JPH02105826A - Preparation of hydrophilic polymer particle - Google Patents

Preparation of hydrophilic polymer particle

Info

Publication number
JPH02105826A
JPH02105826A JP25909188A JP25909188A JPH02105826A JP H02105826 A JPH02105826 A JP H02105826A JP 25909188 A JP25909188 A JP 25909188A JP 25909188 A JP25909188 A JP 25909188A JP H02105826 A JPH02105826 A JP H02105826A
Authority
JP
Japan
Prior art keywords
polymer
lipid
aqueous solution
small bubbles
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25909188A
Other languages
Japanese (ja)
Other versions
JP2739967B2 (en
Inventor
Satoshi Yuasa
聡 湯浅
Yoshinori Tomita
佳紀 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP25909188A priority Critical patent/JP2739967B2/en
Publication of JPH02105826A publication Critical patent/JPH02105826A/en
Application granted granted Critical
Publication of JP2739967B2 publication Critical patent/JP2739967B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1277Processes for preparing; Proliposomes

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Dispersion Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

PURPOSE:To prepare the title fine particles with a controlled particle size substantially in the absence of any org. solvent by forming small bubbles enclosed in a lipid membrane in an aq. soln. contg. a polymer precursor and polymerizing selectively said precursor in the small bubbles. CONSTITUTION:Pref. 0.2-100mmol of a lipid (e.g., dipalmitoylphosphatidylchloine) based on the following aq. soln. is added to an aq. soln. contg. a polymer precursor (e.g., acrylamide or N,N'-methylenebisacrylamide) and dispersed therein by ultrasonic treatment to form small bubbles enclosed in the lipid membrane in said aq. soln. An additive for preventing polymerization outside the small bubbles (e.g., potassium ferrocyanide) is added thereto and the polymer precursor in the small bubbles is selectively polymerized pref. by irradiation with a radiation.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高分子粒状物の製造方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for producing polymer granules.

(従来の技術及びその問題点) 従来、粒状の高分子材料を得る方法としては、粒状以外
の形状に合成された高分子材料を、例えば、粉砕等の手
段により粒状物とする方法や初めから粒状の形状で高分
子を生成させる方法がある。いずれの方法も工業的に実
施されているものであるが、特に後者は得られる高分子
材料の粒度や粒形等を揃えることが出来るという特徴が
ある。
(Prior art and its problems) Conventionally, methods for obtaining granular polymer materials include methods for converting polymer materials synthesized into shapes other than granules into granules by means such as pulverization, or methods for obtaining granular polymer materials from the beginning. There is a method of producing polymers in granular form. Both methods are practiced industrially, but the latter is particularly characterized in that the particle size and shape of the resulting polymer material can be made uniform.

高分子を粒状に生成させる後者の方法としては、乳化重
合、懸濁重合及びそれらの変法としてシード重合等が知
られている。
As the latter method of forming a polymer into particles, emulsion polymerization, suspension polymerization, and seed polymerization as variations thereof are known.

これらの方法は互いに混合しない2相を共存させ、その
一方の不連続相中で高分子の生成を起こさせる点で共通
している。これらの方法では、生成する高分子粒子の粒
度は、2相の体積比及び2相界面の広さで決まるもので
あり、それらは2相の夫々の体積、粘度、反応種の攪拌
条件、界面活性剤等の添加物の濃度等に敏感に影響され
る。
These methods have in common that two immiscible phases are made to coexist and a polymer is produced in one of the discontinuous phases. In these methods, the particle size of the polymer particles produced is determined by the volume ratio of the two phases and the width of the two-phase interface, and these are determined by the respective volumes of the two phases, viscosity, stirring conditions of the reactive species, and the interface. It is sensitively affected by the concentration of additives such as activators.

又、2相の界面は正のエネルギーを持つので、特に直径
1μm程度の微小粒状の高分子材料を作る場合には界面
活性剤の選択が重要となる。特に親水性高分子の粒状物
を作る際は、W2O型の逆相系分散状態を安定に保つ必
要があり、多量の有機溶媒を必要とするうえに、0.1
μm以下の粒状物を製造することが難しいという問題が
ある。
Furthermore, since the interface between the two phases has positive energy, the selection of the surfactant is particularly important when producing a polymer material in the form of microscopic particles with a diameter of about 1 μm. In particular, when making granules of hydrophilic polymers, it is necessary to maintain a stable W2O type reversed phase dispersion state, which requires a large amount of organic solvent and requires 0.1
There is a problem in that it is difficult to manufacture granular materials with a size of μm or less.

従って本発明の目的の1つは高分子粒状物の製造におい
て、その粒度が高分子生成時の反応条件に影響され難い
製造方法を提供し、粒度制御を容易にすることにある。
Accordingly, one of the objects of the present invention is to provide a manufacturing method in which the particle size of polymer particles is not easily influenced by the reaction conditions during polymer production, thereby facilitating particle size control.

