JPH02102960A - Line pressure control device of continuously variable transmission - Google Patents

Line pressure control device of continuously variable transmission

Info

Publication number
JPH02102960A
JPH02102960A JP25764688A JP25764688A JPH02102960A JP H02102960 A JPH02102960 A JP H02102960A JP 25764688 A JP25764688 A JP 25764688A JP 25764688 A JP25764688 A JP 25764688A JP H02102960 A JPH02102960 A JP H02102960A
Authority
JP
Japan
Prior art keywords
line pressure
brake
pressure
belt
continuously variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25764688A
Other languages
Japanese (ja)
Other versions
JP2843838B2 (en
Inventor
Motohisa Miyawaki
基寿 宮脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP63257646A priority Critical patent/JP2843838B2/en
Publication of JPH02102960A publication Critical patent/JPH02102960A/en
Application granted granted Critical
Publication of JP2843838B2 publication Critical patent/JP2843838B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66272Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66272Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing
    • F16H2061/66281Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing by increasing the line pressure at the occurrence of input torque peak

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmissions By Endless Flexible Members (AREA)
  • Control Of Transmission Device (AREA)

Abstract

PURPOSE:To prevent a belt from slipping by changing over the line pressure into high with a solenoid valve at the time of abrupt braking involving tire lock, and keeping the line pressure high for a certain while after disengagement of the brake. CONSTITUTION:A brake signal is given from a brake switch 156 to an abrupt brake sensor part 165, and at the same time, deceleration is calculated on the basis of a signal from a car speed sensor 153 to result in a judgement about abrupt braking if the wheel speed sinks unproportionally for corresponding car body speed. An operating mode judging part 162 puts off a solenoid valve 97 by a high pressure setting part 168 and controls the line pressure high by a line pressure adjusting valve even in the event of quick braking, and thus the belt is prevented from slippage. If thereafter the brake is disengaged at the time of tire lock, the wheel speed will quickly become identical to the corresponding car body speed, and tire lock be disengaged. At this time, the line pressure is held high for a period of time specified by a timer 170 from the point of time when a brake disengage signal from the brake switch 156 is fed into a high pressure holding part 169. This prevents belt slip certainly.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、車両用のベルト式無段変速機の油圧制御系に
おけるライン圧制御装置に関し、詳しくは、タイヤロッ
クを伴う急ブレーキ時のベルトスリップ防止対策として
のライン圧制御に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a line pressure control device in a hydraulic control system of a belt-type continuously variable transmission for a vehicle, and more specifically, the present invention relates to a line pressure control device in a hydraulic control system of a belt-type continuously variable transmission for a vehicle. This article relates to line pressure control as a slip prevention measure.

〔従来の技術〕[Conventional technology]

一般にこの種の無段変速機は、油圧制御系でライン圧調
整弁によりライン圧を発生し、このライン圧をセカンダ
リプーリ側に付与して常にベルトスリップを生じないよ
うなブーり押付作用を行う。
Generally, this type of continuously variable transmission uses a hydraulic control system to generate line pressure using a line pressure regulating valve, and applies this line pressure to the secondary pulley side to always perform a boolean pressing action that prevents belt slip. .

また、この場合のライン圧を用いて変速比制御弁により
プライマリプーリ側にプライマリ圧を生ぜしめベルトを
移行することで、無段階に変速制御するような構成にな
っている。従って、ライン圧はエンジンからの伝達動力
、変速状態等に応じ調圧して、常に適切なプーリ押付力
を付与する必要がある。
In addition, the line pressure in this case is used to generate primary pressure on the primary pulley side by the gear ratio control valve to shift the belt, thereby performing stepless speed change control. Therefore, it is necessary to adjust the line pressure depending on the power transmitted from the engine, the speed change state, etc., so as to always apply an appropriate pulley pressing force.

一方、車両の実際の走行ではブレーキ操作により駆動系
の回転を制限したり、スポーティドライブ(Ds)レン
ジへのシフトにより急激にダウンシフトして車輪駆動に
よりエンジンブレーキ作用することが行われる。この場
合に、エンジン出力の低下に伴いライン圧も低くすると
、ブレーキ解除後の変速、車輪駆動力に対しブーり押付
力が不足してベルトスリップを生じる恐れがあり、この
ためライン圧は各走行条件に対しても個々に最適制御す
る必要がある。
On the other hand, when the vehicle actually runs, the rotation of the drive system is limited by brake operation, or the engine brake is applied by driving the wheels by rapidly downshifting by shifting to the sport drive (Ds) range. In this case, if the line pressure is lowered as the engine output decreases, there is a risk that belt slip may occur due to insufficient force for pressing the brake against the gear shifting and wheel drive force after the brake is released. It is also necessary to perform optimal control individually for each condition.

ここで、低摩擦路(低μ路)でタイヤロックを伴うよう
な急ブレーキの場合について述べる。かかる急ブレーキ
時にタイヤロックすると、無段変速機以降車輪に至る駆
動系の回転がロックされ、ベルトおよびプーリも変速途
中で停止保持される。
Here, we will discuss the case of sudden braking accompanied by tire lock on a low friction road (low μ road). If the tires lock during such sudden braking, the rotation of the drive system from the continuously variable transmission to the wheels is locked, and the belt and pulleys are also stopped and held midway through gear shifting.

このとき無段変速機の油圧制御系では、ピトー圧が零に
なってプライマリシリンダがドレンされており、その後
ブレーキ解除すると駆動系は車輪駆動で急加速して回復
する。このブレーキ解除の際にベルトおよびプーリも急
激に回されるが、特にブライマリブーり側にはクラッチ
ドリブン以降の駆動系の大きい慣性マスが作用し、ベル
トスリップを生じることが考えられ、この対策として急
ブレーキ中はライン圧を高圧に制御する必要がある。
At this time, in the hydraulic control system of the continuously variable transmission, the pitot pressure becomes zero and the primary cylinder is drained, and then when the brake is released, the drive system rapidly accelerates and recovers by driving the wheels. When this brake is released, the belt and pulley are also turned rapidly, but the large inertial mass of the drive system after the clutch drive acts on the brake lever side in particular, which may cause belt slip. During braking, it is necessary to control the line pressure to high pressure.

ところで、かかる急ブレーキ時のライン圧の高圧制御が
、ブレーキ解除の際にブレーキスイッチ等の信号で解か
れると、このときベルトとプーリが急激に変速しながら
回転してプライマリ圧の増大を促す。このため、ライン
圧が低くてプライマリ圧の増大がベルトとブーりの変速
状態に追従できない場合は、やはりベルトスリップを生
じる恐れがあり、このことからブレーキ解除後もベルト
スリップ防止対策を施すことが望まれる。
By the way, when the high-pressure control of the line pressure during sudden braking is released by a signal from a brake switch or the like when the brake is released, the belt and pulley rotate while rapidly changing speed, prompting an increase in the primary pressure. For this reason, if the line pressure is low and the increase in primary pressure cannot follow the shifting state of the belt and boob, belt slip may still occur.For this reason, it is recommended to take measures to prevent belt slip even after the brake is released. desired.

