JPH02104725A - Production of inorganic fiber - Google Patents

Production of inorganic fiber

Info

Publication number
JPH02104725A
JPH02104725A JP63253885A JP25388588A JPH02104725A JP H02104725 A JPH02104725 A JP H02104725A JP 63253885 A JP63253885 A JP 63253885A JP 25388588 A JP25388588 A JP 25388588A JP H02104725 A JPH02104725 A JP H02104725A
Authority
JP
Japan
Prior art keywords
spinning
polymetallocarbosilastyrene
formula
polysilastyrene
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63253885A
Other languages
Japanese (ja)
Inventor
Taketami Yamamura
武民 山村
Toshihiro Ishikawa
敏弘 石川
Masaki Shibuya
昌樹 渋谷
Shinji Kajii
紳二 梶井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP63253885A priority Critical patent/JPH02104725A/en
Publication of JPH02104725A publication Critical patent/JPH02104725A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62272Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on non-oxide ceramics

Abstract

PURPOSE:To obtain an inorganic fiber having high strength and elastic modulus and good wettability to metals and plastics by reacting a polysilastyrene with a metal alkoxide under specific condition, spinning the resultant polymetallocarbosilastyrene and subjecting the spun fiber to infusibilization and calcination. CONSTITUTION:A polymetallocarbosilastyrene having a number-average molecular weight of 500-1,000,000 is produced by reacting (A) a polysilastyrene having a main chain skeleton of formula I (x is 0.1-3; n is >=10) and having a number- average molecular weight of 200-500,000 with (B) a metal alkoxide of formula II (M is Ti or Zr; R is 1-20C alkyl or phenyl) at as ratio (III/IV) of (2-200)/1 under heating in an inert atmosphere. A spinning dope containing the product is spun and the obtained fiber is infusibilized and then calcined in vacuum, in an inert gas or in a reducing gas atmosphere at 800-1800 deg.C to obtain the objective fiber.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、強度及び弾性率が高く、かつ複合材料のマト
リックスを構成する金属あるいはプラスチックスとの温
性の良好な無機繊維を製造する方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention provides a method for producing inorganic fibers that have high strength and elastic modulus, and have good thermal properties with metals or plastics that constitute the matrix of composite materials. Regarding.

(従来の技術) 特開昭62−256710号公報には、炭化ケイ素繊維
の新たな製法として、ポリシラスチレンを熱処理してポ
リカルボシラスチレン共重合体を調製し、この共重合体
を紡糸し、紡糸繊維を不融化した後に焼成する、炭化ケ
イ素繊維の製法が提案されている。
(Prior art) JP-A-62-256710 describes a new method for producing silicon carbide fibers in which polysilastyrene is heat treated to prepare a polycarbosilastyrene copolymer, and this copolymer is spun. , a method for producing silicon carbide fibers has been proposed in which spun fibers are made infusible and then fired.

上記公報には、提案の方法は、公知のポリジメチルシラ
ンの加熱転位反応で得られるポリカルボシランからの炭
化ケイ素繊維の製法に比較して、製造工程が簡単である
と記載されている。
The above publication states that the proposed method has a simpler manufacturing process than the known method for manufacturing silicon carbide fibers from polycarbosilane obtained by heating rearrangement reaction of polydimethylsilane.

しかし、上記方法で得られる炭化ケイ素繊維は、ポリジ
メチルシランを原料とする炭化ケイ素繊維と同様に、複
合材料のマトリックスを構成する金属あるいはプラスチ
ックスとの温性が充分ではないという本質的な問題点を
有している。
However, the silicon carbide fibers obtained by the above method, like the silicon carbide fibers made from polydimethylsilane, have the essential problem that they do not have sufficient thermal resistance with the metals or plastics that make up the matrix of composite materials. It has points.

特公昭58−5286号公報には、ポリカルボシランと
チタンアルコキシドとを反応させて得られるポリチタノ
カルボシランを紡糸し、紡糸繊維を不融化し、この後に
不融化繊維を焼成する無機繊維の製法が開示されている
Japanese Patent Publication No. 58-5286 discloses a method of producing inorganic fibers by spinning polytitanocarbosilane obtained by reacting polycarbosilane and titanium alkoxide, making the spun fibers infusible, and then firing the infusible fibers. The manufacturing method is disclosed.

この方法によれば、複合材料のマトリックスを構成する
金属あるいはプラスチックスとの温性の良好な無機繊維
を得ることができる。ところで、この方法における紡糸
ポリマー及び紡糸繊維は空気中の酸素あるいは水分に対
して敏怒であり、品質の安定した無機繊維を得るために
は、紡糸繊維の不融化処理が終了するまで、厳密に管理
した雰囲気中で各処理を行う必要がある。例えば、上記
紡糸繊維は常温の空気中でも徐々に酸化を受け、繊維表
面に酸化によるガラス質層が生成し、不融化処理時に紡
糸繊維の内部への酸素の拡散が阻害され、均一な組成を
有する不融化繊維が得られず、その結果、最終的に得ら
れる無機繊維の物性にばらつきが生じることもある。
According to this method, it is possible to obtain an inorganic fiber that has good thermal properties with the metal or plastic that constitutes the matrix of the composite material. By the way, the spun polymer and spun fibers used in this method are sensitive to oxygen or moisture in the air, and in order to obtain inorganic fibers of stable quality, the spun polymers and spun fibers must be treated strictly until the infusibility treatment of the spun fibers is completed. Each process must be performed in a controlled atmosphere. For example, the above-mentioned spun fibers are gradually oxidized even in air at room temperature, and a glassy layer is formed on the fiber surface due to oxidation, and during the infusibility treatment, oxygen diffusion into the inside of the spun fibers is inhibited, resulting in a uniform composition. Infusible fibers may not be obtained, and as a result, variations may occur in the physical properties of the finally obtained inorganic fibers.