又、本発明の別の目的は1μm以下の粒径の高分子粒子
を容易に調製する方法を提供することにある。
Another object of the present invention is to provide a method for easily preparing polymer particles having a particle size of 1 μm or less.

(問題点を解決する為の手段) 上記目的は以下の本発明によって達成される。(Means for solving problems) The above objects are achieved by the present invention as described below.

すなわち、本発明は、高分子前駆物質を含む水溶液内に
脂質膜により閉じられた小胞を形成する工程と、前記小
胞内の高分子前駆物質を選択的に高分子化する工程とを
有することを特徴とする親水性高分子粒状物の製造方法
である。
That is, the present invention comprises a step of forming a vesicle closed by a lipid membrane in an aqueous solution containing a polymer precursor, and a step of selectively polymerizing the polymer precursor within the vesicle. This is a method for producing a hydrophilic polymer granule.

(作用) 本発明の構成により、高分子生成時の反応条件に影響さ
れることなく生成する粒度を制御出来又1μm以下の粒
径の高分子粒子を容易に提供することが出来る。
(Function) According to the structure of the present invention, the particle size of the produced particles can be controlled without being affected by the reaction conditions during polymer production, and polymer particles having a particle size of 1 μm or less can be easily provided.

(好ましい実施態様) 次に好ましい実施態様により本発明を更に詳しく説明す
る。
(Preferred Embodiments) Next, the present invention will be explained in more detail with reference to preferred embodiments.

本発明の高分子粒状物の製造方法は、 (1)高分子前駆物質を脂質膜で閉じられた微小胞中に
封じる工程と (2)封じられた空間内で前記高分子前駆物質を高分子
化する工程とからなることを特徴としている。
The method for producing a polymer granule of the present invention includes (1) sealing a polymer precursor in microvesicles closed with a lipid membrane; and (2) converting the polymer precursor into a polymer in the sealed space. It is characterized by the process of converting.

本発明で使用する脂質膜とは、脂質が互いの分子間力と
疎水性相互作用により会合して生ずる2次元構造体であ
る。本発明で使用する脂質はこの様な2次元構造体を形
成し得る両親媒性物質として知られるものであり、公知
のものはいずれも使用出来るが、具体例を挙げるならば
、ジパルミトイルホスファチジルコリン、シミリストイ
ルホスファチジルセリン、ジステアリルジメチルアンモ
ニウムプロマイト等のジアルキル化合物、C)+3 (
CH2) So−シー@−N−CIF@/−0(C1(
□>4−N”(CH3)3 Br−等の如く剛直部を有
する疎水鎮と1つ或いは2つの親水基とを有する化合物
等が代表例として挙げられる。又、上記の様な物質のア
ルキル鎖の水素原子を一部或いは全部弗素で置換した物
質も好適に用いられる。
The lipid membrane used in the present invention is a two-dimensional structure formed by association of lipids through intermolecular forces and hydrophobic interactions. The lipid used in the present invention is known as an amphipathic substance that can form such a two-dimensional structure, and any known lipid can be used, but specific examples include dipalmitoylphosphatidylcholine, Dialkyl compounds such as simyristoylphosphatidylserine, distearyldimethylammonium puromite, C)+3 (
CH2) So-C@-N-CIF@/-0(C1(
Typical examples include compounds having a hydrophobic group having a rigid part and one or two hydrophilic groups such as 4-N''(CH3)3Br-. Substances in which some or all of the hydrogen atoms in the chain are replaced with fluorine are also preferably used.

以上の如き物質は夫々単独でも用いられるが2種以上を
混合して用いてもよい。更に水溶液中で2次元構造体を
形成し得る範囲で各種の高級脂肪酸或いはそのエステル
、アミド誘導体、コレステロール等の中性脂質が混合さ
れてもよい。これらの脂質を高分子前駆物質を含む水溶
液中に適当な手段を用いて分散させると、小胞を形成し
て水溶液の一部を内部に取り込む。
The above substances can be used alone, or two or more types can be used in combination. Furthermore, neutral lipids such as various higher fatty acids or their esters, amide derivatives, and cholesterol may be mixed to the extent that a two-dimensional structure can be formed in an aqueous solution. When these lipids are dispersed in an aqueous solution containing a polymeric precursor using an appropriate means, vesicles are formed and a portion of the aqueous solution is taken up inside.