従来、上記急ブレーキ時の制御に関しては、例えば特開
昭61−290269号公報の先行技術がある。ここで
、無段変速機の出力側に副変速機を設けて動力の接断、
変速および逆転する駆動系をベースとし、急ブレーキ時
には副変速機により無段変速機を車輪側から分離してダ
ウンシフトすることが示されている。
Conventionally, regarding the above-mentioned control during sudden braking, there is a prior art, for example, disclosed in Japanese Patent Application Laid-Open No. 61-290269. Here, an auxiliary transmission is provided on the output side of the continuously variable transmission to connect/disconnect the power.
It is based on a drive system that changes speed and reverses, and it is shown that when sudden braking occurs, the continuously variable transmission is separated from the wheel side by an auxiliary transmission and downshifts.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、上記先行技術のものは、副変速の切換部が無
段変速機の出力側に設けられたものに限定され、その入
力側に配置される駆動系には適用できない。また、急ブ
レーキ時に無段変速機は車輪側から分離されることで一
気に最大変速にシフトするため、ブレーキ解除の際に再
び動力伝達可能に連結すると、急激にエンジンブレーキ
がかかって走行フィーリングを悪化し、ベルト等に多大
な衝撃力が作用して好ましくない。
By the way, the above-mentioned prior art is limited to those in which the switching section of the auxiliary transmission is provided on the output side of the continuously variable transmission, and cannot be applied to a drive system arranged on the input side of the continuously variable transmission. In addition, when braking suddenly, the continuously variable transmission is separated from the wheel side and shifts to the maximum speed all at once, so if it is reconnected to transmit power when the brake is released, engine braking will be applied suddenly and the driving feeling will be affected. This is undesirable because it causes a large impact force to act on the belt and the like.

本発明は、かかる点に鑑みてなされたもので、その目的
とするところは、タイヤロックを伴う急ブレーキ時のラ
イン圧制御によるベルトスリップの防止を、ブレーキ解
除後も確保することが可能な無段変速機のライン圧制御
装置を提供することにある。
The present invention has been made in view of the above, and the object thereof is to provide a system that can prevent belt slip by controlling the line pressure during sudden braking accompanied by tire lock even after the brake is released. An object of the present invention is to provide a line pressure control device for a step-change transmission.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明のライン圧制御装置は
、無段変速機の油圧制御系にライン圧調整弁、制御ユニ
ットの信号によりライン圧を高。
In order to achieve the above object, the line pressure control device of the present invention includes a line pressure regulating valve in a hydraulic control system of a continuously variable transmission, and increases line pressure by a signal from a control unit.

低に切換えるソレノイド弁を有するものにおいて、上記
制御ユニットでタイヤロックを伴う急ブレーキ時にはソ
レノイド弁によりライン圧を高圧に切換え、ブレーキ解
除後も所定時間ライン圧を高圧に保持するように構成す
るものである。
In a device having a solenoid valve that switches the pressure to low, the control unit is configured to switch the line pressure to high pressure by the solenoid valve during sudden braking that causes tires to lock, and maintain the line pressure at high pressure for a predetermined period of time even after the brake is released. be.

〔作   用〕[For production]

上記構成に基づき、無段変速機を含む駆動系でタイヤロ
ックを伴う急ブレーキ時には、ライン圧の高圧制御によ
りベルトがスリップしながら任意に動くことが防止され
、更にブレーキ解除後もライン圧が高圧に保持されるこ
とで、無段変速機およびそのプライマリ側が急激に回転
復帰する際のベルトスリップも防止するようになる。
Based on the above configuration, when a drive system including a continuously variable transmission brakes suddenly with tire lock, high line pressure control prevents the belt from slipping and moving arbitrarily, and even after the brake is released, the line pressure remains high. By being held at this position, belt slip is also prevented when the continuously variable transmission and its primary side suddenly return to rotation.

〔実 施 例〕〔Example〕

以下、本発明の実施例を図面に基づいて具体的に説明す
る。
Embodiments of the present invention will be specifically described below based on the drawings.

第1図において、フロントエンジン・フロントドライブ
(F F)ベースの横置きトランスアクスル型で電磁粉
式クラッチを組合わせたベルト式無段変速機について説
明する。
Referring to FIG. 1, a belt-type continuously variable transmission based on a front engine/front drive (FF) with a transverse transaxle and an electromagnetic powder clutch will be described.

符号1は電磁粉式クラッチ、2は前後進切換装置、3は
無段変速機、4はフロントデフ装置である。そしてクラ
ッチハウジング6の一方に電磁粉式クラッチ1が収容さ
れ、そのクラッチハウジング6の他方と、そこに接合さ
れるメインケース7゜更にメインケース7のクラッチハ
ウジング6と反対側に接合されるサイドケース8の内部
に、前後進切換装置2.無段変速機3.フロントデフ装
置4が収容される。
Reference numeral 1 is an electromagnetic powder clutch, 2 is a forward/reverse switching device, 3 is a continuously variable transmission, and 4 is a front differential device. The electromagnetic powder clutch 1 is housed in one side of the clutch housing 6, and the other side of the clutch housing 6 includes a main case 7 joined thereto, and a side case joined to the opposite side of the main case 7 from the clutch housing 6. 8 has a forward/reverse switching device 2. Continuously variable transmission 3. A front differential device 4 is housed therein.

電磁粉式クラッチ1は、エンジンのクランク軸lOにド
ライブプレート11を介して一体結合するリング状のド
ライブメンバ12.変速機人力軸13に回転方向に一体
的にスプライン結合するディスク状のドリブンメンバ1
4を有する。そしてドリブンメンバ14の外周部側にコ
イル15が内蔵されて、両メンバ12.14の間に円周
に沿いギャップ16が形成され、このギャップ16に電
磁粉を有する。またコイル15を具備するドリブンメン
バ14のハブ部のスリップリング18には、給電用ブラ
シ19が摺接し、スリップリング18から更にドリブン
メンバ14内部を通りコイル15に結線されてクラッチ
電流回路が構成されている。
The electromagnetic powder clutch 1 includes a ring-shaped drive member 12. which is integrally connected to the crankshaft lO of the engine via a drive plate 11. A disk-shaped driven member 1 that is integrally spline-coupled to the transmission manual shaft 13 in the rotational direction.
It has 4. A coil 15 is built into the outer peripheral side of the driven member 14, and a gap 16 is formed along the circumference between both members 12, 14, and the electromagnetic powder is contained in this gap 16. In addition, a power supply brush 19 is in sliding contact with a slip ring 18 of the hub portion of the driven member 14 that includes a coil 15, and is further connected to the coil 15 through the inside of the driven member 14 from the slip ring 18 to form a clutch current circuit. ing.

こうして、コイル15にクラッチ電流を流すと、ギャッ
プ」6を介してドライブおよびドリブンメン/<12.
14の間に生じる磁力線により、そのギャップ16に電
磁粉が鎖状に結合して集積し、これによる結合力でドラ
イブメンバ12に対しドリブンメンバ[4が滑りながら
一体結合して、クラッチ接続状態になる。一方、クラッ
チ電流をカットすると、電磁粉によるドライブおよびド
リブンメンバ12゜」4の結合力が消失してクラッチ切
断状態になる。
In this way, when the clutch current is passed through the coil 15, the drive and driven men/<12.
14, electromagnetic powder is combined and accumulated in the gap 16 in a chain shape, and the resulting binding force causes the driven member [4] to slide and connect integrally to the drive member 12, and the clutch is connected. Become. On the other hand, when the clutch current is cut, the drive due to the electromagnetic powder and the coupling force between the driven member 12'4 disappear, resulting in a clutch disengaged state.