(問題点を解決するための技術的手段)本発明は上記の
ような公知技術における問題点を解消し、複合材料のマ
トリックスを構成する金属あるいはプラスチックスとの
温性がきわめて良好であり、かつ強度及び弾性率の高い
無機繊維を安定して製造する方法を提供する。
(Technical means for solving the problems) The present invention solves the problems in the known techniques as described above, and has extremely good thermal properties with the metal or plastic that constitutes the matrix of the composite material. Provided is a method for stably producing inorganic fibers with high strength and elastic modulus.

本発明によれば、 一般式 (式中、Xは0.1≦X≦3を満足する数であり、nは
10以上である。)で表される主鎖骨格を有する数平均
分子量が200〜500 、000のポリシラスチレン
及び 一般式 M(OR)4          (n )(
式中、阿はTi又はZrを示し、Rは炭素数1〜20の
アルキル基又はフェニル基を示す。)で表される金属ア
ルコキシドを、ポリシラスチレンのCH。
According to the present invention, the number average molecular weight having a main chain skeleton represented by the general formula (wherein, X is a number satisfying 0.1≦X≦3, and n is 10 or more) is 200. ~500,000 polysilastyrenes and general formula M(OR)4(n)(
In the formula, A represents Ti or Zr, and R represents an alkyl group having 1 to 20 carbon atoms or a phenyl group. ) is the CH of polysilastyrene.

−A−S i +−の構造単位の全数対金属アルコキシ
CH。
Total number of structural units of -A-S i +- versus metal alkoxy CH.

ドの→MO←の構造単位の全数の比率が2=1〜200
 : 1の範囲内となる量比で、反応に対して不活性な
雰囲気中において加熱反応させ、ポリシラスチレンのケ
イ素原子の少なくとも一部を金属アルコキシドのhと酸
素原子を介して結合させることによって、数平均分子量
が500〜1,000,000のポリメタロカルボシラ
スチレンを生成させる第1工程; ポリメタロカルボシラスチレンの紡糸原液を調製して紡
糸する第2工程; 紡糸繊維を張力下あるいは無張力下に不融化する第31
程; 不融化した紡糸繊維を真空中、不活性ガス又は還元性ガ
ス雰囲気中で800〜1 、800°Cの範囲の温度で
焼成する第4工程: からなる無機繊維の製法が提供される。
The ratio of the total number of structural units of →MO← is 2 = 1 to 200
: By heating and reacting in an atmosphere inert to the reaction at a quantitative ratio within the range of 1, at least a part of the silicon atoms of polysilastyrene are bonded to h of the metal alkoxide via oxygen atoms. , a first step of producing polymetallocarbosilastyrene having a number average molecular weight of 500 to 1,000,000; a second step of preparing a spinning stock solution of polymetallocarbosilastyrene and spinning it; spinning the spun fibers under tension or without tension; No. 31 that becomes infusible under tension
step; and a fourth step of firing the infusible spun fibers at a temperature in the range of 800 to 1,800° C. in vacuum in an inert gas or reducing gas atmosphere.

以下に本発明の各工程について説明する。Each step of the present invention will be explained below.

第ユニ■ 第1工程においては、式(I)で表されるポリシラスチ
レン及び式(II)で表される金属アルコキシドから、
ポリメタロカルボシラスチレンを調製する。
In the first step, from polysilastyrene represented by formula (I) and metal alkoxide represented by formula (II),
Prepare polymetallocarbosilastyrene.

ポリシラスチレンは、それ自体公知の方法、例えば米国
特許第2.653.005号明細書、持分表58−50
071号公報に記載の方法に従い、ジクロロジメチルシ
ラン及ヒジクロロスチレンをトルエン、キシレンのよう
な不活性有機溶媒中でナトリウム金属触媒の存在下に上
記原料の融点以下の温度で反応させることによって8周
製することができる。
Polysilastyrene can be prepared by methods known per se, e.g. U.S. Pat.
According to the method described in Publication No. 071, dichlorodimethylsilane and hydichlorostyrene are reacted in an inert organic solvent such as toluene or xylene in the presence of a sodium metal catalyst at a temperature below the melting point of the above raw materials for 8 cycles. can be manufactured.

式(1)におけるXの好ましい値は0.3〜0.9であ
り、nの好ましい値は15〜4,000である。
The preferred value of X in formula (1) is 0.3 to 0.9, and the preferred value of n is 15 to 4,000.

ポリシラスチレンと金属アルコキシドとは、ポリシラス
チレンの CI。
Polysilastyrene and metal alkoxide are CI of polysilastyrene.

