につき説明する。なお以下の説明に用いる各
図はこの発明が理解できる程度に概略的に示しであるに
すぎず、従って、この発明が図中の各構成成分の寸法、
形状、寸法比等に限定されるものでないことは理解され
たい。また、以下の実施例は、第4図を用いて説明した
分布反射形半導体レーザにこの発明を適用した例で説明
する。しかし、これも例示にすぎず、導電型を反対導電
型としても良く、ざらには、分布反射器を有する他の構
造の半導体レーザに対しても、また、InGaAsP/
InP系以外の材料例えばGaAs1fr用いた半導体
レーザに対してもこの発明を適用出来ることは明らかで
ある。
(Embodiments) Hereinafter, embodiments of the distributed reflection semiconductor laser of the present invention will be described with reference to the drawings. The drawings used in the following explanation are merely schematic illustrations to facilitate understanding of the present invention, and therefore, the present invention is not limited to the dimensions of each component in the drawings,
It should be understood that the invention is not limited to shape, size ratio, etc. Further, the following embodiments will be explained using examples in which the present invention is applied to the distributed reflection type semiconductor laser described using FIG. However, this is only an example, and the conductivity type may be the opposite conductivity type. Roughly speaking, it is also possible to use InGaAsP/
It is clear that the present invention can also be applied to semiconductor lasers using materials other than InP, such as GaAs1fr.

゛  レー   1 先ず、実施例の分布反射形半導体レーザの構造につき説
明する。第1図(A)〜(C)はその構造を概略的に示
した図であり、第1図(A)はこの半導体レーザをレー
ザストライプに沿って切って示した断面図、第1図(B
)はこの半導体レーザの活性領域53が在る部分(図中
Pで示す付近)をレーザストライプに直交する方向に沿
って切って示した断面図、第1図(C)はこの半導体レ
ーザの分布反射器43が在る部分(図中Qで示す付近)
をレーザストライプに直交する方向に沿って切って示し
た断面図である。
゛Layer 1 First, the structure of the distributed reflection type semiconductor laser of the embodiment will be explained. 1(A) to 1(C) are diagrams schematically showing the structure, and FIG. 1(A) is a cross-sectional view of this semiconductor laser taken along the laser stripe, and FIG. B
) is a cross-sectional view of the part where the active region 53 of this semiconductor laser is (near the area indicated by P in the figure) taken along the direction perpendicular to the laser stripe, and FIG. 1(C) is the distribution of this semiconductor laser. The part where the reflector 43 is located (near the area indicated by Q in the figure)
FIG. 3 is a cross-sectional view taken along a direction perpendicular to the laser stripe.

第1図に示した実施例の半導体レーザの概略構造は次の
通りである。下地としてのn型InP基板41上に、活
性層53aによって領域が主に決まる活性領域53と、
この活性領域53からの光が結合される分布反射器43
であってこの場合2次の回折格子43a及び光導波路層
45で主に構成した分布反射器43とを集積してあり、
然も、この分布反射器43の上方に受光器55を具えた
構造になっている。その構造を詳細に説明すれば以下の
通りである。
The schematic structure of the semiconductor laser of the embodiment shown in FIG. 1 is as follows. On an n-type InP substrate 41 as a base, an active region 53 whose region is mainly determined by an active layer 53a;
Distributed reflector 43 to which light from this active region 53 is coupled
In this case, a second-order diffraction grating 43a and a distributed reflector 43 mainly composed of an optical waveguide layer 45 are integrated,
However, the structure is such that a light receiver 55 is provided above the distributed reflector 43. Its structure will be explained in detail as follows.