そしてこの場合のクラッチ電流の制御を、前後進切換装
置2の操作に連動して行うようにすれば、P(パーキン
グ)またはNにュートラル)レンジから前進のD(ドラ
イブ)、Ds(スポーティドライブ)または後退のR(
リバース)レンジへの切換え時に自動的にクラッチ1が
接断して、クラッチペダル操作が不要になる。
If the clutch current in this case is controlled in conjunction with the operation of the forward/reverse switching device 2, it is possible to switch from the P (parking) or neutral to N range to the forward D (drive) or Ds (sporty drive) range. or R of retreat (
Clutch 1 is automatically connected and disconnected when switching to the reverse (reverse) range, eliminating the need for clutch pedal operation.

次いで前後進切換装置2は、上記クラッチ1からの人力
軸13と、これに同軸上に配置されたプライマリ軸20
との間に設けられる。即ち、人力軸13に前進被係合側
を兼ねた後進用ドライブギヤ21が形成され、プライマ
リ軸20には後進川波係合側のギヤ22が回転自在に嵌
合してあり、これらのギヤ21、22が、軸23で支持
されたカウンタギヤ24.軸25て支持されたアイドラ
ギヤ26を介して噛合い1,1.i成される。そしてプ
ライマリ軸20とギヤ21および22との間に、切換機
構27が設けられる。ここで常時噛合っている上記ギヤ
21.24.26.22は、クラッチ1のコイル15を
有するドリブンメンバ14に連結しており、クラッチ切
断時のこの部分の慣性マスが比較的大きい点に対応して
切換機構27は、プライマリ軸20のハブ28にスプラ
イン嵌合するスリーブ29が、シンクロ機構30.31
を介して各ギヤ21゜22に噛合い結合するように構成
されている。
Next, the forward/reverse switching device 2 includes a human power shaft 13 from the clutch 1 and a primary shaft 20 disposed coaxially therewith.
established between. That is, a reverse drive gear 21 that also serves as a forward engagement side is formed on the human power shaft 13, and a gear 22 on a reverse river wave engagement side is rotatably fitted to the primary shaft 20. , 22 are a counter gear 24 . supported by a shaft 23 . The meshes 1, 1 . i will be done. A switching mechanism 27 is provided between the primary shaft 20 and the gears 21 and 22. The gears 21, 24, 26, 22, which are always in mesh here, are connected to the driven member 14 having the coil 15 of the clutch 1, and this corresponds to the fact that the inertia mass of this part is relatively large when the clutch is disengaged. In the switching mechanism 27, the sleeve 29 spline-fitted to the hub 28 of the primary shaft 20 is connected to the synchronizing mechanism 30.31.
It is configured to be meshed and connected to each gear 21 and 22 through.

これによりPまたはNレンジの中立位置では、切換機構
27のスリーブ29がハブ28とのみ嵌合して、プライ
マリ軸20が入力軸L3から切離される。次いでスリー
ブ29を、シンクロ機構30を介してギヤ21側に噛合
わすと、人力軸13に対しプライマリ軸20が直結して
DまたはDsレンジの前進状態になる。
As a result, in the neutral position of the P or N range, the sleeve 29 of the switching mechanism 27 is fitted only with the hub 28, and the primary shaft 20 is separated from the input shaft L3. Next, when the sleeve 29 is meshed with the gear 21 side via the synchronizing mechanism 30, the primary shaft 20 is directly connected to the human power shaft 13, resulting in a forward movement state in the D or Ds range.

一方、スリーブ29を、逆にシンクロ機構31を介して
ギヤ22側に噛合わせると、入力軸13はギヤ21゜2
4、26.22を介してプライマリ軸20に連結され、
エンジン動力が逆転してRレンジの後進状態になる。
On the other hand, when the sleeve 29 is meshed with the gear 22 side via the synchronizing mechanism 31, the input shaft 13 is connected to the gear 21°2.
4, connected to the primary shaft 20 via 26.22,
The engine power is reversed and the R range is in reverse mode.

無段変速機3は、上記プライマリ軸20に対しセカンダ
リ軸35が平行配置され、これらの両軸20゜35にそ
れぞれプライマリプーリ36.セカンダリプーリ37が
設けられ、かつ両プーリ36.37の間にエンドレスの
駆動ベルト34が掛は渡しである。プライマリプーリ3
6.セカンダリプーリ37はいずれも2分割に構成され
、一方の固定プーリ38a、37aに対し、他方の可動
プーリ36b、37bがブーり間隔を可変にすべく移動
可能にされ、可動プーリ38b、37bには、それ自体
ピストンを兼ねた油圧サーボ装置38.39が付設され
、更にセカンダリプーリ37の可動プーリ37bには、
プーリ間隔を狭くする方向にスプリング40が付勢され
ている。
In the continuously variable transmission 3, a secondary shaft 35 is arranged parallel to the primary shaft 20, and primary pulleys 36. A secondary pulley 37 is provided, and an endless drive belt 34 runs between both pulleys 36,37. Primary pulley 3
6. The secondary pulleys 37 are each divided into two parts, and one of the fixed pulleys 38a and 37a is movable to make the other movable pulleys 36b and 37b variable in the interval between the bobbins. , a hydraulic servo device 38, 39 which also serves as a piston is attached to the movable pulley 37b of the secondary pulley 37.
A spring 40 is biased in a direction to narrow the pulley interval.

また油圧制御系として、作動源のオイルポンプ41がプ
ライマリプーリ36の隣りに設置される。このオイルポ
ンプ41は、高圧用のギヤポンプであり、ポンプ駆動軸
42が、プライマリプーリ3B、プライマリ軸20およ
び人力軸13の内部を貫通してクランク軸lOに直結し
、エンジン運転中、常に油圧を生じるようになっている
。そしてこのオイルポンプ41の油圧を制御して、各油
圧サーボ装置31i、 39に給排油し、プライマリプ
ーリ36とセカンダリプーリ37のブーり間隔を逆の関
係に変化して、駆動ベルト34のプーリ3B、 37に
おけるプーリ比を無段階に変換し、無段変速した動力を
セカンダリ幀35に出力する。
Further, as a hydraulic control system, an oil pump 41 as an operating source is installed next to the primary pulley 36. This oil pump 41 is a high-pressure gear pump, and a pump drive shaft 42 passes through the primary pulley 3B, the primary shaft 20, and the human power shaft 13, and is directly connected to the crankshaft lO, so that oil pressure is constantly maintained during engine operation. It's starting to happen. Then, the oil pressure of the oil pump 41 is controlled to supply and drain oil to each hydraulic servo device 31i, 39, and the distance between the primary pulley 36 and the secondary pulley 37 is reversed, so that the pulley of the drive belt 34 The pulley ratios in 3B and 37 are converted steplessly, and the steplessly variable power is output to the secondary gate 35.