水溶液に対して加える脂質の量は、全脂質として0.2
mM(ミリモル)から100mMの濃度の範囲が好まし
い。上記範囲を越える量の脂質を用いると脂質の全量を
水溶液中に見掛上均一に分散することが困難となる。一
方、上記範囲未満の量では、脂質小胞内部に保持される
水溶液の割合が小さいため最後に得られる高分子粒状物
の量か少くなり実用的でない。
The amount of lipid added to the aqueous solution is 0.2 as total lipid.
A concentration range from mM (millimol) to 100 mM is preferred. If an amount of lipid exceeding the above range is used, it becomes difficult to disperse the entire amount of lipid in an apparently uniform manner in an aqueous solution. On the other hand, if the amount is less than the above range, the proportion of the aqueous solution retained inside the lipid vesicles will be small, resulting in a small amount of polymer particles finally obtained, which is not practical.

上記脂質小胞内部の水相の大きさは用いた脂質や分散手
段等により3μm乃至10nmの範囲で調製可能である
The size of the aqueous phase inside the lipid vesicle can be adjusted within the range of 3 μm to 10 nm depending on the lipid used, dispersion means, etc.

本発明で使用する高分子前駆物質とは、高分子を形成す
ることの出来る単量体、反応活性を有するオリゴマー、
反応活性を有する高分子等であり、水溶液に実質的に溶
解し得るものであればいずれも使用出来る。特に高分子
化の工程で生ずる高分子が水に不溶となる様な高分子前
駆物質を用いると、得られた高分子粒状物から脂′R膜
を除去しても水中で安定に存在する高分子粒状物が得ら
れるので好ましい。
The polymer precursors used in the present invention include monomers that can form polymers, oligomers that have reactive activity,
Any polymer that has reactive activity and can be substantially dissolved in an aqueous solution can be used. In particular, if a polymer precursor is used in which the polymer generated in the polymerization process is insoluble in water, the polymer that remains stable in water even after the fat R film is removed from the resulting polymer granules. This is preferred because molecular granules can be obtained.

上述の様に水に不溶な高分子を生ずる前駆体としては、
単量体やオリゴマーの中で高分子化すると水への溶解性
が特に小さくなるもの、反応活性を有する高分子の場合
は、反応の結果生ずる新な高分子の水への溶解性が特に
小さくなるものを用いることが出来る。又、上記高分子
化の工程で架橋構造を有する高分子が形成される様な高
分子化工程も不溶な高分子を生ずる例の1つである。
As mentioned above, the precursors that produce water-insoluble polymers include:
Among monomers and oligomers, the solubility in water becomes particularly low when polymerized, and in the case of polymers with reaction activity, the solubility in water of the new polymer produced as a result of the reaction is particularly low. You can use something like this. Further, the polymerization step in which a polymer having a crosslinked structure is formed in the polymerization step described above is also an example of producing an insoluble polymer.

脂質を水溶液中に分散し小胞を形成する方法は、従来よ
り種々のものが知られており、それらの中から目的とす
る大きさの小胞を形成するために適当な方法を選ぶこと
が出来る。特に微小な高分子粒状物を得る目的には超音
波を用いた分散が有効である。他方、比較的大きな粒状
物を得る目的には、水に不溶の有機溶媒に脂質を溶解し
、これを高分子前駆物質の水溶液に加えてから有機溶媒
を蒸発除去する方法が有効である。
Various methods have been known for forming vesicles by dispersing lipids in an aqueous solution, and it is possible to select an appropriate method among them to form vesicles of the desired size. I can do it. Dispersion using ultrasonic waves is particularly effective for obtaining fine polymer particles. On the other hand, for the purpose of obtaining relatively large granules, an effective method is to dissolve the lipid in an organic solvent that is insoluble in water, add this to an aqueous solution of a polymer precursor, and then evaporate and remove the organic solvent.

脂質小胞が形成された後に、小胞の外側水相に存在する
高分子@駆物質が高分子化することを防ぐために、外側
水相に高分子化反応の遅延剤或いは禁止剤を添加する。
After lipid vesicles are formed, a polymerization reaction retardant or inhibitor is added to the outer aqueous phase in order to prevent polymerization of the polymer @ precursor substance present in the outer aqueous phase of the vesicle. .

これらの添加剤は、勿論脂質小胞の界面を通過して内側
水相に移動するものであってはならない。用いることの
出来る上記添加剤は、使用する高分子前駆体の種類に応
じて選ばねばならないが、例えば、高分子化工程の高分
子化反応がラジカル重合である場合は、添加剤としてヒ
ドロキノンスルホン酸ナトリウム、アスコルビン酸ナト
リウム、2,2,5.5−テトラメチルピロリジン−1
−オキシル−3−カルボン酸ナトリウム、2.2,5.
5−テトラメチルビロリン−1−オキシル−3−カルボ
ンナトリウム、2.2,5.5−テトラメチルピロリン
−N−オキシド−3−カルボン酸ナトリウム、チオニン
、塩化鉄、塩化銅、塩化亜鉛、フェロシアン化カリウム
等で代表されるラジカル反応禁止作用を持つ水溶性物質
を用いることが出来る。
These additives must, of course, not migrate through the interface of the lipid vesicles into the inner aqueous phase. The above additives that can be used must be selected depending on the type of polymer precursor used. For example, when the polymerization reaction in the polymerization step is radical polymerization, hydroquinone sulfonic acid is used as an additive. Sodium, sodium ascorbate, 2,2,5.5-tetramethylpyrrolidine-1
-Sodium oxyl-3-carboxylate, 2.2,5.
Sodium 5-tetramethylpyroline-1-oxyl-3-carbonate, sodium 2.2,5.5-tetramethylpyrroline-N-oxide-3-carboxylate, thionine, iron chloride, copper chloride, zinc chloride, ferro A water-soluble substance having a radical reaction inhibiting effect, such as potassium cyanide, can be used.