n型InP基板41の所定領域上にはInGaAsP活
性層53a及びp型InP低屈折率保護層57をこの順
で積層してあり、さらにこの基板41の活性層53aと
導波路方向で1IsI接する領域には2次の回折格子4
3aを形成しである。なおこの2次の回折格子43aの
ピッチは約4800人としている。このピッチは、n次
の回折格子のどツチ△、lを求める下記0式中のnを2
とし、半導体レーザの発振波長λを1.55u mとし
、分布反射器43の在る部分の実効屈折率neff =
3.2〜3.3に設定して求めた。
An InGaAsP active layer 53a and a p-type InP low refractive index protective layer 57 are laminated in this order on a predetermined region of the n-type InP substrate 41, and a region of the substrate 41 that is in contact with the active layer 53a by 1IsI in the waveguide direction. is a second-order diffraction grating 4
3a is formed. Note that the pitch of this second-order diffraction grating 43a is approximately 4,800 people. This pitch is calculated by setting n to 2 in the following 0 formula to find the threshold △,l of the n-th diffraction grating.
The oscillation wavelength λ of the semiconductor laser is 1.55 μm, and the effective refractive index of the portion where the distributed reflector 43 is located is neff =
It was determined by setting it to 3.2 to 3.3.

Δn =(λ−n) /2 neff−・・■また、上
述のp型1nP低屈折率#5?よ及び2次の回折格子4
3a上にはp型rnGaAsP光導波路層45、亜鉛ド
ープのp型InPクラッド層59及び亜鉛ドープのp型
1nGaAsPキャップ層61をこの順で積層しである
。さらに、キヤ・ンブ層61の分布反射器43に対応す
る領域上の所定領域には、活性層53aより小さいエネ
ルギーギャップを持つ組成から成る受光器55を構成す
るためのp型InGaAs光吸収層55a 、 n型I
nGaAs光吸収層55b及び受光器用のn型電極55
cをこの順で積層しである。なお光吸収層55a、55
bを設ける所定領域とは分布反射器43からの回折光を
効率的に吸収出来る領域であり、設計に応じ変更出来る
ものであるが、この場合分布反射器43の真上に相当す
る領域を含む領域としている。また光吸収層55a、5
5bの面積は、広すぎるとノイズの影響を受は易くなる
し狭すぎると所望の出力が得られないのでこの点を考慮
した適正な面積としである。
Δn = (λ-n) /2 neff-...■Also, the above-mentioned p-type 1nP low refractive index #5? Yo and 2nd order diffraction grating 4
A p-type rnGaAsP optical waveguide layer 45, a zinc-doped p-type InP cladding layer 59, and a zinc-doped p-type 1nGaAsP cap layer 61 are laminated on the layer 3a in this order. Further, in a predetermined area on the area corresponding to the distributed reflector 43 of the cavity layer 61, a p-type InGaAs light absorption layer 55a for forming a light receiver 55 having a composition having a smaller energy gap than the active layer 53a is provided. , n-type I
nGaAs light absorption layer 55b and n-type electrode 55 for light receiver
c are laminated in this order. Note that the light absorption layers 55a, 55
The predetermined area where b is provided is an area that can efficiently absorb the diffracted light from the distributed reflector 43, and can be changed depending on the design, but in this case it includes the area directly above the distributed reflector 43. It is considered as an area. In addition, the light absorption layers 55a, 5
If the area of 5b is too wide, it will be easily influenced by noise, and if it is too narrow, the desired output will not be obtained, so the area of 5b should be an appropriate area taking this point into consideration.

また、n型InP基板41の下側にはn型電極63を、
キャップ層61の活性層53aに対応する領域上にはp
型電極65ヲ形成してあり、キャップ層61上の受光器
55の近傍には受光器55用のp全電極55dを形成し
てあり、さらに、各p型電極55d 、65の下側には
p型InPクラッド層59に至る亜鉛拡散領域67a、
67b  (図中点々模様で示す領域)を形成しである
Further, an n-type electrode 63 is provided on the lower side of the n-type InP substrate 41.
On the region of the cap layer 61 corresponding to the active layer 53a, p
A type electrode 65 is formed, and a p-type electrode 55d for the light receiver 55 is formed near the light receiver 55 on the cap layer 61, and a p-type electrode 55d is formed below each p-type electrode 55d, 65. Zinc diffusion region 67a reaching p-type InP cladding layer 59,
67b (area shown in a dotted pattern in the figure).