フロントデフ装置4は、上記無段変速機3の高速段側最
小プーリ比が、例えば0.5と非常に小さく、このため
セカンダリ輔35の回転数が大きい点に鑑み、セカンダ
リ輔35に対し1組の中間減速ギヤ43a、43bを介
して出力軸44が連結される。そしてこの出力軸44の
ドライブギヤ45に、ファイナルギヤ4Bが噛合い、フ
ァイナルギヤ46から差動機構47を介して左右の前輪
の車軸48a、48bに伝動構成される。
In view of the fact that the minimum pulley ratio on the high speed side of the continuously variable transmission 3 is very small, for example 0.5, and therefore the rotational speed of the secondary foot 35 is large, the front differential device 4 has a ratio of 1 to 1 for the secondary foot 35. An output shaft 44 is connected via a pair of intermediate reduction gears 43a and 43b. A final gear 4B meshes with the drive gear 45 of this output shaft 44, and transmission is configured from the final gear 46 to the left and right front wheel axles 48a, 48b via a differential mechanism 47.

第2図において、無段変速機3の油圧制御系について説
明すると、プライマリ油圧サーボ装置38において、プ
ライマリ軸20と一体的なシリンダ38aに可動プーリ
36bが嵌合し、シリンダ38a内に給、排油すること
によるプライマリ圧を生じる。
In FIG. 2, the hydraulic control system of the continuously variable transmission 3 will be explained. In the primary hydraulic servo device 38, a movable pulley 36b is fitted into a cylinder 38a that is integrated with the primary shaft 20, and supply and discharge are supplied and discharged into the cylinder 38a. Primary pressure is generated by oil.

またセカンダリ油圧サーボ装置89においても、セカン
ダリ輔35と一体的なシリンダ39aに可動プーリ37
bが嵌合し、シリンダ39a内にライン圧が導入される
。ここで可動プーリ37bに比べて可動プーリ36bの
方が、受圧面積が大きくなっており、プライマリ圧のみ
による変速制御を可能にしている。
Also, in the secondary hydraulic servo device 89, a movable pulley 37 is attached to a cylinder 39a that is integrated with the secondary support 35.
b is fitted, and line pressure is introduced into the cylinder 39a. Here, the movable pulley 36b has a larger pressure receiving area than the movable pulley 37b, making it possible to perform speed change control using only the primary pressure.

そして油溜70からオイルポンプ41により汲み上げら
れたオイルは、油路71aを介してライン圧調整弁90
に導かれ、油路71aから分岐するライン圧の油路71
bが、セカンダリシリンダ39aに常にライン圧を導入
すべく連通する。油路71aから分岐する油路71cは
変速比制御弁100に連通し、この変速比制御弁100
とプライマシリンダ38aとの間に油路72が連通ずる
。またプライマリシリンダ38aの個所には、クラッチ
係合後の変速制御において、エンジン回転数に応じた制
御圧としてのピトー圧を取出すピト−圧センサ73が設
置され、このピトー圧センサ73からのピトー圧が、油
路74を介してライン圧調整弁90.変速比制御弁10
0に導かれる。
The oil pumped up from the oil reservoir 70 by the oil pump 41 is passed through the oil passage 71a to the line pressure regulating valve 90.
A line pressure oil passage 71 that is guided by the oil passage 71a and branches from the oil passage 71a.
b communicates with the secondary cylinder 39a to always introduce line pressure. An oil passage 71c branching from the oil passage 71a communicates with a gear ratio control valve 100.
An oil passage 72 communicates between the primer cylinder 38a and the primer cylinder 38a. Further, a pitot pressure sensor 73 is installed at the primary cylinder 38a to take out a pitot pressure as a control pressure according to the engine speed during shift control after clutch engagement. is connected to the line pressure regulating valve 90 through the oil passage 74. Gear ratio control valve 10
It leads to 0.

更ゝこ、エンジン回転数の低い状態を含む広範囲で変速
!fiq&IIlを行うDレンジに対し、エンジン回転
数の高い範囲に限定して変速制御を行い、アクセル開放
の場合にエンジンブレーキ作用するDs レンジを得る
油圧系として、ライン圧調整弁90からのドレン油路7
5aにリリーフ弁7Bが設けられ、このリリーフ弁76
の上流側から分岐する潤滑油圧回路の油路75bが、セ
レクト位置検出弁1110に連通し、油路75bから更
に分岐する油路75cが、変速比制御弁100のエンジ
ンブレーキ用アクチュエータ140に連通している。
Furthermore, the gears can be changed over a wide range, including at low engine speeds! For the D range, which performs fiq & IIl, a drain oil passage from the line pressure regulating valve 90 is used as a hydraulic system to obtain the Ds range, which performs shift control limited to the high engine speed range and acts as an engine brake when the accelerator is released. 7
5a is provided with a relief valve 7B, and this relief valve 76
An oil passage 75b of the lubrication hydraulic circuit that branches from the upstream side of the lubrication hydraulic circuit communicates with the select position detection valve 1110, and an oil passage 75c that further branches from the oil passage 75b communicates with the engine brake actuator 140 of the gear ratio control valve 100. ing.

上記潤滑油圧回路の油路75aから分岐する油路75d
はベルト34の内周上に配置されるベルト潤滑ノズル7
7に、油路75eはピトー圧センサ78のオイル供給ロ
アaに連通し、油路?5cはチエツク弁7gオイルクー
ラ80を介して油溜70側に連通する。セカンダリシリ
ンダ39aの油圧室39bと反対側にはバランサ室39
cが設けられ、オイルクーラ80の出口側油路81がバ
ランサ室39cに連通してオイルを満たし、油圧室39
bの遠心油圧をバランサ室39cで相殺するようになっ
ている。また、変速比制御弁100のドレン油路82の
途中にはチエツク弁83を具備したシフトロック弁84
が設けられ、チエツク弁83の上流の油路82と上記油
路75bとの間にはブリフィーリング用油路85が連通
ずる。なお、各油路の途中、大気開口部にはオリフィス
86が設けられている。
Oil passage 75d branching from oil passage 75a of the lubrication hydraulic circuit
is a belt lubricating nozzle 7 arranged on the inner circumference of the belt 34
7, the oil passage 75e communicates with the oil supply lower a of the pitot pressure sensor 78, and the oil passage 75e communicates with the oil supply lower a of the pitot pressure sensor 78. 5c communicates with the oil reservoir 70 via the check valve 7g and the oil cooler 80. A balancer chamber 39 is located on the opposite side of the hydraulic chamber 39b of the secondary cylinder 39a.
c is provided, and the outlet oil passage 81 of the oil cooler 80 communicates with the balancer chamber 39c and fills it with oil.
The centrifugal oil pressure of b is offset by the balancer chamber 39c. Further, a shift lock valve 84 is provided with a check valve 83 in the middle of the drain oil passage 82 of the gear ratio control valve 100.
A brief feeling oil passage 85 communicates between the oil passage 82 upstream of the check valve 83 and the oil passage 75b. It should be noted that an orifice 86 is provided in the middle of each oil passage and at an opening to the atmosphere.