前記の添加剤は、脂質小胞の外側水相に対して1mMか
ら3Mの濃度の範囲で存在させるのか好ましい。用いる
添加剤と高分子前駆物質との種類にもよるが、一般にこ
れ未満の濃度で用いても脂質小胞外における高分子化反
応を停止するに充分でなく、又、これを越える濃度で用
いると一旦形成した脂質小胞の安定性を損なう場合があ
り好ましくない。
Preferably, the additives are present in the outer aqueous phase of the lipid vesicles in a concentration range of 1mM to 3M. Although it depends on the types of additives and polymer precursors used, in general, concentrations lower than this are not sufficient to stop the polymerization reaction outside of lipid vesicles, and concentrations exceeding this are generally used. This is not preferable since it may impair the stability of lipid vesicles once formed.

高分子化反応を抑制するための上記添加剤を、脂質小胞
の外側水相に加えると、条件によっては脂質小胞の凝集
や融合が生じたり、添加剤の一部が小胞の脂質膜を通過
して内側水相道連したりすることがある。この様な現象
は、製造される高分子粒状物の粒径を不均一にしたり、
粒状物の生成自体を阻害するので防止する必要がある。
When the above-mentioned additives for suppressing polymerization reactions are added to the outer aqueous phase of lipid vesicles, depending on the conditions, aggregation or fusion of the lipid vesicles may occur, or part of the additive may be absorbed into the lipid membrane of the vesicles. It may pass through and connect to the inner water phase. Such a phenomenon may cause the particle size of the produced polymer particles to become non-uniform, or
It is necessary to prevent this because it inhibits the generation of particulate matter itself.

脂質としてゲル−液晶相転移を示す材料を用いれば、上
記の問題は一部解消される。すなわち、脂質の相転移温
度以上において(すなわち脂質が流動性を有する液晶状
態において)前述した様に脂質小職形成工程を行い、し
かる後、脂質の相転移温度以下において(すなわち、脂
質が流動性を失ったゲル状態において)高分子化反応を
抑制する添加剤を小胞外側水相に添加するならば、小胞
の融合や添加剤の脂質膜透過を防ぐことが出来る。この
場合、次の高分子化工程においても脂質の相転移温度以
下に保持すべきである。
If a material exhibiting a gel-liquid crystal phase transition is used as the lipid, the above problems can be partially resolved. That is, the lipid cell formation step is performed as described above at a temperature above the phase transition temperature of the lipid (i.e., when the lipid is in a liquid crystal state with fluidity), and then, at a temperature below the phase transition temperature of the lipid (i.e., when the lipid is in a liquid crystal state with fluidity). If an additive that suppresses the polymerization reaction (in a gel state that has lost its molecular weight) is added to the aqueous phase outside the vesicles, fusion of the vesicles and permeation of the additive through the lipid membrane can be prevented. In this case, the temperature should be maintained below the phase transition temperature of the lipid even in the next polymerization step.

高分子11i′r駆物質は上述の様な小胞が安定に形成
された後に、用いた@駆物質に応した手段によって高分
子化される。この手段としては、高分子化反応の開始触
媒作用を有する物質の添加を用いる事が可能であるが、
更に好適には、可視光線、紫外線、X線、γ線等の輻射
線の照射を用いることが出来る。これらの輻射線を利用
する場合には、高分子化反応を促進するために輻射線に
対する増感作用を有する化合物を高分子前駆物質と共存
させてもよい。
After the vesicles as described above are stably formed, the polymeric 11i'r precursor is polymerized by means depending on the @ precursor used. As a means for this, it is possible to use a substance that has a catalytic effect to initiate the polymerization reaction, but
More preferably, irradiation with radiation such as visible light, ultraviolet rays, X-rays, and γ-rays can be used. When these radiations are used, a compound having a sensitizing effect to radiation may be co-existed with the polymer precursor in order to promote the polymerization reaction.