−(S i←の構造単位の全数対金属アルコキシCI。-(Total number of structural units of S i ← vs. metal alkoxy CI.

ドの→MO←の構造単位の全数の比率が2:1〜200
:1の範囲内となる量比で反応に供される。
The ratio of the total number of structural units of DO→MO← is 2:1 to 200
: used for the reaction in a quantitative ratio within the range of 1.

反応温度は140〜500″C1好ましくは200〜4
00°Cである。
The reaction temperature is 140~500'' C1, preferably 200~4
00°C.

ポリシラスチレンと金属アルコキシドとの反応は不活性
雰囲気、例えば窒素、アルゴン気流中で行われる。
The reaction between polysilastyrene and metal alkoxide is carried out in an inert atmosphere, such as a nitrogen or argon stream.

この反応においては、ポリシラスチレン中の5i−Si
結合の解離によって生成するラジカルの転位反応及びラ
ジカル再結合により、一部 CH5 上記式におけるSi−■結合とM (OR) aとの間
の橋かけ反応が逐次・併発的に進行し、ポリシラスチレ
ンのケイ素原子の少なくとも一部と金属アルコキシドの
台とが酸素原子を介して結合したポリメタロカルボシラ
スチレンが性成する。
In this reaction, 5i-Si in polysilastyrene
Due to the radical rearrangement reaction and radical recombination generated by the dissociation of the bond, the cross-linking reaction between the Si-■ bond in the above formula and M (OR) a partially proceeds sequentially and concurrently, resulting in polysilane Polymetallocarbosilastyrene is formed in which at least some of the silicon atoms of styrene and a metal alkoxide base are bonded via oxygen atoms.

このポリメタロカルボシラスチレンは、赤外線吸収スペ
クトル分析及び核磁気共鳴スペクトルから、主として下
記の構造単位から構成されることが確認される。
It has been confirmed from infrared absorption spectrum analysis and nuclear magnetic resonance spectrum that this polymetallocarbosilastyrene is mainly composed of the following structural units.

HL;611s     シ1h CI、             C)I。HL;611s    1h CI, C) I.

一5i−CH2−−5i−CH,− Si  CHz  − CHz CH。-5i-CH2--5i-CH,- Si CHz - Hz CH.

−St  CHz  − CI。-St CHz - C.I.

C1l。C1l.

■ Si  CL  − ■ CI。■ Si CL - ■ C.I.

上記の各構造単位からなるポリメタロカルボシラスチレ
ンの平均分子量は500〜1,000,000 、特に
1.500〜30.000であることが、紡糸性能の面
から好ましい。
The average molecular weight of the polymetallocarbosilastyrene composed of each of the above-mentioned structural units is preferably from 500 to 1,000,000, particularly from 1.500 to 30,000, from the viewpoint of spinning performance.

星」工■ 第2工程においては、第1工程で得られるポリメタロ、
カルボシラスチレンを紡糸するポリメタロカルボシラス
チレンの紡糸方法については特別の制限はな(、それ自
体公知の方法に従って行うことができる。
In the second step, the polymetallo obtained in the first step,
There are no particular restrictions on the method for spinning polymetallocarbosilastyrene (spinning of carbosilastyrene) (it can be carried out according to a method known per se).

一つの方法は、ポリメタロカルボシラスチレンを加熱溶
融させて紡糸原液を調製し、必要に応じて紡糸原液を濾
過してミクロゲル、不純物などの紡糸に際して有害とな
る物質を除去し、−a的な合成繊維紡糸装置によって紡
糸する方法である。
One method is to prepare a spinning solution by heating and melting polymetallocarbosilastyrene, and if necessary, filter the spinning solution to remove substances that are harmful during spinning, such as microgels and impurities. This is a method of spinning using a synthetic fiber spinning device.

紡糸する際の紡糸原液の温度は原料のポリメタロカルボ
シラスチレンの軟化温度によって異なるが、50〜40
0’Cの範囲の温度が有利である。
The temperature of the spinning dope during spinning varies depending on the softening temperature of the raw material polymetallocarbosilastyrene, but is between 50 and 40°C.
Temperatures in the range 0'C are advantageous.

上記紡糸装置において、必要に応じて紡糸筒を取りつけ
、紡糸筒の雰囲気を空気、不活性ガス、熱空気、熱不活
性ガス、スチーム、アンモニアガスかも選択される雰囲
気とした後に、巻き取り速度を大きくすることによって
、細い径の繊維を得ることができる。溶融紡糸における
紡糸速度は原料であるポリメタロカルボシラスチレンの
平均分子量、分子量分布さらには分子構造によって種々
異なるが、50〜5,000m/分の範囲で良好な結果
が得られる。
In the above-mentioned spinning device, after installing the spinning tube as necessary and setting the atmosphere of the spinning tube to an atmosphere selected from air, inert gas, hot air, hot inert gas, steam, or ammonia gas, the winding speed is adjusted. By increasing the size, fibers with a small diameter can be obtained. The spinning speed in melt spinning varies depending on the average molecular weight, molecular weight distribution, and molecular structure of the raw material polymetallocarbosilastyrene, but good results can be obtained in the range of 50 to 5,000 m/min.