ライン圧調整弁90は、弁本体91.スプール92スプ
ール92の一方のブツシュ93との間に付勢されるスプ
リング94を有し、プライマリ可動プーリ36bに係合
して実際の変速比を検出するセンサシュー95が、潤滑
通路を兼ねた軸管96で移動可能に支持されてブツシュ
93に連結する。弁本体91において、スプール92の
スプリング94と反対側のボート91aには油路74の
ピトー圧が作用し、このボート91aにドレンボート9
1bを介して隣接するボート91cに油路71aのライ
ン圧が作用する。また、ボート91Cの隣りにライン圧
が導かれるボート91dとドレンボート91cとを有し
、スプール92のランドチャンファ部92aによりドレ
ン量を変化して調圧するようになっており、ドレンボー
ト91eの隣りのスプリング94側にライン圧2段切換
用ボート91rが設けられる。
The line pressure regulating valve 90 has a valve body 91. A sensor shoe 95 has a spring 94 biased between the spool 92 and one bush 93 of the spool 92, and engages with the primary movable pulley 36b to detect the actual gear ratio. It is movably supported by a tube 96 and connected to a bushing 93. In the valve body 91, the pitot pressure of the oil passage 74 acts on the boat 91a on the opposite side of the spring 94 of the spool 92, and the drain boat 9
The line pressure of the oil passage 71a acts on the adjacent boat 91c via 1b. In addition, there is a boat 91d and a drain boat 91c adjacent to the boat 91C to which line pressure is introduced, and the land chamfer portion 92a of the spool 92 changes the amount of drain to regulate the pressure. A two-stage line pressure switching boat 91r is provided on the spring 94 side.

一方、ライン圧の油路71cにはライン圧2段切換用ソ
レノイド弁97が設けられる。このライン圧2段切換用
ソレノイド弁97は三方弁であり、上記ライン圧2段切
換用ボート911’に接続する油路98を油路71c側
とドレン側に選択的に連通ずるもので、通電により油路
71cと98とを接続してライン圧2段切換用ポート9
1「にライン圧を導き、非通電により油路98をドレン
する構成である。
On the other hand, a line pressure two-stage switching solenoid valve 97 is provided in the line pressure oil passage 71c. This two-stage line pressure switching solenoid valve 97 is a three-way valve that selectively communicates the oil passage 98 connected to the two-stage line pressure switching boat 911' with the oil passage 71c side and the drain side, and is energized. connects the oil passages 71c and 98 to connect the line pressure two-stage switching port 9.
1", and the oil passage 98 is drained by de-energizing.

こうして、スプール92のスプリング94は変速比が大
きい程スプリング力が大きくなり、このスプリング力が
ライン圧上昇側に作用する。また、ボート91cとライ
ン圧2段切換用ボート91「のライン圧はライン圧低下
側に作用し、これら両者のバランスでライン圧制御され
る。スプール92の端部のピトー圧は、エンジン回転数
と共にポンプ吐出量が変化した場合にスプール92のバ
ランス点を調整するように作用する。
In this way, the spring force of the spring 94 of the spool 92 increases as the gear ratio increases, and this spring force acts on the line pressure increasing side. In addition, the line pressure of the boat 91c and the line pressure two-stage switching boat 91'' acts on the line pressure decreasing side, and the line pressure is controlled by the balance between these two.The pitot pressure at the end of the spool 92 is determined by the engine rotational speed. It also acts to adjust the balance point of the spool 92 when the pump discharge amount changes.

そこで、スプリング94のバランス点のスプリングカF
、ライン圧PL、ポート91cにおける左右ランド部の
受圧面積をAL、およびライン圧2段切換用ボート91
「における左右ランド部の受圧面積差をAeとすると、
ライン圧2段切換用ソレノイド弁97が非通電の場合は
、 A I、φP1、−F が成立して、ライン圧はPL−F/ALにより高圧1.
り御される。
Therefore, the spring force F at the balance point of the spring 94 is
, the line pressure PL, the pressure receiving area of the left and right land portions at the port 91c are AL, and the line pressure two-stage switching boat 91.
If the pressure receiving area difference between the left and right land portions is Ae, then
When the line pressure two-stage switching solenoid valve 97 is de-energized, A I, φP1, -F are established, and the line pressure is set to high pressure 1.0 by PL-F/AL.
be controlled.

また、ソレノイド弁97が通電すると、(AI、+Ac
)φPL−F が成立して、ライン圧はPL −F/(AL +Ac)
により低圧制御される。こうしてライン圧は、変速比に
応じて変化するスプリング力で無段階に制御され、更に
ライン圧2段切換用ソレノイド弁97によりライン圧の
レベルが低、高2段階に制御されて、プーリ押付力を生
じるようになる。
Also, when the solenoid valve 97 is energized, (AI, +Ac
)φPL-F is established, and the line pressure is PL -F/(AL +Ac)
Controlled by low pressure. In this way, the line pressure is controlled steplessly by a spring force that changes according to the gear ratio, and the line pressure level is controlled in two stages, low and high, by the two-stage line pressure switching solenoid valve 97, resulting in a pulley pressing force. begins to occur.

変速比制御弁lOOは、弁本体101の一方にスプール
102を有し、スプール102の一端のボート10【a
にはピトー圧がチエツク弁103またはオリフィス10
4を介して作用し、その他端にはロースピードスプリン
グ105.ハイスピードスプリング106が付勢する。
The gear ratio control valve lOO has a spool 102 on one side of a valve body 101, and a boat 10[a] at one end of the spool 102.
The pitot pressure is checked by check valve 103 or orifice 10.
4, and a low speed spring 105.4 at the other end. High speed spring 106 is biased.

またスプール102の中央のボート10tbは油路72
に、その左右のボート101c、 1Qldはドレン油
路82.ライン圧油路71cに連通し、スプール102
の溝部102aによりプライマリシリンダ38aに給、
排油してプライマリ圧を生じるようになっている。
In addition, the boat 10tb in the center of the spool 102 has an oil passage 72.
The left and right boats 101c and 1Qld are drain oil passages 82. The spool 102 communicates with the line pressure oil path 71c.
is supplied to the primary cylinder 38a through the groove portion 102a,
It is designed to drain oil and generate primary pressure.

弁本体101の他方にはプランジャ107を有し、この
プランジャ107にロッド108の一端がスプリング1
09を介して挿入され、ロッド10gの他端のローラ1
08aにアクセル開度に応じて回動するシフトカム11
0が摺接する。プランジャ107にはガイド111が取
付けられてスプリング【05を受けており、こうしてシ
フトカム110の回動に応じてスプリング105の力を
変化している。ここで、プランジャ107には油路74
のピトー圧が導かれており、プランジャ107に作用す
るスプリング反力をピトー圧で受けて、シフトカム11
1の操作力の軽減を図るようになっている。
The other side of the valve body 101 has a plunger 107, and one end of a rod 108 is connected to the plunger 107 with a spring 1.
09, and roller 1 at the other end of the rod 10g.
Shift cam 11 rotates according to the accelerator opening at 08a.
0 comes into sliding contact. A guide 111 is attached to the plunger 107 and receives the spring 05, thus changing the force of the spring 105 in accordance with the rotation of the shift cam 110. Here, the plunger 107 has an oil passage 74.
The pitot pressure is guided, and the spring reaction force acting on the plunger 107 is received by the pitot pressure, and the shift cam 11
It is designed to reduce the operating force of 1.