また、InGaAsP活性層53a、I)型1nP低屈
折率層57、p型InGaAsP光導波路層45、p型
InPクラッド層59、キャップ層61及び受光器用光
吸収層55a、55bから成る積層体はストライブ状に
然もストライプ方向と直交する方向にとった断面が逆メ
サ型の形状になっており、このストライブ状の積層体の
両側領域にこの積層体を埋め込むようにp型1nP電流
狭窄層69及びn型1nP低屈折率層71がこの順に形
成しである。
Moreover, the stacked body consisting of the InGaAsP active layer 53a, the I) type 1nP low refractive index layer 57, the p-type InGaAsP optical waveguide layer 45, the p-type InP cladding layer 59, the cap layer 61, and the photodetector light absorption layers 55a and 55b is Although it is a live shape, the cross section taken in the direction perpendicular to the stripe direction has an inverted mesa shape, and p-type 1nP current confinement layers are embedded in both side regions of this stripe-shaped stack. 69 and n-type 1nP low refractive index layer 71 are formed in this order.

第1図に示した構造の分布反射形半導体レーザにあいで
は、半導体レーザ用のn型電極63及びp型電極65闇
に順バイアスをかけると活性層53aに電流が注入され
発光再結合が起こる。そしてここで放出された光は!!
g開により形成した活性領域側の端面53b及び分布反
射器43によりそれぞれ反射を受はレーザ発振が起こる
。このとき分布反射器43は既に説明した0式を満足す
る波長λを持った光に対してのみ反射率が大きくなるの
で、この半導体レーザはその波長λ(この実施例では1
.55μm)で安定な単一モード動作する。また、第2
図を用いて既に説明したように、受光部55は、分布反
射器43からの1次の回折光を受光するので、受光器用
のp全電極55d及びn型電極55c間には電位差が生
じ、この結果レーザ光のモニタが行なえる。
In the distributed reflection type semiconductor laser having the structure shown in FIG. 1, when a forward bias is applied to the n-type electrode 63 and the p-type electrode 65 for the semiconductor laser, a current is injected into the active layer 53a and radiative recombination occurs. . And the light emitted here! !
Laser oscillation occurs when the light is reflected by the end face 53b on the active region side formed by g-opening and the distributed reflector 43, respectively. At this time, the distributed reflector 43 has a high reflectance only for light having a wavelength λ that satisfies the equation 0, which has already been explained.
.. 55 μm) and operates in a stable single mode. Also, the second
As already explained using the figure, since the light receiving section 55 receives the first-order diffracted light from the distributed reflector 43, a potential difference is generated between the p-type electrode 55d and the n-type electrode 55c for the light receiver. As a result, laser light can be monitored.

袈簿1廊I欠帆朋 次にこの発明の理解を深めるため第1図に示した実施例
の分布反射形半導体レーザの製造方法の一例につき説明
する。第3図(A)〜(J)は、その説明に供する製造
工程図であり、製造工程中の主な工程における素子の様
子を第3図(A)〜(F)、(I)及び(J)は斜視図
を以って、第3図(G)及び(H)は側面図を以って示
した図である。なお、これら図は、説明の都合上すでに
間開が終了したかの如く示しであるが、実際の製造にお
いては、多数の半導体レーザを基板に作製した後に弼開
をし個々の半導体レーザを得る手順であることは理解さ
れたい。
Next, in order to deepen the understanding of the present invention, an example of a method for manufacturing the distributed reflection semiconductor laser of the embodiment shown in FIG. 1 will be described. 3(A) to 3(J) are manufacturing process diagrams for explaining the process, and show the state of the element at the main steps in the manufacturing process. J) is a perspective view, and FIGS. 3(G) and 3(H) are side views. For convenience of explanation, these figures are shown as if the opening has already been completed, but in actual manufacturing, after a large number of semiconductor lasers are fabricated on a substrate, opening is performed to obtain individual semiconductor lasers. Please understand that this is a procedure.

先ず例えば液相気相成長法等の好適な結晶成長法により
、n型InP基板41上に活性層用InGaAsP層5
3y、低屈折率保護層用p型1nP層57y及びp型I
nGaAsP表面保護層72ヲこの順で成長させる(第
3図(A)’)。
First, an InGaAsP layer 5 for an active layer is formed on an n-type InP substrate 41 by a suitable crystal growth method such as liquid vapor phase epitaxy.
3y, p-type 1nP layer 57y and p-type I for low refractive index protective layer
The nGaAsP surface protective layer 72 is grown in this order (FIG. 3(A)').

