JPH02104971A - Combustion judging method for spark-ignition internal combustion engine - Google Patents

Combustion judging method for spark-ignition internal combustion engine

Info

Publication number
JPH02104971A
JPH02104971A JP25595688A JP25595688A JPH02104971A JP H02104971 A JPH02104971 A JP H02104971A JP 25595688 A JP25595688 A JP 25595688A JP 25595688 A JP25595688 A JP 25595688A JP H02104971 A JPH02104971 A JP H02104971A
Authority
JP
Japan
Prior art keywords
combustion
knocking
rate
heat release
spark
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25595688A
Other languages
Japanese (ja)
Other versions
JP2615919B2 (en
Inventor
Masato Yoshida
正人 吉田
Kazuhiro Shiraishi
白石 一洋
Hiromitsu Ando
弘光 安東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP25595688A priority Critical patent/JP2615919B2/en
Publication of JPH02104971A publication Critical patent/JPH02104971A/en
Application granted granted Critical
Publication of JP2615919B2 publication Critical patent/JP2615919B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Ignition Timing (AREA)

Abstract

PURPOSE:To avoid any occurrence of knocking before it happens by detecting a direct phenomenon of combustion such as buildup time and gradient value in a building-up range of a heat generating rate and thereby judging a combustion state. CONSTITUTION:A crank angle is detected by a crank angle detecting means 1, and cylinder internal pressure is detected by a cylinder internal pressure detecting means 2. A heat generating rate operational means 3 operates a heat generating rate and a variation operational means 4 operates a variation in this heat generating rate respectively. A direct phenomenon of combustion such as buildup time and gradient value or the like in a building-up range of the heat generating rate is detected and thereby a combustion state is judged. Thus, any occurrence of knocking is avoidable before it happens.

Description

【発明の詳細な説明】 〈産業上の利用分舒〉 本発明は、火花点火内燃機関がノッキングし易い燃焼状
態を検出して、ノッキングを未然に防止したり燃焼状態
の可否を判定し得る燃焼判定方法に関する。
Detailed Description of the Invention <Industrial Application> The present invention detects a combustion state in which a spark-ignition internal combustion engine is susceptible to knocking, thereby preventing knocking and determining whether or not a combustion state is possible. Regarding the determination method.

〈従来の技術〉 火花点火内燃機関におけろ通常の燃焼は、点火プラグか
ら与えられる火花で混合気の一部が着火され、その火炎
が混合気内を伝播することにより進行するが、ノッキン
グは未燃焼部分の混合気の一部又は全部が圧縮による温
度上昇のため、火炎の伝播を待たずに自己着火して一時
に燃焼することにより起こる。
<Prior art> Normal combustion in a spark-ignition internal combustion engine proceeds by igniting a portion of the air-fuel mixture with a spark provided by a spark plug, and the flame propagates within the air-fuel mixture, but knocking occurs. This occurs because part or all of the unburned air-fuel mixture self-ignites and burns all at once without waiting for flame propagation due to the temperature rise due to compression.

この急激な燃焼に伴う燃焼室内の圧力の急上昇と圧力波
の伝播により、機関各部の機械的な振動や点火プラグ、
ピストン等の過熱を生じろため、ノッキングは火花点火
内燃機関にとって最も有害な現象の一つであると云うこ
とができろ。
This rapid combustion causes a sudden increase in pressure within the combustion chamber and the propagation of pressure waves, causing mechanical vibrations in various parts of the engine, spark plugs, etc.
Knocking can be said to be one of the most harmful phenomena for spark-ignition internal combustion engines because it causes overheating of the pistons, etc.

しかし、この火花点火内燃機関(以下、単に機関と略称
する)から最大トルクを引き出す点火時期は、周知のよ
うにノッキングが発生する条件の近傍にあることから、
機関から最大トルクを引き出そうとすればするほどノッ
キングを生じる確率が高くなる傾向を有する。
However, as is well known, the ignition timing that brings out the maximum torque from this spark-ignition internal combustion engine (hereinafter simply referred to as the engine) is close to the conditions that cause knocking.
There is a tendency that the more maximum torque is extracted from the engine, the higher the probability that knocking will occur.