別の紡糸方法は、ポリメタロカルボシラスチレンをその
溶媒、例えばベンゼン、トルエン、キシレンなどに溶解
させて紡糸原液を調製し、必要に応じて溶融紡糸におけ
ると同様に濾過によって紡糸に有害な物質を除去し、−
船釣な合成繊維紡糸装置によって乾式紡糸する方法であ
る。
Another spinning method is to prepare a spinning stock solution by dissolving polymetallocarbosilastyrene in its solvent, such as benzene, toluene, xylene, etc., and optionally remove substances harmful to the spinning by filtration as in melt spinning. remove, −
This is a method of dry spinning using a synthetic fiber spinning device on a boat.

乾式紡糸において、必要に応じて紡糸装置に紡糸筒を取
りつけ、筒内を前記溶媒の飽和蒸気雰囲気と、空気及び
不活性ガスから選択される気体との混合雰囲気とするか
、あるいは空気、不活性ガス、熱空気、熱不活性ガス、
スチーム、アンモニアガス、炭化水素ガス及び有機ケイ
素化合物ガスから選択される雰囲気とすることによって
、紡糸筒中の紡糸繊維の固化を制御することができる。
In dry spinning, if necessary, a spinning tube is attached to the spinning device, and the inside of the tube is made into a mixed atmosphere of a saturated vapor atmosphere of the solvent and a gas selected from air and an inert gas, or gas, hot air, hot inert gas,
The solidification of the spun fibers in the spinning tube can be controlled by providing an atmosphere selected from steam, ammonia gas, hydrocarbon gas, and organosilicon compound gas.

なお、この工程で得られる紡糸繊維は、ポリマー分子鎖
にフェニル基を有していないポリメタロカルボシランの
紡糸繊維に比較して、常温における酸化安定性に優れて
いる。
Note that the spun fiber obtained in this step has excellent oxidation stability at room temperature compared to spun fiber of polymetallocarbosilane that does not have a phenyl group in the polymer molecular chain.

1」工■ 第3工程においては、第4工程の焼成に先立ち紡糸繊維
を不融化する。
1. In the third step, the spun fibers are made infusible prior to firing in the fourth step.

不融化の一つの方法は、紡糸繊維を酸化性雰囲気中で、
張力又は無張力の作用もちとで、50〜400°Cの範
囲の温度で数分ないし30時間保持する方法である。こ
れにより、紡糸繊維の表面に溶融酸化被膜が形成され、
焼成の際に紡糸繊維が溶出しなくなり、隣接する繊維と
の融着が防止される。
One method of infusibility is to spin the spun fibers in an oxidizing atmosphere.
This is a method of holding at a temperature in the range of 50 to 400°C for several minutes to 30 hours under tension or non-tension. As a result, a molten oxide film is formed on the surface of the spun fiber,
The spun fibers are no longer eluted during firing, and fusion with adjacent fibers is prevented.

不融化の温度が過度に低いと防止繊維の表面に酸化被膜
を形成することができず、また不融化の温度が過度に高
いと酸化が進行過ぎることがある。
If the infusibility temperature is too low, an oxide film cannot be formed on the surface of the preventive fiber, and if the infusibility temperature is too high, oxidation may proceed too much.

不融化の雰囲気は、空気、オゾン、酸素、塩素ガス、臭
素ガス及びアンモニアガスから選択される一種以上の酸
化性ガス雰囲気が好ましい。
The infusible atmosphere is preferably an atmosphere of one or more oxidizing gases selected from air, ozone, oxygen, chlorine gas, bromine gas, and ammonia gas.

上記の酸化性ガス雰囲気中での紡糸繊維の不融化に代え
て、KMnOa 、KzCrzOy 、HlOtなどの
無機過酸化物の水溶液中に紡糸繊維を浸漬し、室温〜9
0°Cの範囲の温度で酸化する方法も採用することがで
きる。この場合、不融化時間は0.5〜6時間であるこ
とが好ましい。
Instead of making the spun fibers infusible in the oxidizing gas atmosphere described above, the spun fibers are immersed in an aqueous solution of an inorganic peroxide such as KMnOa, KzCrzOy, HlOt, etc.
A method of oxidation at a temperature in the range of 0°C can also be employed. In this case, the infusibility time is preferably 0.5 to 6 hours.

尚、本発明の第1工程で得られるポリメタロカルボシラ
スチレンは調製条件により分子量分布が異なり、低分子
量化合物の含有量の多少により軟化温度が約50°C以
下になる場合もある。この場合は、後述する方法に従い
、第1工程と第2工程との間の付加工程において低分子
量化合物を少なくして、ポリメタロカルボシラスチレン
の軟化温度を50°C以上とすることが好ましい。
The molecular weight distribution of the polymetallocarbosilastyrene obtained in the first step of the present invention varies depending on the preparation conditions, and the softening temperature may be about 50° C. or lower depending on the content of low molecular weight compounds. In this case, it is preferable to reduce the amount of the low molecular weight compound in the addition step between the first step and the second step according to the method described later, so that the softening temperature of the polymetallocarbosilastyrene is 50° C. or higher.