更に、プランジャ107とスプリング106との間には
機械式モジュレータ機tM120が設けられる。
Furthermore, a mechanical modulator tM120 is provided between the plunger 107 and the spring 106.

このモジュレータ機+fl120は、プランジャ107
とガイド111内部のスプリング受け112との間に可
変機構121を有し、この可変機構121がリンク12
2を介してセンサシュー95に連結して成る。そして変
速比が小さい高速段に移行するに従って可変機?M12
1により、スプリング106の力を漸増するようにモジ
ュレータ作用する。
This modulator machine +fl120 has a plunger 107
A variable mechanism 121 is provided between the spring receiver 112 inside the guide 111, and this variable mechanism 121 is connected to the link 12.
It is connected to the sensor shoe 95 via 2. And a variable gear as you move to a high speed gear with a small gear ratio? M12
1 acts as a modulator to gradually increase the force of the spring 106.

こうして、スプール102にはピトー圧とシフトカム1
10によるアクセル開度に応じたスプリング105の力
が作用する。そして両者のバランスで所定のプライマリ
圧を生じて変速比を定め、車速の増大でピトー圧が上昇
するのに応じて高速段にアップシフトすべく変速比制御
する。このとき、スプール102にはモジュレータ機構
120により更に変速比に応じたスプリング10Bの力
が付与することで、高速段へのアップシフトに応じてエ
ンジン回転数を順次上昇するようになる。
In this way, the spool 102 has the pitot pressure and the shift cam 1
The force of the spring 105 is applied according to the accelerator opening degree. A predetermined primary pressure is generated by the balance between the two to determine the gear ratio, and the gear ratio is controlled to upshift to a high speed gear as the pitot pressure increases with the increase in vehicle speed. At this time, the force of the spring 10B corresponding to the gear ratio is further applied to the spool 102 by the modulator mechanism 120, so that the engine speed is sequentially increased in accordance with the upshift to the high gear.

セレクト位置検出弁130は、弁本体131にドレン孔
132を有する弁体133が挿入され、弁体133には
セレクトレバー13Bの操作に応じて回動するカム13
5が当接しである。ここでカム135において、D、N
、Hのレンジ位置は凸部135aであり、両端のP、D
sのレンジ位置は凹部135bになっており、上記り、
N、Rの各レンジでドレン孔132を閉じて操作油圧を
生じる。また、P、Dsレンジでドレン孔132が開く
際は、オリフィス86により上流側の油路75aの油圧
の低下を防ぐようになっている。
In the select position detection valve 130, a valve body 133 having a drain hole 132 is inserted into a valve body 131, and a cam 13 that rotates in accordance with the operation of a select lever 13B is inserted into the valve body 133.
5 is the contact. Here, in the cam 135, D, N
, H range position is the convex portion 135a, and P and D at both ends
The range position of s is in the recess 135b, and as described above,
The drain hole 132 is closed in each of the N and R ranges to generate operating oil pressure. Furthermore, when the drain hole 132 is opened in the P and Ds ranges, the orifice 86 prevents the oil pressure in the upstream oil path 75a from decreasing.

エンジンブレーキ用アクチュエータ140は、シリンダ
141にピストン142が挿入され、このピストン14
2の一方にリターン用スプリング[43が付勢され、そ
の他方のピストン室144に油路75bの操作油圧が油
路75eを介して導かれる。またピストン142の先端
のフック142a、変速比制御弁100のロッド108
のローラピン108bおよびセンサシュー95の間に、
押込みレバーを兼ねたDs レンジ特性補正用のモディ
ファイ機ti145のしt<−t4eカ係合可能に設け
られる。
The engine brake actuator 140 has a piston 142 inserted into a cylinder 141.
A return spring [43 is biased to one side of the piston chamber 2, and the operating hydraulic pressure of the oil passage 75b is guided to the other piston chamber 144 via the oil passage 75e. Also, the hook 142a at the tip of the piston 142, the rod 108 of the gear ratio control valve 100,
between the roller pin 108b and the sensor shoe 95,
The Ds range characteristic correction modifying device ti145, which also serves as a push lever, is provided so as to be engageable with the lever t<-t4e.

こうしてP、Dsレンジで操作油圧が無い場合は、ピス
トン142のフック142aによりレノ< −146を
揺動してロッド108を強制的に所定のストローク押込
み、変速領域をエンジン回転数の高い側に制限し、これ
によりDsレンジでエンジンブレーキ作用する。そして
この状態で所定の変速比に達すると、レバー14Bにセ
ンサシュー95が係合し、これ以降は変速比の増大に応
じてセンサシュー95によりレバー146が逆方向に揺
動し、ピストンI42、ロッド10gを順次元の位置に
引き戻すようになる。
In this way, when there is no operating oil pressure in the P and Ds ranges, the hook 142a of the piston 142 swings the reno < -146 to forcibly push the rod 108 through a predetermined stroke, thereby limiting the shift range to the high engine speed side. As a result, engine braking is applied in the Ds range. When a predetermined gear ratio is reached in this state, the sensor shoe 95 engages with the lever 14B, and from this point on, the sensor shoe 95 swings the lever 146 in the opposite direction as the gear ratio increases, and the piston I42, The rod 10g is pulled back to the forward dimension position.

第3図において、ライン圧制御のソレノイド弁97の電
子制御系について述べる。
In FIG. 3, the electronic control system of the solenoid valve 97 for line pressure control will be described.

先ず、エンジン側の負圧センサ150とエンジン回転数
センサ151の信号が制御ユニット160のエンジント
ルク算出部161に入力してエンジントルクをマツプ上
から算出し、このエンジントルク信号が動作モード判定
部【62に人力する。また、イグニッションスイッチ1
52.車速センサ153.アクセルスイッチ」54の信
号が人力する始動走行検出部183を有し、エンジン始
動後の走行で所定車速に達するまでを検出する。インヒ
ビタスイ・ンチ155とアクセルスイッチ【54の信号
が人力するDs、Rレンジ走行検出部164を有し、D
s、Hの走行を検出する。更に、ブレーキスイッチ15
Bと車速センサ153の信号が入力する急ブレーキ検出
部165を有し、所定の減速度以上の急ブレーキを検出
する。これら始動走行検出部163 、 Ds、Rレン
ジ走行検出部164.急ブレーキ検出部165の信号も
動作モード判定部162に入力し、動作モード判定部1
62は定常走行では出力部167を介してソレノイド弁
97に通電する。一方、所定のエンジントルク以上、エ
ンジン始動後の走行で所定の車速に達する前、Ds、H
の走行、急ブレーキの各条件では、ソレノイド弁97を
非通電するように構成される。
First, the signals from the negative pressure sensor 150 and engine speed sensor 151 on the engine side are input to the engine torque calculation section 161 of the control unit 160 to calculate the engine torque from the map, and this engine torque signal is sent to the operation mode determination section [ 62 manpower. Also, ignition switch 1
52. Vehicle speed sensor 153. The vehicle has a starting running detecting section 183 in which the signal from the accelerator switch 54 is manually input, and detects running after starting the engine until a predetermined vehicle speed is reached. It has an inhibitor switch 155 and an accelerator switch [54 signal] which is manually operated by a Ds and R range travel detection section 164,
Detect the running of s and H. Furthermore, the brake switch 15
The vehicle has a sudden brake detection section 165 to which signals from the vehicle speed sensor 153 and the vehicle speed sensor 153 are input, and detects sudden braking that exceeds a predetermined deceleration. These starting running detecting section 163, Ds, R range running detecting section 164. The signal from the sudden brake detection section 165 is also input to the operation mode determination section 162, and the operation mode determination section 1
62 energizes the solenoid valve 97 via the output section 167 during steady running. On the other hand, Ds, H
Under each condition of traveling and sudden braking, the solenoid valve 97 is de-energized.