そこで、従来では機関に筒内圧センサや加速度センサを
取り付け、ノッキングの発生に伴って生じろ筒内圧の振
動や機関の機械的な振動を検出し、運転状態の可否や点
火時期の妥当性等を判定したり、運転中の点火時期の補
正を行い、機関から最大トルクを引き出しつつノッキン
グの発生を抑えろようにしている。
Therefore, in the past, a cylinder pressure sensor and an acceleration sensor were attached to the engine to detect vibrations in the cylinder pressure and mechanical vibrations of the engine that occur due to knocking, and to check whether the engine is operating properly or not, the appropriateness of the ignition timing, etc. The system makes judgments and corrects the ignition timing during operation in order to extract maximum torque from the engine while suppressing the occurrence of knocking.

〈発明が解決しようとする課題〉 ノッキングの発生に伴って生じる筒内圧の振動や機関の
機械的な振動を筒内圧センサや加速度センサにて検出す
る従来の方法では、実際に機関がノッキングを発生しな
い限り検出ができないため、ノッキング寸前の状態を検
出してノッキングを未然に防止したりノッキングに対す
る余裕を判定することが根本的に不可能であった。
<Problem to be solved by the invention> The conventional method of detecting cylinder pressure vibrations and engine mechanical vibrations caused by knocking using cylinder pressure sensors and acceleration sensors does not allow the engine to actually generate knocking. Therefore, it has been fundamentally impossible to detect the state on the verge of knocking, prevent knocking, or determine the margin for knocking.

く課題を解決するための手段〉 本発明者らは火花点火内燃機関から最大トルクを引き出
しつつ確実にノッキングを防止し得る方法について研究
し、種々の実験を行ったところ、ノッキングの発生条件
近傍において特異な現象を発見した。即ち、ノッキング
発生条件近傍においては、ノッキングが発生しないにも
かかわらず燃焼速度が速くなり、熱発生率の変化が第1
図中、実線で示す通常の燃焼の場合よりも一点鎖線で示
すノッキング発生条件近傍では急激になるのである。こ
の原因は次のように考えられる。
Means for Solving the Problems> The present inventors have researched a method that can reliably prevent knocking while extracting maximum torque from a spark-ignition internal combustion engine, and have conducted various experiments. I discovered a peculiar phenomenon. That is, near knocking conditions, the combustion rate increases even though knocking does not occur, and the change in heat release rate becomes the first.
In the figure, it becomes more rapid near the knocking generation conditions shown by the dashed-dotted line than in the case of normal combustion shown by the solid line. The reason for this is thought to be as follows.

まず、通常の燃焼の化学反応は、第1段階の過酸化物反
応、第2段階の冷炎反応(又はホルムアルデヒド反応)
、第3段階の熱炎反応の各段階を経て行われる。この段
階の中で爆発的反応を起すのは第3段階であり、第1゜
第2段階は燃料中の炭化水素がホルムアルデヒドやOH
,HO2等の高エネルギの遊離基に分解される前駆反応
である。
First, the chemical reactions of normal combustion include the first stage peroxide reaction and the second stage cold flame reaction (or formaldehyde reaction).
, and the third stage is a hot flame reaction. Among these stages, it is the third stage that causes an explosive reaction, and in the first and second stages, the hydrocarbons in the fuel become formaldehyde and OH.
, HO2, etc. is a precursor reaction that decomposes into high-energy free radicals.

ここで、ノッキング発生条件近傍においては自己着火寸
前の圧力及び温度になっている燃焼室内の未燃領域で第
1.第2段階の前駆反応が進行しており、高エネルギの
遊離基が多く、通常よりも化学的に活性化された状態に
なっていると考えられる。このため、そこに火炎面が到
達すると、前駆反応に要する遅れなしで直ちに第3段階
の熱炎反応が起こり、火炎速度ひいては熱発生率が高く
なると考えられるのである。
Here, near the knocking generation conditions, the first ignition occurs in the unburned region in the combustion chamber where the pressure and temperature are on the verge of self-ignition. It is thought that the second stage precursor reaction is progressing, there are many high-energy free radicals, and the state is more chemically activated than usual. For this reason, when the flame front reaches there, the third stage hot flame reaction occurs immediately without the delay required for the precursor reaction, and it is thought that the flame speed and hence the heat release rate increase.