高分子化反応により脂質小胞内の高分子前駆物質は高分
子化され、高分子粒状物が水溶液に分散した状態で得ら
れる。脂質が粒状物の周囲に残っていると分散状態は安
定である。脂質を除去する必要がある場合は、得られた
分散液に界面活性剤を添加してi質膜を破壊し、粒子を
洗浄することにより除くことか出来る。
The polymer precursor within the lipid vesicles is polymerized by the polymerization reaction, and polymer particles are obtained in a state dispersed in an aqueous solution. If the lipid remains around the particles, the dispersion state is stable. If it is necessary to remove lipids, it can be done by adding a surfactant to the resulting dispersion to destroy the idioplasmic membrane and washing the particles.

上述の粒状高分子の製造方法は、両親媒性物質を用いて
高分子前駆物質を含む水相を分散している点においては
逆相懸濁重合法及び逆相乳化重合法に類似する。しかし
、両親媒性物質層を介して接する2層がいずれも水相で
ある事が本方法に特徴的である。この様な両親媒性物質
層すなわち脂質膜は一旦形成されると安定であり、高分
子前駆物質の高分子化の操作等によっても容易には破壊
されないため、本発明の高分子粒状物の製造方法におい
て高分子の粒度を規制する目的に有効に嵜与する。
The method for producing particulate polymers described above is similar to reverse-phase suspension polymerization and reverse-phase emulsion polymerization in that an amphiphilic substance is used to disperse an aqueous phase containing a polymer precursor. However, a feature of this method is that both of the two layers that are in contact with each other via the amphiphilic substance layer are aqueous phases. Once formed, such an amphiphilic material layer, that is, a lipid membrane, is stable and is not easily destroyed even by operations such as polymerization of a polymer precursor, and therefore, it is difficult to produce the polymer granules of the present invention. It effectively contributes to the purpose of regulating the particle size of polymers in the method.

又、一般の懸濁重合法や乳化重合法では用いられる界面
活性剤分子は界面に存在する状態と2液相に溶存する状
態との間に速い交換があり、分散系が本発明のものに比
べ環境条件に敏感であるため、本発明と同等の効果を得
ることが困難である。
In addition, in the general suspension polymerization method and emulsion polymerization method, the surfactant molecules used are rapidly exchanged between the state existing at the interface and the state dissolved in the two liquid phases, and the dispersion system of the present invention is In comparison, it is more sensitive to environmental conditions, so it is difficult to obtain the same effects as the present invention.

(実施例) 以下、具体的実施例により本発明の親水性高分子粒状物
の製造方法を説明する。
(Example) Hereinafter, the method for producing a hydrophilic polymer granule of the present invention will be explained using specific examples.

実施例1 アクリル酸ヒドロキシエチル4g、アクリルアミド16
g及び塩化ナトリウム1.8gを水200muに溶解す
る。卵黄レシチン6gをクロロホルム20ml1に溶解
し、容量500mRのステンレス容器中で容器を回転し
ながらクロロホルムを減圧除去する。この容器に前記の
水溶液を入れて外から5℃に冷却しながらプローブ型超
音波発振装置(28KHz、 2001)により20分
間処理する。得られた水溶液を3.OOOrpmにて2
0分間遠心して沈澱物を除去し、ドライアイス/アセト
ン浴で凍結させ、次に15℃の水浴で融解する。この液
を先ず2.0μm孔径のポリカーボネート膜を用いて加
圧濾過し、更に0.4μm孔径のポリカーボネート膜を
用いて加圧濾過し、脂質小胞を形成する。この濾液に1
8重里%のアスコルビン酸ナトリウム水溶液を同容加え
、20℃に保持して窒素X囲気下にC66oを線源とす
るγ線を1 、2 X 106R,/ hrにて8時間
照射する。次にトリトンX100(ロームアンドハース
社)を液量の5%添加して、水2倍容を加えて希釈し、
20.000rpa+にて1時間遠心することにより半
透明ペースト状に沈殿した高分子微粒子が得られた。氷
晶は純水に分散して光散乱法により粒径を測定すると平
均粒径420nmであった。
Example 1 Hydroxyethyl acrylate 4g, acrylamide 16
g and 1.8 g of sodium chloride are dissolved in 200 mu of water. 6 g of egg yolk lecithin is dissolved in 20 ml of chloroform, and the chloroform is removed under reduced pressure in a stainless steel container with a capacity of 500 mR while rotating the container. The above-mentioned aqueous solution is placed in this container, and treated with a probe-type ultrasonic oscillator (28 KHz, 2001) for 20 minutes while being externally cooled to 5°C. 3. The obtained aqueous solution. At OOOrpm 2
Centrifuge for 0 min to remove the precipitate, freeze in a dry ice/acetone bath, then thaw in a 15°C water bath. This liquid is first filtered under pressure using a polycarbonate membrane with a pore size of 2.0 μm, and then filtered under pressure using a polycarbonate membrane with a pore size of 0.4 μm to form lipid vesicles. 1 in this filtrate
The same volume of 8% sodium ascorbate aqueous solution is added, maintained at 20°C, and irradiated with gamma rays from a C66o source at 1.2 x 106 R,/hr for 8 hours under a nitrogen atmosphere. Next, add 5% of the liquid volume of Triton X100 (Rohm and Haas), dilute with 2 volumes of water,
By centrifuging at 20,000 rpa+ for 1 hour, polymer fine particles precipitated in the form of a translucent paste were obtained. When the ice crystals were dispersed in pure water and the particle size was measured by a light scattering method, the average particle size was 420 nm.