ポリメタロカルボシラスチレン中の低分子量化合物の除
去方法としては、上記低分子量化合物をメタノール、エ
タノールのようなアルコール類、アセトンのようなケト
ン類で抽出する方法、ポリメタロカルボシラスチレンを
減圧下あるいは不活性ガス雰囲気中で、500°C以下
の温度で加熱して低分子量化合物を蒸留によって除去す
る方法が挙げられる。
Methods for removing low molecular weight compounds from polymetallocarbosilastyrene include extracting the low molecular weight compounds with methanol, alcohols such as ethanol, or ketones such as acetone, extracting polymetallocarbosilastyrene under reduced pressure or A method of removing low molecular weight compounds by distillation by heating at a temperature of 500° C. or lower in an inert gas atmosphere is exemplified.

紡糸繊維を不融化する別の方法としては、紡糸繊維に酸
化性雰囲気あるいは非酸化性雰囲気中、張力あるいは無
張力下に、必要に応じて紫外線、γ線、電子線などを室
温で照射する方法がある。
Another method for making spun fibers infusible is to irradiate the spun fibers with ultraviolet rays, gamma rays, electron beams, etc., as necessary, in an oxidizing or non-oxidizing atmosphere, under tension or no tension, at room temperature. There is.

照射線量は通常10’〜1010ラツドである。紫外線
、γ線、電子線などの照射を50〜200°Cの範囲の
温度で行うことによって、紡糸繊維の不融化をより短い
時間で完了させることができる。
The irradiation dose is usually 10' to 1010 rads. By performing irradiation with ultraviolet rays, gamma rays, electron beams, etc. at a temperature in the range of 50 to 200°C, infusibility of the spun fibers can be completed in a shorter time.

不融化を無張力下に行うと、紡糸繊維は収縮のために波
状の形を呈することもあるが、第4工程の焼成において
矯正されることがあり、張力は必ずしも必要ではないが
、張力を作用させる場合には、不融化時に紡糸繊維が収
縮して波状となることを防止するに必要充分な張力であ
る必要があり、一般には1〜500g/+がである。
If infusibility is carried out under no tension, the spun fibers may take on a wavy shape due to shrinkage, but this may be corrected in the fourth firing step, and tension is not necessarily required. When acting, the tension must be sufficient to prevent the spun fibers from shrinking and becoming wavy during infusibility, and is generally 1 to 500 g/+.

■」工程 第4工程においては、不融化した紡糸繊維を焼成して無
機繊維を調製する。
(2) In the fourth step, the infusible spun fibers are fired to prepare inorganic fibers.

焼成は、真空、不活性ガスあるいは還元性ガス雰囲気中
で、800〜1 、800°Cの範囲の温度で、張力あ
るいは無張力下で行われる。
Firing is carried out in vacuum, in an inert gas or reducing gas atmosphere, at a temperature in the range of 800 to 1,800°C, under tension or no tension.

焼成過程において、不融化紡糸繊維を構成するポリメタ
ロカルボシラスチレンは熱分解縮合反応及び熱分解反応
によって易揮発成分を放出する。
During the firing process, the polymetallocarbosilastyrene constituting the infusible spun fiber releases easily volatile components through a thermal decomposition condensation reaction and a thermal decomposition reaction.

この易揮発成分の放出は500〜700°Cにおいて最
も大きく、このために不融化紡糸繊維は収縮し屈曲する
ので、焼成中に張力を作用させることは、この屈曲を防
止する面で有利である。
The release of this easily volatile component is greatest at 500 to 700°C, which causes the infusible spun fibers to shrink and bend, so applying tension during firing is advantageous in preventing this bending. .

張力の大きさは焼成時に不融化紡糸繊維が収縮しても波
状の形になることを少なくとも防止することができる以
上の大きさであればよく、実用的には0.001〜5k
g/mm”の範囲の張力であることが好ましい。
The tension may be at least as large as possible to prevent the infusible spun fibers from becoming wavy even if they shrink during firing, and is practically 0.001 to 5k.
Preferably, the tension is in the range "g/mm".

なお、不融化紡糸繊維の焼成は、雰囲気、温度、時間な
どの条件を段階に応じて変えた多段焼成法で行うことが
できる。
Incidentally, the infusible spun fibers can be fired by a multistage firing method in which conditions such as atmosphere, temperature, and time are changed depending on the stage.

本発明で得られる無機繊維は、 i ) Sl5M 、C及び0から実質的になる非晶質
物質、 ii )実質的にβ−5fC,CSMC,β−5iCと
11cとの固溶体及び/又はMCl−、からなり、粒径
が500Å以下の結晶質超微粒子、場合によりこの結晶
質超微粒子と非晶質のSiO□及びMO2との集合体、
及びiii )上記i)の非晶質物質と上記11)の結
晶質超微粒子又は集合体との混合物 (上式中、hはTi又はZrを示し、XはOより大きく
1未満の数である。) からなる群から選ばれる無機質物質で主として構成され
る。
The inorganic fibers obtained in the present invention are: i) an amorphous substance consisting essentially of Sl5M, C and 0; ii) a solid solution consisting essentially of β-5fC, CSMC, β-5iC and 11c and/or MCl- , crystalline ultrafine particles with a particle size of 500 Å or less, and optionally an aggregate of the crystalline ultrafine particles and amorphous SiO□ and MO2,
and iii) a mixture of the amorphous substance of i) above and the crystalline ultrafine particles or aggregates of 11) above (in the above formula, h represents Ti or Zr, and X is a number greater than O and less than 1) ) consists mainly of inorganic substances selected from the group consisting of

上記の無機繊維を構成する各元素の割合は、重量%で表
して、一般に、 Si 二 30〜60% M :0.5〜35%、好ましくは1〜10%C:25
〜40% 0: 0〜20% である。
The proportions of each element constituting the above-mentioned inorganic fibers, expressed in weight%, are generally Si2 30-60% M: 0.5-35%, preferably 1-10% C: 25
-40% 0: 0-20%.