そこで本発明は、上記知見に基づき完成されたもので、
その目的とするところは、ノッキング寸前の状態を検出
してノッキングを未然に防止したり、ベンチテスト等に
おいて燃焼状態を迅速かつ正確に判定することができる
燃焼判定方法を提供するにある。
Therefore, the present invention was completed based on the above knowledge, and
The purpose is to provide a combustion determination method that can prevent knocking by detecting a state on the verge of knocking, and can quickly and accurately determine the combustion state in a bench test or the like.

上記目的を達成するために、本発明による火花点火内燃
機関の燃焼判定方法は、筒内圧の変化から熱発生率の変
化を演算し、この熱発生率の立上り領域の状況に基づい
て燃焼状態を判定することを特徴とする。
In order to achieve the above object, the combustion determination method for a spark-ignition internal combustion engine according to the present invention calculates a change in heat release rate from a change in cylinder pressure, and determines the combustion state based on the situation in the rising region of this heat release rate. It is characterized by making a judgment.

く作   用〉 ノッキング等の異常燃焼が発生しそうになると、正常燃
焼時と比べて、熱発生率の立上り方に大きな変化が見ら
れる。
Effect> When abnormal combustion such as knocking is about to occur, there will be a significant change in the way the heat release rate rises compared to normal combustion.

これは、例えばノッキングを起し易い状態では前駆反応
により燃焼前半の熱発生率が高くなり、その結果として
燃焼期間が短(なるという現象に起因する。
This is due to the phenomenon that, for example, in a state where knocking is likely to occur, the heat generation rate in the first half of combustion increases due to a precursor reaction, resulting in a short combustion period.

従って、上述した熱発生率の立上り領域の状況を立上り
の時間や傾き量或いは最大値を生じるクランク角位相で
検出して判別すれば、燃焼状態の判定が可能となる。
Therefore, the combustion state can be determined by detecting and determining the situation in the rise region of the heat release rate described above based on the time of rise, the amount of slope, or the crank angle phase that produces the maximum value.

く実 施 例〉 以下添付図面に基づいて、本発明による火花点火内燃機
関の燃焼判定方法の実施例を説明する。
Embodiments Hereinafter, embodiments of the combustion determination method for a spark ignition internal combustion engine according to the present invention will be described based on the accompanying drawings.

第1図(alに火花点火内燃機関の熱発生率(dQ/d
θ)とクランク角θとの関係について示す。同図に実線
で示した、充分ノッキングしない状態の時(す下、非ノ
ツク時という)における熱発生率に比べ、同図に一点鎖
線で示した、ノッキングしていないノッキング寸前の状
態の時(以下、ノック条件近傍時という)又は同図に破
線で示した、ノッキングしている状態の時(以下、ノッ
ク時という)におけろ熱発生率は、その立上り方におい
てそれぞれ大きく変化している。従って、この熱発生率
の燃焼開始から最大値までの熱発生率の立上り領域にお
いて熱発生率の変化する割合いをある基準によって判別
すれば、例えばノック条件近傍時であるかどうかを判別
することができ、点火時期や空燃比設定、過給圧等の運
転条件セッテングの妥当性を判定することができる。
Figure 1 (al is the heat release rate (dQ/d) of a spark-ignition internal combustion engine
θ) and the crank angle θ. Compared to the heat release rate when there is no sufficient knocking (referred to as non-knocking time), which is shown by the solid line in the same figure, when there is no knocking, which is on the verge of knocking (which is shown by the dashed line in the same figure), The heat generation rate changes greatly depending on how it rises (hereinafter referred to as near the knocking condition) or in the knocking state (hereinafter referred to as knocking) shown by the broken line in the same figure. Therefore, if the rate at which the heat release rate changes in the rising region of the heat release rate from the start of combustion to the maximum value is determined based on a certain standard, it can be determined, for example, whether or not the knock condition is near. It is possible to determine the validity of operating condition settings such as ignition timing, air-fuel ratio settings, and boost pressure.