また、急ブレーキ時のベルトスリップの防止を確実化す
るため、急ブレーキ検出部165とブレーキスイッチ1
5Bの信号が入力する高圧保持部169を有し、ブレー
キ解除の際にタイマ【70による一定時間の間は動作モ
ード判定部162に高圧を指示するようになっている。
In addition, in order to ensure prevention of belt slip during sudden braking, a sudden brake detection section 165 and a brake switch 1 are provided.
It has a high pressure holding section 169 into which the signal 5B is input, and is configured to instruct the operation mode determining section 162 to maintain high pressure for a certain period of time set by a timer 70 when the brake is released.

次いで、このように構成された無段変速機制御系の作用
について説明する。
Next, the operation of the continuously variable transmission control system configured as described above will be explained.

先ず、車両停止または走り始めの変速開始前には、ライ
ン圧調整弁90で調圧されたライン圧が油路71bによ
りセカンダリシリンダ39aにのみ導入しており、プラ
イマリシリンダ38aは変速比制御弁[00によりドレ
ン油路82に連通している。そのため無段変速機8では
、駆動ベルト34のプライマリプーリ3Bに対しセカン
ダリプーリ37の巻付は径が最も大きく、最大変速比I
Lの低速段となる。
First, before the vehicle stops or starts shifting when it starts running, the line pressure regulated by the line pressure regulating valve 90 is introduced only to the secondary cylinder 39a through the oil passage 71b, and the primary cylinder 38a is connected to the gear ratio control valve [ 00 communicates with the drain oil passage 82. Therefore, in the continuously variable transmission 8, the diameter of the winding of the secondary pulley 37 with respect to the primary pulley 3B of the drive belt 34 is the largest, and the maximum gear ratio I
It becomes L low gear.

次いで、走行後にピトー圧センサ73のピトー圧が上昇
して変速比制御弁100のスプール102を移動し、油
路71cのライン圧が油路72を介してプライマリシリ
ンダHaに供給されると、プリフィル作用で直ちにプラ
イマリ圧を生じてアップシフトを開始する。そしてプラ
イマリ圧の上昇により、駆動ベルト34のプライマリプ
ーリ36に対する巻付は径が増し、最終的には最小変速
比’ 11の高速段に無段変速する。
Next, after driving, the pitot pressure of the pitot pressure sensor 73 increases and moves the spool 102 of the gear ratio control valve 100, and when the line pressure of the oil passage 71c is supplied to the primary cylinder Ha via the oil passage 72, the prefill The action immediately generates primary pressure and starts upshifting. As the primary pressure increases, the diameter of the winding of the drive belt 34 around the primary pulley 36 increases, and finally the speed is continuously variable to a high speed stage with a minimum gear ratio '11.

そこで、上記無段変速におけるライン圧の作用について
述べる。
Therefore, the effect of line pressure in the above-mentioned continuously variable transmission will be described.

先ず、Dレンジでの定常走行時には、制御ユニットlB
Oの動作モード判定部162によりソレノイド弁97が
通電して、ライン圧調整弁90の切換用ボート91rに
油路71cのライン圧が油路98を介して導入される。
First, during steady running in the D range, the control unit lB
The solenoid valve 97 is energized by the operation mode determination unit 162 of the O, and the line pressure of the oil passage 71c is introduced into the switching boat 91r of the line pressure regulating valve 90 via the oil passage 98.

そこでライン圧調整弁90は、2つのポート91c、9
11’のライン圧とセンサシュー95による変速比に応
じたスプリング力との関係で調圧され、ライン圧レベル
が全体的に低くなる。ここで変速比の大きい低速段では
、スプリング力が大きくなって、スプール92のチャン
ファ部92aによるドレン量を減じるため、ライン圧は
高くなり、高速段に移行するのに伴いスプリング力が減
少してライン圧を徐々に低下するのであり、こうして第
4図の曲線PLI2のような特性になる。
Therefore, the line pressure regulating valve 90 has two ports 91c and 9.
The pressure is regulated based on the relationship between the line pressure 11' and the spring force generated by the sensor shoe 95 according to the gear ratio, and the line pressure level is lowered overall. Here, in the low speed gear where the gear ratio is large, the spring force becomes large and the amount of drain by the chamfer portion 92a of the spool 92 is reduced, so the line pressure increases, and as the gear shifts to the high speed gear, the spring force decreases. The line pressure is gradually reduced, resulting in a characteristic like the curve PLI2 in FIG. 4.

次いで、所定のエンジントルク以上の高負荷時。Next, when the load is high above a predetermined engine torque.

Dsレンジによるパワーモード走行時においては、制御
ユニット160の動作モード判定部162によりソレノ
イド弁97が非通電して、ライン圧調整弁90のライン
圧2段切換用ボート91「をドレンするように切換える
。このためライン圧調整弁90のスプール92は、ライ
ン圧高圧側にシフトすることになり、ライン圧レベルが
高くなって第4図の曲線P1.11のような特性になる
。ここで、特性PμとPl、hとの比は全ての変速比で
一定化する。
When running in the power mode using the Ds range, the solenoid valve 97 is de-energized by the operation mode determination unit 162 of the control unit 160, and the line pressure two-stage switching boat 91 of the line pressure regulating valve 90 is switched to drain. .For this reason, the spool 92 of the line pressure regulating valve 90 will shift to the high line pressure side, and the line pressure level will become high, resulting in a characteristic as shown by curve P1.11 in Fig. 4.Here, the characteristic The ratio of Pμ to Pl and h is constant at all speed ratios.

こうして、低、中負荷の定常走行では、低圧レベルのラ
イン圧で伝達トルクに略見合ったプーリ押付力を生じ、
プーリ押付力の過多が回避される。
In this way, during steady running at low to medium loads, a pulley pressing force approximately commensurate with the transmitted torque is generated at a low level line pressure,
Excessive pulley pressing force is avoided.

そして高負荷、Dsレンジのパワーモード走行等では、
高圧レベルのライン圧でこの場合の伝達トルクに略見合
ったプーリ押付力になり、かかる走行時のベルトスリッ
プが確実に防止される。また、エンジン始動後、ベルト
34およびプライマリプーリ3B、セカンダリプーリ3
7が回り始める際に、両者の関係が常に正常とは限らな
いが、この場合は一時的に高圧レベルのライン圧でベル
ト張力と共にベルトおよびプーリの正常な位置関係が確
保される。
And when driving in high load, Ds range power mode, etc.
The line pressure at a high pressure level provides a pulley pressing force approximately commensurate with the transmitted torque in this case, and belt slip during such running is reliably prevented. In addition, after the engine starts, the belt 34, primary pulley 3B, secondary pulley 3
When the belt 7 starts to rotate, the relationship between the two is not always normal, but in this case, the normal positional relationship between the belt and the pulley is temporarily ensured with the belt tension at a high level of line pressure.