次に、表面保護層72上の所定領域を覆うSiO□膜7
3を従来公知の方法で形成し、その復このSiO□膜7
3から露出している部分をn型1nP基板41が露出す
るまで、InP層に対しては塩酸系のエッチャントで、
InGaAsP層に対しでは硫酸系のエッチャントでエ
ツチングする(第3図(B))。
Next, the SiO□ film 7 covers a predetermined area on the surface protection layer 72.
3 is formed by a conventionally known method, and then the SiO□ film 7 is formed.
The InP layer is etched with a hydrochloric acid-based etchant until the n-type 1nP substrate 41 is exposed.
The InGaAsP layer is etched using a sulfuric acid-based etchant (FIG. 3(B)).

次に、露出したn型InP基板41表面に2光束干渉露
光法等の好適な方法により2次の回折格子43a(ピッ
チは約4800人のもの)を形成する(第3図(C))
Next, a second-order diffraction grating 43a (with a pitch of about 4800) is formed on the exposed surface of the n-type InP substrate 41 by a suitable method such as two-beam interference exposure method (FIG. 3(C)).
.

次に、5in2膜73ヲ除去しざらにp型InGaAs
P表面保護層71を塩酸系の選択エッチャントにより除
去し、その後、2度目の結晶成長工程により光導波路層
用p型1nGaAsP層45y、クラッド層用亜鉛ドー
プp型InP層59V、キャップ層用亜鉛ドープp型1
nGaAsP層any、 p型光吸収層用InGaAs
層55x及びn型光吸収層用InGaAs層55yをこ
の順に成長させる(第3図(D))。
Next, after removing the 5in2 film 73, the p-type InGaAs
The P surface protection layer 71 is removed using a hydrochloric acid-based selective etchant, and then a second crystal growth process is performed to form a p-type 1nGaAsP layer 45y for the optical waveguide layer, a zinc-doped p-type InP layer 59V for the cladding layer, and a zinc-doped cap layer. p type 1
nGaAsP layer any, InGaAs for p-type light absorption layer
The layer 55x and the InGaAs layer 55y for n-type light absorption layer are grown in this order (FIG. 3(D)).

次に、n型光吸収層用InGaAs層55yの回折格子
43aに対応する領域上を覆う5i02膜751Fr従
来公知の方法で形成し、その後硫酸系のエッチャントを
用いn型及びp型光吸収層用の各半導体層55y。
Next, a 5i02 film 751Fr covering the region corresponding to the diffraction grating 43a of the InGaAs layer 55y for the n-type light absorption layer is formed by a conventionally known method, and then a sulfuric acid-based etchant is used to form the n-type and p-type light absorption layers. Each semiconductor layer 55y.

55xのSiO2膜75から露出しでいる部分をエツチ
ングする(第3図(E))。
The exposed portion of the 55x SiO2 film 75 is etched (FIG. 3(E)).

次に、SiO□膜75ヲ除去し、その復従来公知の方法
によりキャップ層用p型InGaAsP層61y上及び
n型光吸収層用InGaAs層55y上に渡るストライ
ブ方向が<011>でありストライプ幅Wが3〜4um
であるストライブ状のSiO□膜77ヲ新たに形成する
。そしてこのストライブ状のSiO□膜77ヲエツチン
グマスクにし、このS ioz膜77から露出している
部分tar−CH3叶系のエッチャントによりn型In
P基板41に至るまで断面形状が逆メサになるようにエ
ツチングする。この結果、InGaAsP活性層53a
 、 O型InP低屈折率保護層57、p型InGaA
sP光導波路層45、亜鉛ドープ−型InPクラッド層
59、亜鉛ドープp型InGaAsPキャップ層61及
び分布反射器43を得る(第3図(F))。
Next, the SiO□ film 75 is removed and restored by a conventionally known method so that the stripe direction is <011> across the p-type InGaAsP layer 61y for the cap layer and the InGaAs layer 55y for the n-type light absorption layer. Width W is 3~4um
A striped SiO□ film 77 is newly formed. Then, this striped SiO□ film 77 is used as an etching mask, and the portion exposed from this SiOz film 77 is etched with n-type In
Etching is performed so that the cross-sectional shape becomes an inverted mesa up to the P substrate 41. As a result, InGaAsP active layer 53a
, O-type InP low refractive index protective layer 57, p-type InGaA
An sP optical waveguide layer 45, a zinc-doped InP cladding layer 59, a zinc-doped p-type InGaAsP cap layer 61, and a distributed reflector 43 are obtained (FIG. 3(F)).