実施例2 アクリル酸とドロキシエチル4g%N、N−メチレンビ
スアクリルアミド15g、アクリルアミド20g、塩化
カリウム1.8g及びリボフラビン70mgを水200
m1に加え攪拌する。以下、実施例1と同様にして脂質
小胞を形成する。
Example 2 Acrylic acid and droxyethyl 4g% N, N-methylenebisacrylamide 15g, acrylamide 20g, potassium chloride 1.8g and riboflavin 70mg were added to 200 g of water.
Add to m1 and stir. Thereafter, lipid vesicles are formed in the same manner as in Example 1.

溶られた水溶液に18重量%のアスコルビン酸ナトリウ
ム水溶液を同容加え、10℃に保ちながら雰囲気下で白
色蛍光灯(6w4本)の光を5cmの距離から60分間
照射する。以下実施例1と同様の処理を行って平均粒径
350nmの粒子が得られた。
The same volume of 18% by weight sodium ascorbate aqueous solution is added to the dissolved aqueous solution, and the mixture is irradiated with white fluorescent lamps (4 6W lamps) from a distance of 5 cm for 60 minutes in an atmosphere while maintaining the temperature at 10°C. Thereafter, the same treatment as in Example 1 was performed to obtain particles with an average particle size of 350 nm.

実施例3 2度Hの加圧濾過に用いるポリカーボネート膜の孔径を
0.2μmとする以外は、実施例1と同様の操作を行っ
て平均粒径2!0μmの高分子粒子が得られた。
Example 3 Polymer particles with an average particle size of 2!0 μm were obtained by carrying out the same operation as in Example 1, except that the pore size of the polycarbonate membrane used for pressure filtration at 2 degrees H was set to 0.2 μm.

実施例4 アクリルアミド10g、N、N−メチレンビスアクリル
アミド2.5g及び塩化ナトリウム0.9gを水100
mJlに溶解する。ジパルミトイルホスファチジルコリ
ン2.6g及びコレステロール0.2gをエタノール2
0mILに溶解し、ガラス容器内で穏やかな空気気流に
より乾燥する。この容器に前記水溶液を加え、50℃に
加温しプローブ型超音波発振装置(28KHz、 12
0w)により30分間処理する。得られた水溶液を5℃
に冷却し、3.OOOrpmにて20分間遠心して沈澱
物を除去する。この液を5℃に冷却し、フェロシアン化
カリウム16重量%水溶液同容を混合する。
Example 4 10 g of acrylamide, 2.5 g of N,N-methylenebisacrylamide and 0.9 g of sodium chloride were added to 100 g of water.
Dissolve in mJl. 2.6 g of dipalmitoylphosphatidylcholine and 0.2 g of cholesterol were mixed with 2.2 g of ethanol.
Dissolve in 0 mL and dry in a glass container with a gentle stream of air. The aqueous solution was added to this container, heated to 50°C, and heated to a probe type ultrasonic oscillator (28 KHz, 12
0w) for 30 minutes. The resulting aqueous solution was heated to 5°C.
3. Centrifuge at OOOrpm for 20 minutes to remove the precipitate. This liquid is cooled to 5° C. and mixed with the same volume of a 16% by weight aqueous solution of potassium ferrocyanide.

前記液を5℃に冷却攪拌し、実施例1と同様の条件でγ
線を照射して平均粒径18nmの高分子粒子が得られた
The solution was cooled to 5°C and stirred, and γ was obtained under the same conditions as in Example 1.
Polymer particles with an average particle size of 18 nm were obtained by irradiation with the beam.

実施例5 アクリル酸ナトリウム0.2gを水2mJZに溶解する
。ジミリストイルホスファチジルグリセロール7mg、
シミリストイルホスファチジルコリン36mg及びコレ
ステロール24mgをジエチルエーテル7mj2に溶解
し、上記水溶液を加え超音波処理して乳濁液とする。減
圧してエーテルを溜去する。溜去の途中で液の流動性か
無くなったら液を振り混ぜて溜去を続ける。
Example 5 0.2 g of sodium acrylate is dissolved in 2 mJZ of water. Dimyristoylphosphatidylglycerol 7mg,
36 mg of simiristoylphosphatidylcholine and 24 mg of cholesterol are dissolved in 7 mj2 of diethyl ether, and the above aqueous solution is added and subjected to ultrasonication to form an emulsion. The ether is distilled off under reduced pressure. If the liquid loses fluidity during distillation, shake the liquid and continue distilling.