(発明の効果) 本発明で得られる無機繊維は、機械的強度、耐熱性、耐
酸化性に優れており、さらに、特開昭62−46963
号公報で提案された炭化ケイ素繊維に比較して、複合材
料を構成する金属あるいはプラスチックスとの温性がき
わめて良好であり、金属との反応性が低いという特長を
有する。
(Effects of the Invention) The inorganic fiber obtained by the present invention has excellent mechanical strength, heat resistance, and oxidation resistance, and furthermore,
Compared to the silicon carbide fiber proposed in the publication, it has the advantage of having extremely good thermal properties with metals or plastics constituting the composite material, and low reactivity with metals.

従って、本発明の無機繊維は、金属、プラスチックス、
ゴムなどの補強繊維材料、繊維状発熱体、防火織布、耐
酸融層として好適に使用することができる。
Therefore, the inorganic fiber of the present invention can be applied to metals, plastics,
It can be suitably used as a reinforcing fiber material such as rubber, a fibrous heating element, a fireproof woven fabric, and an acid melt-resistant layer.

また、本発明における紡糸繊維は常温の空気中で安定で
あり、光を遮断した状態では数日間放置しても、分子量
及び酸素含量に変化が認められないので、本発明によれ
ば上記したような優れた特性を有する無機繊維を安定に
製造することができる。
In addition, the spun fibers of the present invention are stable in air at room temperature, and no change in molecular weight or oxygen content is observed even if the fibers are left in the dark for several days. It is possible to stably produce inorganic fibers with excellent properties.

(実施例) 以下に実施例を示す。(Example) Examples are shown below.

参考例1 ジクロロジメチルシラン及びジクロロジメチルフェニル
シランの等モル量を、トルエン溶媒中でNa分散触媒の
存在下に、110℃で重合反応させて、軟化点86〜9
4℃のポリシラスチレンを得た。このポリシラスチレン
は核磁気共鳴分析の結果、率で構成されていた。
Reference Example 1 Equimolar amounts of dichlorodimethylsilane and dichlorodimethylphenylsilane were polymerized at 110°C in the presence of a Na-dispersed catalyst in a toluene solvent to achieve a softening point of 86-9.
Polysilastyrene at 4°C was obtained. As a result of nuclear magnetic resonance analysis, this polysilastyrene was composed of polystyrene.

実施例1 参考例1で得られたポリシラスチレン40gにテトラブ
トキシチタンLogを添加し、キシレン10m1を加え
た後、窒素気流中で徐々に昇温し、100°Cを超えた
時点で撹拌を開始した。3時間かけて350℃まで昇温
し、この温度に2時間保持した後に室温まで放冷して、
ポリチタノカルボシラスチレン43gを得た。
Example 1 Tetrabutoxytitanium Log was added to 40 g of polysilastyrene obtained in Reference Example 1, and after adding 10 ml of xylene, the temperature was gradually raised in a nitrogen stream, and when the temperature exceeded 100 ° C, stirring was stopped. It started. The temperature was raised to 350°C over 3 hours, maintained at this temperature for 2 hours, and then allowed to cool to room temperature.
43 g of polytitanocarbosilastyrene was obtained.

このポリマーは核磁気共鳴分析の結果、豐 されていた。また、その数平均分子量は3.500であ
った。
This polymer was confirmed by nuclear magnetic resonance analysis. Further, its number average molecular weight was 3.500.

上記ポリマーを紡糸筒に仕込み、充分に窒素置換した。The above polymer was charged into a spinning tube, and the tube was sufficiently purged with nitrogen.

ついでポリマーを300℃に昇温し同温度に5時間保持
した後に240°Cまで冷却し、巻取速度500m/分
で紡糸し、直径15μmの紡糸繊維を得た。この紡糸繊
維は常温の空気中で安定であり、光遮断下に7日間放置
しても分子量分布及び酸素含量に変化が認められなかっ
た。
The polymer was then heated to 300°C, maintained at the same temperature for 5 hours, cooled to 240°C, and spun at a winding speed of 500 m/min to obtain spun fibers with a diameter of 15 μm. This spun fiber was stable in air at room temperature, and no change in molecular weight distribution or oxygen content was observed even when it was left in the dark for 7 days.

上記紡糸繊維を空気中で30時間かけて300°Cに昇
温し不融化し、ついで窒素気流中1 、300“Cで熱
処理して無機繊維を得た。
The spun fibers were heated to 300°C in air for 30 hours to make them infusible, and then heat treated at 1,300°C in a nitrogen stream to obtain inorganic fibers.