次に、5i02膜778つけたままの状態で、n型In
P基板41の逆メサの積層体の両側部分に、3回目の結
晶成長工程でp型InP電流狭窄層69、n型InP電
流狭窄層71をこの順で成長させる。第3図(G)は、
各電流狭窄層の成長が終了した半導体レーザの中間体の
様子を、第3図(F)にして示した方向から見た側面図
、第3図(H)は、同じものを第3図(F)にRで示し
た方向から見た側面図である。
Next, with the 5i02 film 778 still attached, the n-type In
In the third crystal growth step, a p-type InP current confinement layer 69 and an n-type InP current confinement layer 71 are grown in this order on both sides of the reverse mesa stack of the P substrate 41. Figure 3 (G) is
A side view of the semiconductor laser intermediate after the growth of each current confinement layer is shown in the direction shown in FIG. 3(F), and FIG. It is a side view seen from the direction shown by R in F).

次に、SiO□膜77ヲ従来公知の方法で除去し、その
後、p型InGaAsPキャップ層61の、第1図を用
いて説明した半導体レーザ用p型電極65及び受光器用
p型電極55d !形成する予定領域(この場合は第3
図(I)中斜線を付した領域)にこの表面からp型In
Pクラッド層に至るように亜鉛を拡散させ亜鉛拡散領域
67a、67bを形成する(第3図(I))。
Next, the SiO□ film 77 is removed by a conventionally known method, and then the semiconductor laser p-type electrode 65 and the light receiver p-type electrode 55d of the p-type InGaAsP cap layer 61, which were explained using FIG. 1, are removed. The planned area to be formed (in this case, the third
From this surface, p-type In
Zinc is diffused so as to reach the P cladding layer to form zinc diffusion regions 67a and 67b (FIG. 3(I)).

次に、n型InP基板41の下側にn型電極63ヲ、p
型InGaAsPキャップ層61の所定領域上に半導体
レーザ用p型電極65及び受光器用p型電極55dを、
従来公知の方法でそれぞれ形成する(第3図(J))。
Next, an n-type electrode 63 and a p-type electrode are placed on the lower side of the n-type InP substrate 41.
A p-type electrode 65 for a semiconductor laser and a p-type electrode 55d for a light receiver are provided on a predetermined region of the type InGaAsP cap layer 61.
Each is formed by a conventionally known method (FIG. 3(J)).

以上の手順により第1図に示した実施例の分布反射形半
導体レーザを得ることが出来る。なあ、実施例の半導体
レーザの大きざであるが、この実施例の場合第3図(J
)にW。で示す総幅を300〜4ooum、β1で示す
活性領域の長さを200〜400L1m、β2で示す分
布反射器の長さを200〜400umとしでいる。しか
しこれら値はこれに限られるものではなく設計に応じ変
更出来ることは明らかである。
By the above procedure, the distributed reflection semiconductor laser of the embodiment shown in FIG. 1 can be obtained. By the way, regarding the size of the semiconductor laser in this example, in this example, Fig. 3 (J
) to W. The total width represented by is 300 to 4 oum, the length of the active region is 200 to 400 L1 m, and the length of the distributed reflector is 200 to 400 um, which is represented by β2. However, it is clear that these values are not limited to these and can be changed depending on the design.

なお、この発明は分布反射形半導体レーザについでなさ
れたものであるが、活性領域の構造は問わない0例えば
、活性領域に回折格子を有するいわゆる分布帰還形半導
体レーザに本発明のような2次の回折格子或いはそれよ
り高次の回折格子を具えた分布反射器を集積化した半導
体レーザであっても同様な効果を期待出来る。
Although this invention was made after the distributed reflection type semiconductor laser, the structure of the active region does not matter. A similar effect can be expected even with a semiconductor laser integrated with a distributed reflector equipped with a diffraction grating or a higher-order diffraction grating.