得られた液を4℃に冷却し、16fi量%のフェロシア
ン化カリウム水溶液を同容加える。この液を4℃に保持
し、窒素雰囲気下で28106R/hrのγ線(co”
)を2時間照射して平均0.58μm径の粒子が得られ
た。
The obtained liquid is cooled to 4° C., and the same volume of a 16 fi% potassium ferrocyanide aqueous solution is added. This solution was kept at 4°C and exposed to 28106 R/hr of gamma rays (co") under a nitrogen atmosphere.
) was irradiated for 2 hours to obtain particles with an average diameter of 0.58 μm.

実施例6 N−ビニルピロリドン2g、アクリルアミド4g、エチ
レングリコールジアクリレート0.3g及び塩化ナトリ
ウム0.6gを水70mρに溶解する。卵黄レシチン4
5mgをジエチルエーテル35mff1に溶解する。上
記の水溶液を35℃に加温し、弱く減圧しながら上記エ
ーテル溶液をゆっくり注入する。この水溶液に18重量
%のアスコルビン酸ナトリウム水溶液を同容加え、以下
実施例1と同様にしてγ線照射を行って平均粒径0.2
μmの粒子が得られた。
Example 6 2 g of N-vinylpyrrolidone, 4 g of acrylamide, 0.3 g of ethylene glycol diacrylate and 0.6 g of sodium chloride are dissolved in 70 mρ of water. egg yolk lecithin 4
5 mg is dissolved in 35 mff1 of diethyl ether. The above aqueous solution is heated to 35°C, and the above ether solution is slowly injected while the pressure is slightly reduced. The same volume of 18% by weight sodium ascorbate aqueous solution was added to this aqueous solution, and γ-ray irradiation was performed in the same manner as in Example 1 to obtain an average particle size of 0.2.
Particles of μm were obtained.

(効  果) 以上説明した様に、本発明の方法に従うと、<1)親水
性高分子粒状物の粒度は、高分子生成工程の反応条件と
は独立に脂質小胞形成工程で制御することが出来る。
(Effects) As explained above, according to the method of the present invention, <1) the particle size of the hydrophilic polymer particles can be controlled in the lipid vesicle formation step independently of the reaction conditions of the polymer production step; I can do it.

(2)0.1μm以下の微小な親水性高分子粒状物を製
造することが出来る。
(2) It is possible to produce minute hydrophilic polymer particles of 0.1 μm or less.

(3)打機溶媒は殆ど使用せず、水溶液系で親水性高分
子粒状物を製造することが出来る。
(3) Hydrophilic polymer granules can be produced in an aqueous solution system without using much battering machine solvent.

等の点において従来の方法に無い効果が得られた。Effects not found in conventional methods were obtained in these respects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は高分子前駆物質の分散した水溶液内に脂質膜よ
りなる小胞が形成された状態を示す模式図であり、第2
図は小胞内水相において高分子前駆物質が高分子化した
状態を示す模式図である。 1:高分子前駆物質と高分子化反応抑制剤の分散する水
溶液 2:脂質膜 3:高分子前駆物質の分散した水溶液 4:親水性高分子粒状物 第1図
Figure 1 is a schematic diagram showing a state in which vesicles made of lipid membranes are formed in an aqueous solution in which a polymer precursor is dispersed;
The figure is a schematic diagram showing a state in which a polymer precursor is polymerized in the intravesicular aqueous phase. 1: Aqueous solution in which a polymer precursor and polymerization reaction inhibitor are dispersed 2: Lipid membrane 3: Aqueous solution in which a polymer precursor is dispersed 4: Hydrophilic polymer granules Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)高分子前駆物質を含む水溶液内に脂質膜により閉
じられた小胞を形成する工程と、前記小胞内の高分子前
駆物質を選択的に高分子化する工程とを有することを特
徴とする親水性高分子粒状物の製造方法。
(1) It is characterized by comprising a step of forming a vesicle closed by a lipid membrane in an aqueous solution containing a polymer precursor, and a step of selectively polymerizing the polymer precursor within the vesicle. A method for producing a hydrophilic polymer granule.
(2)小胞外に高分子化反応を抑制する添加剤を存在さ
せる請求項1に記載の親水性高分子粒状物の製造方法。
(2) The method for producing hydrophilic polymer granules according to claim 1, wherein an additive for suppressing polymerization reaction is present outside the vesicles.
(3)高分子化工程が輻射線の照射による請求項1及び
2に記載の親水性高分子粒状物の製造方法。
(3) The method for producing hydrophilic polymer particles according to claims 1 and 2, wherein the polymerization step involves irradiation with radiation.
JP25909188A 1988-10-14 1988-10-14 Method for producing hydrophilic polymer particles Expired - Lifetime JP2739967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25909188A JP2739967B2 (en) 1988-10-14 1988-10-14 Method for producing hydrophilic polymer particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25909188A JP2739967B2 (en) 1988-10-14 1988-10-14 Method for producing hydrophilic polymer particles