この無機繊維は重量割合で、St;48χ、Tt;5%
、C;35χ及びO:12χからなっていた。また、こ
の無機繊維の引張強度は300kg / mm ” 、
引張弾性率は20t/aa”であった。
This inorganic fiber has a weight ratio of St: 48χ, Tt: 5%
, C: 35χ and O: 12χ. In addition, the tensile strength of this inorganic fiber is 300 kg/mm.
The tensile modulus was 20t/aa''.

ビスフェノールA型エポキシ樹脂(チバガイギー社製X
B2879A)  100重量部及びジシアンジアミド
硬化剤(チバガイギー社製X82879B) 20重量
部を均一に混合した後に、混合物を重量比で1:1のメ
チルセロソルブとアセトンとの混合溶媒に溶解して、上
記混合物の28重tχ溶液を調製した。
Bisphenol A type epoxy resin (X manufactured by Ciba Geigy)
After uniformly mixing 100 parts by weight of dicyandiamide curing agent (X82879B manufactured by Ciba Geigy) and 20 parts by weight of dicyandiamide curing agent (X82879B), the mixture was dissolved in a mixed solvent of methyl cellosolve and acetone at a weight ratio of 1:1. A 28-fold tχ solution was prepared.

前記無機繊維に上記溶液を含浸した後に、ドラムワイン
グーを用いて一方向に引き取り、熱循環オープン中10
0”Cで14分間加熱することによって、半硬化状態の
一方向に引き揃えられた無機繊維プリプレグを調製した
、このプリプレグの繊維含有率は60体積χ、厚みは0
.2mmであった。
After the inorganic fibers were impregnated with the solution, they were pulled in one direction using a drum wine gourd and heated for 10 minutes during open heat circulation.
By heating at 0"C for 14 minutes, a semi-cured inorganic fiber prepreg that was aligned in one direction was prepared. The fiber content of this prepreg was 60 volume χ and the thickness was 0.
.. It was 2 mm.

上記プリプレグ10枚をを繊維方向を合わせて重ね、1
30’C111kg / ciで90分間プレス成形す
ることによって、250mnX 25On+mの大きさ
の一方向強化エボキシ樹脂複合材料を得た。
Layer 10 sheets of the above prepreg with the fiber direction aligned,
A unidirectionally reinforced epoxy resin composite material with a size of 250 m x 25 On+m was obtained by press molding at 30'C111 kg/ci for 90 minutes.

上記複合材料から幅12.7鵬、長さ85mm、厚み2
鴫の曲げ強度測定用のサンプルを切り出し、スパン/幅
=32の三点曲げ試験を試験速度2胴/分で行った。上
記複合材料の0度及び90度方向の曲げ強度はそれぞれ
178kg/mm”及び8 、7 kg / w ”で
あった。
Width 12.7 mm, length 85 mm, thickness 2 from the above composite material
A sample for measuring the bending strength of the crow was cut out, and a three-point bending test with a span/width of 32 was conducted at a test speed of 2 torsos/min. The bending strengths of the composite material in the 0 degree and 90 degree directions were 178 kg/mm'' and 8,7 kg/w'', respectively.

実施例2 テトラブトキシチタンに変えてテトライソプロポキシジ
ルコニウム9.6gを使用した以外は実施例1を繰り返
した。 得られた無機繊維は重量割合で、Si;45.
6χ、ZrB2.5χ、C,33,5χ及びO;11.
4%からなっていた。また、この無機繊維の引張強度は
350kg/mm” 、引張弾性率は21t/mn”で
あった。
Example 2 Example 1 was repeated except that 9.6 g of tetraisopropoxyzirconium was used instead of tetrabutoxytitanium. The obtained inorganic fiber has a weight ratio of Si; 45.
6χ, ZrB2.5χ, C, 33,5χ and O; 11.
It consisted of 4%. Further, the tensile strength of this inorganic fiber was 350 kg/mm'', and the tensile modulus was 21 t/mn''.

Claims (1)