第1図(blは熱発生率の立上りの傾き量により判別す
るようにしtこ第1の実施例である。
FIG. 1 shows a first embodiment in which the determination is made based on the slope of the rise of the heat generation rate.

施例で【よ、同図に一点鎖線で示した、ノック条件近傍
時におけろ熱発生率の変化率の最大値Aは、同図に実線
で示した、非ノツク時におけろ熱発生率の変化率の最大
値Bよりも大きいから、Aより小さくBより大きな基準
値Cを設定し、この基準値Cを熱発生率の変化率が越え
るか否かで判別するようにしな。熱論ノック発生時には
、同図に破線で示したように、ノックによる未然ガスの
瞬時の燃焼がもたらす熱発生ピークがあるため熱発生率
の変化率はノック発生瞬間に大きな値を示すが、これは
同図のようにノック条件近傍時におけろ熱発生率の変化
率の途中から変化したもので、この場合でも基準値Cを
越えた値をもつことは同図に示すとおりである。
In this example, the maximum value A of the rate of change in the heat release rate near the knocking condition, shown by the dashed line in the figure, is equal to the maximum value A of the rate of change in the heat release rate in the non-knocking state, shown by the solid line in the same figure. Since it is larger than the maximum value B of the rate of change, set a reference value C that is smaller than A and larger than B, and determine whether or not the rate of change of the heat generation rate exceeds this reference value C. When a thermal knock occurs, as shown by the broken line in the same figure, there is a heat generation peak caused by the instantaneous combustion of the gas caused by the knock, so the rate of change in the heat generation rate shows a large value at the moment of knock occurrence. As shown in the same figure, the rate of change in the rate of heat generation changes midway when the knock condition is near, and even in this case, the value exceeds the reference value C, as shown in the figure.

即ち、本実施例は第2図に示す装置及び手段に従って実
施される。
That is, this embodiment is implemented according to the apparatus and means shown in FIG.

先ス、クランク角検出手段1よリフランク角θが検出さ
れ、筒内圧検出手段2により筒内圧Pが検出される。
First, the crank angle detection means 1 detects the reflux angle θ, and the cylinder pressure detection means 2 detects the cylinder pressure P.

次に、熱発生率演算手段3は、下式を用いて熱発生率を
、また変化率演算手段4は下式を用いて熱発生率の変化
率を筒内圧の2#微分値で近似してそれぞれ演算する。
Next, the heat release rate calculating means 3 approximates the heat release rate using the following formula, and the rate of change calculating means 4 approximates the change rate of the heat release rate by the 2# differential value of the cylinder pressure using the following formula. and calculate each.

熱発生量: dQ=G−du+A−P−dV   −(
1)−R 内部エネルギ増分: du =Cv−dT = −・d
T −(21に−1 PV=G −R−T        ・・・(3)但し
、Gは燃焼ガス量、 Aは仕事の熱当量、 Rは気体定数、 Cvは定容比熱、 kは比熱の比である。
Amount of heat generation: dQ=G-du+A-P-dV -(
1) -R internal energy increment: du = Cv-dT = -・d
T - (21 to -1 PV = G - R - T ... (3) where, G is the amount of combustion gas, A is the heat equivalent of work, R is the gas constant, Cv is the constant volume specific heat, and k is the specific heat It is a ratio.