Publications (2)

Publication Number Publication Date
JPH02105826A true JPH02105826A (en) 1990-04-18
JP2739967B2 JP2739967B2 (en) 1998-04-15

Family

ID=17329189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25909188A Expired - Lifetime JP2739967B2 (en) 1988-10-14 1988-10-14 Method for producing hydrophilic polymer particles

Country Status (1)

Country Link
JP (1) JP2739967B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2677897A1 (en) * 1991-06-24 1992-12-24 Oreal PROCESS FOR THE PREPARATION OF SUBMICRONIC PARTICLES IN THE PRESENCE OF LIPID VESICLES AND CORRESPONDING COMPOSITIONS.
WO1994007940A1 (en) * 1992-09-28 1994-04-14 Zeneca Limited Polymer composition
US5599891A (en) * 1992-09-28 1997-02-04 Zeneca Limited Polymer composition
JPH11209504A (en) * 1998-01-26 1999-08-03 Kureha Chem Ind Co Ltd Production of expandable microsphere

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2677897A1 (en) * 1991-06-24 1992-12-24 Oreal PROCESS FOR THE PREPARATION OF SUBMICRONIC PARTICLES IN THE PRESENCE OF LIPID VESICLES AND CORRESPONDING COMPOSITIONS.
US5425993A (en) * 1991-06-24 1995-06-20 L'oreal Process for preparing submicron particles in the presence of lipid vesicles, and corresponding compositions
US5670099A (en) * 1991-06-24 1997-09-23 L'oreal Process for preparing submicron particles in the presence of lipid vesicles, and corresponding compositions
WO1994007940A1 (en) * 1992-09-28 1994-04-14 Zeneca Limited Polymer composition
US5599891A (en) * 1992-09-28 1997-02-04 Zeneca Limited Polymer composition
JPH11209504A (en) * 1998-01-26 1999-08-03 Kureha Chem Ind Co Ltd Production of expandable microsphere
JP4620812B2 (en) * 1998-01-26 2011-01-26 株式会社クレハ Method for producing foamable microspheres

Also Published As

Publication number Publication date
JP2739967B2 (en) 1998-04-15

Similar Documents

Publication Publication Date Title
US6048546A (en) Immobilized lipid-bilayer materials
Patel et al. Ufasomes: A vesicular drug delivery.
PT1419789E (en) Preparation of a lipid blend and a phospholipid suspension containing the lipid blend, and contrast agents based on these
NL2029961B1 (en) Dopamine-coated cellulose nanocrystal-agarose drug-loaded hydrogel and preparation method thereof
JPS61207324A (en) Liposome
Gomes et al. Stable polymethacrylate nanocapsules from ultraviolet light-induced template radical polymerization of unilamellar liposomes
JPH02105826A (en) Preparation of hydrophilic polymer particle
GB2201966A (en) Composite material
CN114939186A (en) Ti-MOF/chitosan scaffold and preparation method and application thereof
Yi et al. Gold nanoclusters encapsulated microneedle patches with antibacterial and self‐monitoring capacities for wound management
JPH02105827A (en) Preparation of hydrophilic polymer particle
JPH0456008B2 (en)
JP2013075839A (en) Lipid hydrate and manufacturing method for liposome
CN111821512B (en) Enzyme-response drug release poly-L-glutamic acid/chitosan porous composite microcarrier, and preparation method and application thereof
Yoshida et al. Immobilization of glucoamylase on polymer surface by radiation‐induced polymerization of glass‐forming monomers at low temperatures
JPH02258050A (en) Fuorocompound emulsion
JP3252164B2 (en) Method for producing vesicle membrane incorporating photosynthetic membrane protein
JP2713718B2 (en) Liposome preparation method
RU2787956C1 (en) Method for obtaining a suspension of biodegradable nanomaterial of inorganic calcium salts
Pirvu et al. Studies concerning the optimization of the pentoxifylline encapsulation
JP2000247868A (en) Extemporaneously prepared kit of liposome
CN115702881A (en) Adriamycin liposome with hydrogen peroxide stimulus response release function and preparation method thereof
WO2010077156A1 (en) Composition for prolonged release of heparin and use of the alginate-hydroxypropylcellulose gel for prolonged release of heparin
Yang et al. An Advanced Lyophilization Toward Intact Lipid Nanovesicles: Liquid-mediated Freezing with Cryoprotectant to Retain the Integrity of Lipid Nanovesicles
Horwitz et al. Some properties of particles of egg-yolk phosphatidylcholine and cholesterol

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 11