(発明の効果) 上述した説明からも明らかなように、この発明の分布反
射形半導体レーザによれば、2次の回折格子或いはそれ
より高次の回折格子を具えた分布反射器を有しているた
め、レーザ光の回折光が活性層、クラッド層等が積層さ
れた積層方向にも出るようになる。ざらにこのような回
折光の出る方向に受光器を造り付けた構造になっている
ので、半導体レーザと受光器とが一体になったAPCが
容易(こ行なえる半導体レーザになる。従って従来のよ
うな困aな光軸合わせは全く不要となり、また、戻り光
による悪杉奮も全くない、ざらにレーザ発振そのものは
従来の分布反射形半導体レーザと同様な原理で行なわれ
るので単一縦モードで安定に発振する。
(Effects of the Invention) As is clear from the above description, the distributed reflection semiconductor laser of the present invention has a distributed reflector equipped with a second-order diffraction grating or a higher-order diffraction grating. Therefore, the diffracted light of the laser beam also comes out in the lamination direction in which the active layer, cladding layer, etc. are laminated. Since the structure has a light receiver built in the direction in which such diffracted light comes out, it is easy to perform APC in which the semiconductor laser and light receiver are integrated. There is no need for such troublesome optical axis alignment, and there is no need for any trouble caused by returning light.In addition, the laser oscillation itself is performed on the same principle as conventional distributed reflection semiconductor lasers, so only a single longitudinal mode is generated. oscillates stably.

また、分布反射形半導体レーザを製造する際は一般に基
板上に多数の半導体レーザを作り込む。
Furthermore, when manufacturing a distributed reflection type semiconductor laser, a large number of semiconductor lasers are generally fabricated on a substrate.

従って、襞間前でも活性領域と、分布反射器とが交互に
並んだ状態になっているから、ある特定のチップの電極
に通電するとその活性領域では両側の部分布反射器を反
射鏡としてレーザ発振が起こる。このため、当該チップ
の受光器には回折光が入射するのでこれを用いたチップ
検査が出来る。
Therefore, even before the folds, active regions and distributed reflectors are arranged alternately, so when electricity is applied to the electrodes of a particular chip, the active region uses the distributed reflectors on both sides as reflecting mirrors to emit a laser beam. Oscillation occurs. Therefore, since the diffracted light is incident on the light receiver of the chip, the chip can be inspected using this diffracted light.