(11,(21,(31式より −A−R d Q=に一1d T+A ′P ′d VG−A−R
PdV+VdP ・□+A−P−dV −IG−R 一、−7(PdV+VdP+に−P−dV−PdV)=
、(VdP+k・P−dV) 従って、熱発生率(dQ/dθ)は以下の通りである。
(11, (21, (from formula 31 -A-R d Q=-1d T+A ′P ′d VG-A-R
PdV+VdP ・□+A-P-dV -IG-R -7 (PdV+VdP+ -P-dV-PdV) =
, (VdP+k·P-dV) Therefore, the heat generation rate (dQ/dθ) is as follows.

dQ   A    dP     dV−=−(v・
−+に−P・丁T) dθ k−1dθ 更に、熱発生率の変化率は以下の通りとなる。
dQ A dP dV-=-(v・
-+ to -P・DingT) dθ k−1dθ Furthermore, the rate of change in the heat release rate is as follows.

ここで、燃焼行程(上死点〜上死点後50°)dV  
  dP ではd# (d61であるから、上式は次のように近似
できろ。
Here, combustion stroke (TDC ~ 50° after TDC) dV
Since dP is d# (d61), the above equation can be approximated as follows.

つまり、熱発生率の変化率は筒内圧の2階微分で近似で
きる。
In other words, the rate of change in the rate of heat release can be approximated by the second-order differential of the cylinder pressure.

筒内圧の2階微分を求めろ装置及び手段は第5図に示す
通りである。
The apparatus and means for determining the second order differential of the cylinder pressure are as shown in FIG.

即ち、十分に短いサンプリング周期を用いて筒内圧検出
手段2より1回時にサンプリングされた筒内圧Piを検
出すると共にクランク角検出手段1によりクランク角θ
を検出する。次いで、筒内圧1階微分演算手段6がメモ
リ5から1回時の1回前のサンプリングの際の筒内圧P
l−1を読み出し p=、とi回時の筒内圧Piの両者
から単位角度当りの変化率を演算してd P i / 
dθとする。そして、1回時の筒内圧Pi及びその変化
率d P i / dθをメモリ5に記憶させる。この
後、筒内圧2階微分演算手段7がメモリ5から1回前の
dP、−。
That is, the cylinder pressure detection means 2 detects the cylinder pressure Pi sampled once using a sufficiently short sampling period, and the crank angle detection means 1 detects the crank angle θ.
Detect. Next, the cylinder pressure first-order differential calculation means 6 stores the cylinder pressure P at the time of the previous sampling from the memory 5.
Read out l-1. Calculate the rate of change per unit angle from both p= and cylinder pressure Pi at i times, and calculate d P i /
Let it be dθ. Then, the cylinder pressure Pi and its rate of change d P i /dθ are stored in the memory 5. Thereafter, the cylinder pressure second-order differential calculation means 7 stores the previous value dP, - from the memory 5.

/dθを読み出し、dP、、/dθと1回時のdPi/
dθの両者から単位角度当りの変化率を演算シテd2P
i/dθ2.!: ii ル。d2P I/de21.
t / モリ5に記憶される。
Read /dθ, dP, , /dθ and dPi/ at one time
Calculate the rate of change per unit angle from both dθ
i/dθ2. ! : ii le. d2P I/de21.
t / Stored in Mori 5.

このようにして求めた筒内圧の2階微分値により熱発生
率の変化率を近似すると簡便となろが、前述した(4)
式により厳密に求めるようにしても良い。
Although it is convenient to approximate the rate of change in the heat release rate using the second derivative of the cylinder pressure obtained in this way, as described above (4)
It may be determined strictly using a formula.

引き続き、第2図に示すように熱発生率の変化率は第1
図(b)の基準値Cと比較される。
Subsequently, as shown in Figure 2, the rate of change in the heat release rate is the first
It is compared with the reference value C in Figure (b).