【特許請求の範囲】 一般式 ▲数式、化学式、表等があります▼ (式中、xは0.1≦x≦3を満足する数であり、nは
10以上である、)で表される主鎖骨格を有する数平均
分子量が200〜500,000のポリシラスチレン及
び 一般式M(OR)_4 (式中、MはTi又はZrを示し、Rは炭素数1〜20
のアルキル基又はフェニル基を示す。)で表される金属
アルコキシドを、ポリシラスチレンの▲数式、化学式、
表等があります▼の構造単位の全数対金属アルコキシ ドの▲数式、化学式、表等があります▼の構造単位の全
数の比率が2:1〜200:1の範囲内となる量比で、
反応に対して不活性な雰囲気中において加熱反応させ、
ポリシラスチレンのケイ素原子の少なくとも一部を金属
アルコキシドのMと酸素原子を介して結合させることに
よって、数平均分子量が500〜1,000,000の
ポリメタロカルボシラスチレンを生成させる第1工程; ポリメタロカルボシラスチレンの紡糸原液を調製して紡
糸する第2工程; 紡糸繊維を張力下あるいは無張力下に不融化する第3工
程; 不融化した紡糸繊維を真空中、不活性ガス又は還元性ガ
ス雰囲気中で800〜1,800℃の範囲の温度で焼成
する第4工程; からなる無機繊維の製法。
[Claims] Represented by the general formula ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (In the formula, x is a number satisfying 0.1≦x≦3, and n is 10 or more.) Polysilastyrene having a main chain skeleton and a number average molecular weight of 200 to 500,000 and the general formula M(OR)_4 (wherein, M represents Ti or Zr, and R has a carbon number of 1 to 20
represents an alkyl group or a phenyl group. ), the metal alkoxide represented by ▲mathematical formula, chemical formula,
There are tables, etc. The ratio of the total number of structural units of ▼ to the total number of structural units of metal alkoxide ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ is within the range of 2:1 to 200:1,
A heating reaction is carried out in an atmosphere inert to the reaction,
A first step of producing polymetallocarbosilastyrene having a number average molecular weight of 500 to 1,000,000 by bonding at least a portion of the silicon atoms of polysilastyrene with M of a metal alkoxide via an oxygen atom; 2nd step of preparing a spinning stock solution of polymetallocarbosilastyrene and spinning; 3rd step of infusible spun fiber under tension or no tension; infusible spun fiber in vacuum, inert gas or reducing gas A fourth step of firing in a gas atmosphere at a temperature in the range of 800 to 1,800°C. A method for producing inorganic fibers.
JP63253885A 1988-10-11 1988-10-11 Production of inorganic fiber Pending JPH02104725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63253885A JPH02104725A (en) 1988-10-11 1988-10-11 Production of inorganic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63253885A JPH02104725A (en) 1988-10-11 1988-10-11 Production of inorganic fiber

Publications (1)

Publication Number Publication Date
JPH02104725A true JPH02104725A (en) 1990-04-17

Family

ID=17257475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63253885A Pending JPH02104725A (en) 1988-10-11 1988-10-11 Production of inorganic fiber

Country Status (1)

Country Link
JP (1) JPH02104725A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756522A (en) * 1980-09-24 1982-04-05 Seishi Yajima Novel continuous inorganic fiber and its preparation
JPS57106718A (en) * 1980-12-18 1982-07-02 Tokushu Muki Zairyo Kenkyusho Continuous inorganic fiber containing silicon, zirconium and carbon and its production
JPS6252051A (en) * 1985-09-02 1987-03-06 株式会社生産日本社 Stand type synthetic resin bag body with bottom gusset

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756522A (en) * 1980-09-24 1982-04-05 Seishi Yajima Novel continuous inorganic fiber and its preparation
JPS57106718A (en) * 1980-12-18 1982-07-02 Tokushu Muki Zairyo Kenkyusho Continuous inorganic fiber containing silicon, zirconium and carbon and its production
JPS6252051A (en) * 1985-09-02 1987-03-06 株式会社生産日本社 Stand type synthetic resin bag body with bottom gusset

Similar Documents

Publication Publication Date Title
US4342712A (en) Process for producing continuous inorganic fibers
US4220600A (en) Polycarbosilane, process for its production, and its use as material for producing silicon carbide fibers
US4399232A (en) Continuous inorganic fibers and process for production thereof
US4604367A (en) Method for the preparation of an inorganic fiber containing silicon, carbon, boron and nitrogen
US4515742A (en) Continuous inorganic fibers and process for production thereof
US4100233A (en) Silicon carbide fibers having a high strength and a method for producing said fibers
US4916093A (en) Method of producing continuous inorganic fiber consisting of Si, N and O
DE2243527A1 (en) MOLDED BODIES FROM HOMOGENOUS MIXTURES OF SILICON CARBIDE AND SILICON NITRIDE AND THE PROCESS FOR THEIR PRODUCTION
US5082872A (en) Infusible preceramic polymers via ultraviolet treatment in the presence of a reactive gas
JP2003226754A (en) Method for producing boron nitride fiber from boryl borazine
EP0435065B1 (en) Preparation of substantially polycrystalline silicon carbide fibers from polyorganosiloxanes
JPS6020485B2 (en) Method for producing continuous inorganic fiber containing silicon, zirconium and carbon
JP2003113537A (en) Silicon carbide fiber having boron nitride layer on fiber surface and method for producing the same
JPH02104725A (en) Production of inorganic fiber
JP3279134B2 (en) High heat resistant ceramic fiber and method for producing the same
JPH10310938A (en) Production of ceramic fiber
JP2904501B2 (en) Method for producing high-quality silicon-based ceramic fiber by irradiation
WO1987005612A1 (en) Organopolyarylsilane, process for its production, and fibers prepared therefrom
EP0048957B1 (en) Continuous inorganic fibers and process for production thereof
JP2817955B2 (en) Method for producing silicon carbide fiber excellent in high temperature properties
JPH02259114A (en) Production of high performance silicon-based ceramic fiber by irradiation
JPS5933682B2 (en) KOMITSUDO SILICON CARBIDE SEIZOU HOUHOU
JPS6252051B2 (en)
JPS5944403B2 (en) Manufacturing method of continuous inorganic fiber
JPH06146115A (en) Inorganic filament