従って、凭開前にチップ選別することも可能1こなる。Therefore, it is also possible to sort chips before opening.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)〜(C)は、実施例の分布反射形半導体レ
ーザの構造説明に供する図、 第2図は、分布反射器が2次の回折格子を具えた場合に
よるこの発明の詳細な説明するための図、 第3図(A)〜(J)は、実施例の分布反射形半導体レ
ーザの製造方法の一例を示す工程図、第4図(A)〜(
C)は、従来の分布反射形半導体レーザの構造説明1こ
供する図である。 41・・・下地(n型InP基板) 43−・・分布反射器 43a・・・2次の回折格子或いはそれより高次の回折
格子 45−・・先導波路層(p型InGaAsP層)45y
・・・光導波路層用p型InGaAsP層51・・・入
射光、     51a・・・2次の回折光51b・・
・0次の回折光、 51c・・・1次の回折光53・・
・活性領域 53a ”−活性層CInGaAsP層)53y ・・
・活性層用InGaAsP層55・・・受光器 55a ”−光吸収層(p型1nGaAs層)55b−
・・光吸収層(n型InGaAs層)55c・・・受光
器用p型電極 55d・・・受光器用n型電極 55X =光吸収層用p型InGaAs層55y ・・
・光吸収層用n型InGaAs層57・・・低屈折率保
護層(p型1nP層)57y =低屈折率保護層用p型
InP層59・・・クラッド層(p型1nP層)59y
・・・クラッド層用p型InP層61−・・キtツブ層
(p型1nGaAsP層)61y・・・キャップ層側p
型InGaAsP層63・・・半導体レーザ用n型電極 65・・・半導体レーザ用p型電極 6?a、67b =亜18拡散領域 69・・・p型電流狭窄層、  71・・・n型電流狭
窄層72 ・・・表面保護層(p型1nGaAsP層)
73、75・・・5IO2膜 77−・・ストライブ状の5i02膜。 特許出願人    沖電気工業株式会社41・・・下地
(n型InP基板) 43・・・分布反射器 43a・・・2次の回折格子或はそれより高次の回折格
子 45−・・先導波路層(p型1nGaAsP層)53・
・・活性領域 53a−活性層(InGaAsP層) 55・・・受光器 55a ・=光吸収層(p型InGaAsP層)55b
−・・光吸収層(n型rnGaAsP層)55c・・・
受光器用p型電極 55d・・・受光器用n型電極 57・・・低屈折率保護層(p型InP層)59・・・
クラッド層(p型InP層)61・・・キーpツブ層(
p型InGaAsP層)63・・・半導体レーザ用n型
電極 65・・・半導体レーザ用p型電極 6h月7b・・・亜鉛拡散領域 69・・・p型電流狭窄層  71・・・n型電流狭窄
層51:入射光 51a:2次の回折光 51b: 0次の回折光 1c 1次の回折光 この発明の詳細な説明に供する図 第2図 第1 <O1+> 製造方法の一例を示す工程図 第3ン 製造方法の一例を示す工程図 第3 図 製造方法の一例を示す工程図 第3図
FIGS. 1(A) to (C) are diagrams for explaining the structure of a distributed reflection semiconductor laser according to an embodiment. FIG. 2 is a diagram showing details of the present invention in the case where the distributed reflector is provided with a second-order diffraction grating. FIGS. 3(A) to 3(J) are process diagrams showing an example of a method for manufacturing a distributed reflection semiconductor laser according to an embodiment, and FIGS. 4(A) to (J) are diagrams for explaining the process.
C) is a diagram providing a first explanation of the structure of a conventional distributed reflection type semiconductor laser. 41... Base (n-type InP substrate) 43-... Distributed reflector 43a... Second-order diffraction grating or higher-order diffraction grating 45-... Guide waveguide layer (p-type InGaAsP layer) 45y
... p-type InGaAsP layer for optical waveguide layer 51 ... incident light, 51a ... second-order diffracted light 51b ...
・0th order diffracted light, 51c...1st order diffracted light 53...
・Active region 53a''-active layer CInGaAsP layer) 53y...
- InGaAsP layer 55 for active layer...light receiver 55a''-light absorption layer (p-type 1nGaAs layer) 55b-
...Light absorption layer (n-type InGaAs layer) 55c...p-type electrode for light receiver 55d...n-type electrode for light receiver 55X =p-type InGaAs layer for light absorption layer 55y...
- N-type InGaAs layer for light absorption layer 57...Low refractive index protective layer (p-type 1nP layer) 57y =p-type InP layer for low refractive index protective layer 59...Clad layer (p-type 1nP layer) 59y
...P-type InP layer for cladding layer 61--Kit layer (p-type 1nGaAsP layer) 61y...Cap layer side p
Type InGaAsP layer 63...n-type electrode for semiconductor laser 65...p-type electrode for semiconductor laser 6? a, 67b = sub-18 diffusion region 69...p-type current confinement layer, 71...n-type current confinement layer 72...surface protection layer (p-type 1nGaAsP layer)
73, 75...5IO2 film 77-...5i02 film in stripe shape. Patent applicant: Oki Electric Industry Co., Ltd. 41... Base (n-type InP substrate) 43... Distributed reflector 43a... Second-order diffraction grating or higher-order diffraction grating 45-- Guide waveguide layer (p-type 1nGaAsP layer) 53.
...Active region 53a - active layer (InGaAsP layer) 55... Light receiver 55a -=light absorption layer (p-type InGaAsP layer) 55b
---Light absorption layer (n-type rnGaAsP layer) 55c...
P-type electrode for light receiver 55d...N-type electrode for light receiver 57...Low refractive index protective layer (p-type InP layer) 59...
Cladding layer (p-type InP layer) 61...Key p-tube layer (
p-type InGaAsP layer) 63...n-type electrode for semiconductor laser 65...p-type electrode for semiconductor laser 6h/7b...zinc diffusion region 69...p-type current confinement layer 71...n-type current Narrowing layer 51: Incident light 51a: 2nd order diffracted light 51b: 0th order diffracted light 1c 1st order diffracted light Figure 2 for detailed explanation of this invention 1 <O1+> Steps showing an example of the manufacturing method Figure 3: A process diagram showing an example of the manufacturing method Figure 3: A process diagram showing an example of the manufacturing method