熱発生率の変化率が基準値C以下であればノッキングを
生じる可能性がなく、徐々に点火時期を進めて最大トル
クを引き出す運転制御を継続すれば良いが、熱発生率の
変化率が基準値Cを越えるとノッキングを起こしている
か又はノッキングを起こし易い状態ということができろ
。そこで本実施例では熱発生率の変化率が基準値Cを越
えると各種燃焼制御手段9ヘノッキング回避信号が送ら
れろ。この各種燃焼制御手段9として、電子点火時期制
御装置が使用されろ場合には上記信号により点火時期を
遅角させることによりノッキングを回避する。また、E
GR装置の電子制御EGRバルブが使用される場合には
平均開弁時間(デユーティ比)を増大してEGR,lを
増量させ、さらに、過給機のウェストゲートバルブが使
用されろ場合にはこれを開いて過給圧を逃がすようにす
れば良い。
If the rate of change in the rate of heat release is less than the standard value C, there is no possibility of knocking and it is sufficient to continue operating control to gradually advance the ignition timing and bring out the maximum torque, but the rate of change in the rate of heat release is the standard. If the value C is exceeded, it can be said that knocking is occurring or that knocking is likely to occur. Therefore, in this embodiment, when the rate of change in the rate of heat release exceeds the reference value C, a knocking avoidance signal is sent to the various combustion control means 9. When an electronic ignition timing control device is used as the various combustion control means 9, knocking is avoided by retarding the ignition timing using the above signal. Also, E
When the electronically controlled EGR valve of the GR device is used, the average valve opening time (duty ratio) is increased to increase EGR,l, and when the wastegate valve of the supercharger is used, this All you have to do is open it to release the boost pressure.

次に、本発明の第2の実施例について第1図(C1及び
第3図を参照して説明する。本実施例では、熱発生率の
最大値(ノックが実際に発生した場合、自発火のタイミ
ングによっては図中破線で示したような極大値となる)
を生じるクランク角度θ0.オによって判別するように
したものである。即ち、第1図(c)に示すようにノッ
ク条件近傍時における熱発生率の最大値を与えるクラン
ク角度θ。は、非ノツク時における熱発生率の最大値を
与えるクランク角度θ、よりも小さいから、θ。よりも
大きくてθ−〕小さな基準値θ、を設定し、この基準値
θ1を熱発生率の最大値を発生するクランク角θM□が
下まわるか否かで判定することとした。本実施例は、第
3図に示す装置及び手順に従って実施できるが、第2図
に示す装置及び手順と異なるのは最大値発生角検出手段
10がθ6.8を検出し、その後判別手段8がθ。、8
と01と比較する点だけであり、その他の作用、効果は
前述した実施例と同様である。
Next, a second embodiment of the present invention will be explained with reference to FIG. 1 (C1) and FIG. (Depending on the timing, it will reach a maximum value as shown by the broken line in the figure)
The crank angle θ0. It was designed to discriminate based on the That is, as shown in FIG. 1(c), the crank angle θ gives the maximum value of the heat generation rate near the knocking condition. Since θ is smaller than the crank angle θ, which gives the maximum heat release rate in the non-knock state, θ. A reference value θ, which is larger and smaller than θ−], is set, and a determination is made based on whether or not the crank angle θM□, which generates the maximum value of the heat release rate, falls below the reference value θ1. This embodiment can be carried out according to the apparatus and procedure shown in FIG. 3, but the difference from the apparatus and procedure shown in FIG. θ. , 8
This is only a comparison with 01 and 01, and other functions and effects are the same as those of the previously described embodiment.

第1図(d)は本発明の第3の実施例に係るものである
。この実施例においては、熱発生率の立上り時間θ−こ
よって判別するようにしている。ここで、立上り時間θ
。とは燃焼開始から熱発生率の最大値までのクランク角
のことである。第1図Td)に示すように、ノック条件
近傍時におけろ立上り時間Mは、非ノツク時における立
上ゆ時間Nに比較して小さいから、Mよりも大きくてN
よりも小さな基準値Rを設定し、立上り時間θ。と比較
して判別するようにしたものである。この実施例は第4
図に示す装置及び手順に従って実施されろ。第4図の実
施例において第2図の実施例と異なるのは、立上り時間
演算装置11が立上り時間θ0を演算して、判別手段8
が基準値Rと比較する点である。この実施例においても
第2図の実施例と同様の作用、効果を奏する。
FIG. 1(d) shows a third embodiment of the present invention. In this embodiment, the determination is made based on the rise time θ- of the heat generation rate. Here, the rise time θ
. is the crank angle from the start of combustion to the maximum heat release rate. As shown in FIG. 1 (Td), the rise time M near the knock condition is smaller than the rise time N in the non-knock state.
Set a reference value R smaller than the rise time θ. This is done by comparing it with the . This example is the fourth
Perform according to the equipment and procedures shown in the figure. The difference between the embodiment shown in FIG. 4 and the embodiment shown in FIG. 2 is that the rise time calculation device 11 calculates the rise time θ0,
is the point to be compared with the reference value R. This embodiment also provides the same functions and effects as the embodiment shown in FIG.

〈発明の効果〉 す上説明したように、本発明の火花点火内燃機関の燃焼
判定方法によれば、熱発生率の立上り領域におけろ立上
り時間や傾き量等燃焼の直接の現象を検出して燃焼状態
を判定するようにしたので、従来例に見られたような機
関の燃焼を機械的な振動に置き換える作業やノイズの侵
入等がな(、迅速かつ正確に燃焼状態を判定することが
できろ。特に、本発明によれば、ノッキングしていない
ノッキング寸前の燃焼状態にあるか否かを判別すること
ができ、依ってノッキング回避手段との組合せにより、
ノッキングの発生を未然に回避することができる。
<Effects of the Invention> As explained above, according to the combustion determination method for a spark-ignition internal combustion engine of the present invention, direct phenomena of combustion such as the rise time and slope amount in the rise region of the heat release rate can be detected. Since the combustion state is determined by the engine, there is no need to replace the combustion of the engine with mechanical vibrations or the intrusion of noise, which is required in the conventional example. Particularly, according to the present invention, it is possible to determine whether or not the combustion state is on the verge of knocking without knocking, and therefore, in combination with the knocking avoidance means,
It is possible to prevent knocking from occurring.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(alはクランク角と熱発生率との関係を示すグ
ラフ、第1図(b) (cl (d)はクランク角と熱
発生率の変化率との関係を示すグラフ、第2図は本発明
の第1の実施例に係り、同図(alはそのブロック図、
同図(blはその手順を示すフローチャート、第3図、
第4図はそれぞれ本発明の第2゜第3の実施例にかかり
、それぞれ各図(11はそのブロック図、それぞれ各図
(b)はその手順を示すフ田−チヤード、第5図(、)
は筒内圧の2階微分値を得るためのブロック図、同図f
blはその手順を示すフローチャートである。 図  面  中、 1はクランク角検出手段、 2は筒内圧検出手段、 3は熱発生率rAn手段、 4は変化率演算手段、 5はメモリ、 6は筒内圧1階微分演算手段、 7は筒内圧2諧微分演算手段。 8は判別手段、 9は各種燃焼制御手段、 10は最大値発生角検出手段、 11は立上り時間演算手段である。 第1図 第1図 第2区 第5 図
Figure 1 (al is a graph showing the relationship between crank angle and heat release rate, Figure 1 (b) (cl) is a graph showing the relationship between crank angle and rate of change in heat release rate, Figure 2 relates to the first embodiment of the present invention;
The same figure (bl is a flowchart showing the procedure, Fig. 3,
FIG. 4 shows the second and third embodiments of the present invention, respectively (11 is a block diagram thereof, each figure (b) is a diagram showing the procedure, and FIG. )
is a block diagram for obtaining the second-order differential value of the cylinder pressure;
bl is a flowchart showing the procedure. In the drawing, 1 is a crank angle detection means, 2 is a cylinder pressure detection means, 3 is a heat release rate rAn means, 4 is a change rate calculation means, 5 is a memory, 6 is a cylinder pressure first order differential calculation means, and 7 is a cylinder Internal pressure two-level differential calculation means. Reference numeral 8 indicates a determination means, 9 indicates various combustion control means, 10 indicates a maximum value occurrence angle detection means, and 11 indicates a rise time calculation means. Figure 1 Figure 1 Figure 2 Section 5 Figure 1

Claims (4)