Claims (1)

【特許請求の範囲】[Claims] (1)下地上側に活性領域と、該活性領域からの光が結
合される分布反射器とを具える分布反射形半導体レーザ
において、 分布反射器は2次の回折格子またはこれより高次の回折
格子を具え、 該分布反射器の上方に該分布反射器からの回折光を受光
する受光器を具えたこと を特徴とする分布反射形半導体レーザ。
(1) In a distributed reflection semiconductor laser that includes an active region on the side of a substrate and a distributed reflector to which light from the active region is coupled, the distributed reflector is a second-order diffraction grating or a higher-order diffraction grating. 1. A distributed reflection semiconductor laser comprising a diffraction grating, and a light receiver above the distributed reflector for receiving diffracted light from the distributed reflector.
JP25917788A 1988-10-14 1988-10-14 Distributed reflector type semiconductor laser Pending JPH02106084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25917788A JPH02106084A (en) 1988-10-14 1988-10-14 Distributed reflector type semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25917788A JPH02106084A (en) 1988-10-14 1988-10-14 Distributed reflector type semiconductor laser

Publications (1)

Publication Number Publication Date
JPH02106084A true JPH02106084A (en) 1990-04-18

Family

ID=17330434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25917788A Pending JPH02106084A (en) 1988-10-14 1988-10-14 Distributed reflector type semiconductor laser

Country Status (1)

Country Link
JP (1) JPH02106084A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0414274A (en) * 1990-05-07 1992-01-20 Matsushita Electric Ind Co Ltd Stabilized wavelength laser equipment
JP2019212888A (en) * 2018-06-05 2019-12-12 日本電信電話株式会社 Optical transmitter and multi-wavelength optical transmitter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0414274A (en) * 1990-05-07 1992-01-20 Matsushita Electric Ind Co Ltd Stabilized wavelength laser equipment
JP2019212888A (en) * 2018-06-05 2019-12-12 日本電信電話株式会社 Optical transmitter and multi-wavelength optical transmitter

Similar Documents

Publication Publication Date Title
US4658403A (en) Optical element in semiconductor laser device having a diffraction grating and improved resonance characteristics
JP3714430B2 (en) Distributed feedback semiconductor laser device
CA1321255C (en) High performance angled stripe superluminescent diode
EP0413365B1 (en) Method of manufacturing a diffraction grating
EP0484923B1 (en) Semiconductor wavelength conversion device
EP0125608B1 (en) Single longitudinal mode semiconductor laser
JP5069262B2 (en) Semiconductor light emitting device and optical pulse tester using the same
CA2473396C (en) High coherent power, two-dimensional surface-emitting semiconductor diode array laser
US5914977A (en) Semiconductor laser having a high-reflectivity reflector on the laser facets thereof, an optical integrated device provided with the semiconductor laser, and a manufacturing method therefor
KR100789309B1 (en) Semiconductor laser
JP2957240B2 (en) Tunable semiconductor laser
JPH02106084A (en) Distributed reflector type semiconductor laser
JP3595167B2 (en) Semiconductor light-emitting element, semiconductor light-emitting device incorporating the element, and methods of manufacturing the same
JPS63213383A (en) Semiconductor laser
US5027368A (en) Semiconductor laser device
US20010048704A1 (en) Distributed feedback laser diode
JPH1168221A (en) Semiconductor laser
WO2018134950A1 (en) Semiconductor laser element and method for manufacturing semiconductor laser element
JPS5858784A (en) Distribution feedback type semiconductor laser
JPH03195076A (en) External resonator type variable wavelength semiconductor laser
JP2894285B2 (en) Distributed feedback semiconductor laser and method of manufacturing the same
Hagberg et al. Fabrication of gratings for integrated optoelectronics
JP2735589B2 (en) Manufacturing method of diffraction grating
US6542532B1 (en) Semiconductor laser device capable of reducing coupling loss respect to optical fiber
JP2008205409A (en) Semiconductor laser, semiconductor laser module and raman amplifier