【特許請求の範囲】[Claims] (1)筒内圧の変化から熱発生率の変化を演算し、この
熱発生率の立上り領域の状況に基づいて燃焼状態を判定
することを特徴とする火花点火内燃機関の燃焼判定方法
(1) A combustion determination method for a spark-ignition internal combustion engine, which comprises calculating a change in heat release rate from a change in cylinder pressure and determining a combustion state based on a situation in a rising region of the heat release rate.
(2)立上り領域の状況とは、熱発生率の立上りの最大
傾き量であることを特徴とする特許請求の範囲第1項に
記載した火花点火内燃機関の燃焼判定方法。
(2) The combustion determination method for a spark-ignition internal combustion engine according to claim 1, wherein the condition of the rising region is the maximum slope of the rise of the heat release rate.
(3)立上り領域の状況とは、熱発生率の立上りの時間
であることを特徴とする特許請求の範囲第1項に記載し
た火花点火内燃機関の燃焼判定方法。
(3) The combustion determination method for a spark ignition internal combustion engine as set forth in claim 1, wherein the situation in the rising region is the time at which the heat release rate rises.
(4)立上り領域の状況とは、熱発生率の最大値を生じ
るクランク角位相である特許請求の範囲第1項に記載し
た火花点火内燃機関の燃焼判定方法。
(4) The combustion determination method for a spark ignition internal combustion engine according to claim 1, wherein the situation in the rising region is the crank angle phase that produces the maximum value of the heat release rate.
JP25595688A 1988-10-13 1988-10-13 Combustion determination method for spark ignition internal combustion engine Expired - Lifetime JP2615919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25595688A JP2615919B2 (en) 1988-10-13 1988-10-13 Combustion determination method for spark ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25595688A JP2615919B2 (en) 1988-10-13 1988-10-13 Combustion determination method for spark ignition internal combustion engine

Publications (2)

Publication Number Publication Date
JPH02104971A true JPH02104971A (en) 1990-04-17
JP2615919B2 JP2615919B2 (en) 1997-06-04

Family

ID=17285915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25595688A Expired - Lifetime JP2615919B2 (en) 1988-10-13 1988-10-13 Combustion determination method for spark ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP2615919B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020016181A (en) * 2018-07-25 2020-01-30 スズキ株式会社 Combustion control device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020016181A (en) * 2018-07-25 2020-01-30 スズキ株式会社 Combustion control device for internal combustion engine

Also Published As

Publication number Publication date
JP2615919B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
JP5334791B2 (en) Control device for internal combustion engine
JP4314240B2 (en) Ignition timing control device for internal combustion engine
JP4390774B2 (en) Ignition timing control device for internal combustion engine
US7588015B2 (en) Device and method for controlling ignition timing of internal combustion engine
JPH08319931A (en) Pre-ignition detecting device
EP1963667A1 (en) Device and method for controlling ignition timing of internal combustion engine
JP6381726B1 (en) Abnormal combustion detection device for internal combustion engine
JP4559977B2 (en) Ignition timing control device for internal combustion engine
JP4799646B2 (en) Abnormal ignition control device for internal combustion engine
JP2830012B2 (en) Combustion state measurement method
JPH02104971A (en) Combustion judging method for spark-ignition internal combustion engine
JP2021063463A (en) Control device for internal combustion engine
JP2826595B2 (en) Combustion determination method for spark ignition internal combustion engine
JPH09126106A (en) Preignition restraining device
JP2826596B2 (en) Combustion control device for spark ignition internal combustion engine
JP2007332916A (en) Ignition timing control device of internal combustion engine
JP2826592B2 (en) Combustion control device for spark ignition internal combustion engine
KR100507203B1 (en) Knocking control apparatus and method in a gasoline engine
JP2830011B2 (en) How to create a combustion control map
JPS6329061A (en) Ignition timing controller for internal combustion engine
JPH02204661A (en) Knocking controller for spark-ignition internal combustion engine
JP2830013B2 (en) Knock control method for internal combustion engine
JP2775814B2 (en) Combustion determination method for spark ignition internal combustion engine
JP2002364446A (en) Knocking detecting device for internal combustion engine
JPH02204663A (en) Control method for multioctane value corresponding engine