なお、電気系統の故障によりソレノイド弁97が非通電
になると、ライン圧は高圧レベルに保持されることにな
り、これにより常にベルトスリップを生じないようにフ
ェイルセーフする。
Note that if the solenoid valve 97 is de-energized due to a failure in the electrical system, the line pressure will be maintained at a high pressure level, thereby providing a failsafe to always prevent belt slip.

更に、急ブレーキ時の作用を第5図のフローチャート図
と第6図のタイムチャート図を用いて述べる。
Furthermore, the operation at the time of sudden braking will be described using the flowchart in FIG. 5 and the time chart in FIG.

先ず、ブレーキ操作時にブレーキスイッチ15Bからブ
レーキ信号が急ブレーキ検出部165に入力し、同時に
車速センサ153の車輪速度Vvを用いて減速度を算出
し、第6図(b)のように車体速度Vmに対し車輪速度
Vvが急低下する場合は急ブレーキと判断する。そして
この急ブレーキ信号が動作モード判定部182に入力す
ることで、高圧設定部168によりソレノイド弁97が
非通電してライン圧調整弁90のボート91fをドレン
するように切換わる。そこで、ライン圧調整弁90によ
り第6図(C)のようにかかる急ブレーキ時にも高いラ
イン圧PLhに制御され、ブレーキ中にベルト34が任
意に動いてスリップすることを防止する。
First, when the brake is operated, a brake signal is input from the brake switch 15B to the sudden brake detection section 165, and at the same time, the deceleration is calculated using the wheel speed Vv of the vehicle speed sensor 153, and the vehicle body speed Vm is determined as shown in FIG. 6(b). On the other hand, if the wheel speed Vv suddenly decreases, it is determined that the brake is suddenly applied. When this sudden brake signal is input to the operation mode determining section 182, the high pressure setting section 168 switches the solenoid valve 97 to de-energize and drain the boat 91f of the line pressure regulating valve 90. Therefore, the line pressure regulating valve 90 controls the line pressure PLh to be high even during sudden braking as shown in FIG. 6(C), thereby preventing the belt 34 from arbitrarily moving and slipping during braking.

その後、第6図(b)のように車輪速度Vwが零のタイ
ヤロック時にブレーキ解除する、と、車輪速度■νは急
激に回復して車体速度Vmと一致することでタイヤロッ
クも解除する。このとき、ブレーキスイッチ15Bのブ
レーキ解除信号が高圧保持部169に人力した時点から
タイマ170による所定時間だけ高圧保持信号が出力し
、第6図(c)のようにライン圧が高圧に保持される。
Thereafter, as shown in FIG. 6(b), when the brake is released when the wheel speed Vw is zero and the tires are locked, the wheel speed ■ν rapidly recovers and becomes equal to the vehicle speed Vm, thereby releasing the tire lock. At this time, a high pressure holding signal is output for a predetermined time by the timer 170 from the time when the brake release signal of the brake switch 15B is manually applied to the high pressure holding part 169, and the line pressure is held at high pressure as shown in FIG. 6(c). .

そこでブレーキ解除直後、車輪速度Vwの立上りに応じ
て無段変速機3のベルト34とプライマリプーリ36 
 セカンダリプーリ37.更にプライマリプーリ36と
一体の前後進切換装置2.クラッチlのドリブン側が急
激に回される際に、その慣性マス等の負荷をセカンダリ
プーリ37の高いライン圧pthによるプーリ押付力で
充分に受けることが可能になる。このため、ブレーキ解
除後にクラッチドリブン側を含む無段変速機3の部分は
、ベルトスリップを生じないように回転復帰する。
Therefore, immediately after the brake is released, the belt 34 of the continuously variable transmission 3 and the primary pulley 36
Secondary pulley 37. Further, a forward/reverse switching device 2 integrated with the primary pulley 36. When the driven side of the clutch l is turned rapidly, the load of the inertial mass and the like can be sufficiently received by the pulley pressing force generated by the high line pressure pth of the secondary pulley 37. Therefore, after the brake is released, the portion of the continuously variable transmission 3 including the clutch driven side returns to rotation so as not to cause belt slip.

一方、かかる急ブレーキ時のタイヤロックは、例えば高
速段でのピトー圧が零により機械的に検出され、ttS
2図の油圧制御系の変速比制御弁[00のドレン側のシ
フトロック弁84を閉じるように動作する。するとプラ
イマリシリンダ38aのプライマリ圧は、第6図(d)
のようタイヤロック中にドレンされることなく高圧に保
持されるため、ブレーキ解除の際にプライマリプーリ3
6でも大きいブーり押付力を生じ、ベルトスリップ防止
効果が大きくなる。
On the other hand, tire lock during such sudden braking is detected mechanically due to zero pitot pressure at high speed, for example, and ttS
It operates to close the shift lock valve 84 on the drain side of the gear ratio control valve [00] of the hydraulic control system shown in FIG. Then, the primary pressure of the primary cylinder 38a is as shown in FIG. 6(d).
Because the pressure is maintained at high pressure without being drained while the tire is locked, the primary pulley 3 is released when the brake is released.
6 also produces a large boob pressing force, and the belt slip prevention effect increases.

以上、本発明の一実施例について述べたが、これのみ限
定されない。
Although one embodiment of the present invention has been described above, it is not limited thereto.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように、本発明によれば、無段変速機を
含む駆動系のタイヤロックを伴う急ブレーキ時のベルト
スリップをライン圧制御で防止する方法において、ブレ
ーキ解除後もライン圧を高圧に保持するので、無段変速
機の部分がブレーキ解除後に急激に回転復帰する際のベ
ルトスリップも確実に防止し得る。
As described above, according to the present invention, in a method of preventing belt slip during sudden braking accompanied by tire lock in a drive system including a continuously variable transmission by controlling the line pressure, the line pressure is maintained at high pressure even after the brake is released. Therefore, it is possible to reliably prevent belt slip when the continuously variable transmission portion suddenly returns to rotation after the brake is released.

さらに、急ブレーキ時にライン圧を高圧に制御する制御
系をベースとし、ブレーキ解除後も高圧制御を継続する
構成であるから、制御も容易化する。
Furthermore, since the control system is based on a control system that controls the line pressure to high pressure during sudden braking, and continues high pressure control even after the brake is released, control is also facilitated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用される無段変速機の一例を示す断
面図、 第2図は本発明のライン圧制御装置の実施例を示す油圧
回路図、 第3図はソレノイド弁の電子制御系を示すブロック図、 第4図はライン圧特性の線図、 第5図は急ブレーキ時の作用を示すフローチャート図、 第6図(a)ないしくd)は同タイムチャート図である
。 3・・・無段変速機、90・・・ライン圧調整弁、97
・・・ソレノイド弁、180・・・制御ユニット、16
2・・・動作モード判定部、185・・・急ブレーキ検
出部、IH・・・高圧設定部、169・・・高圧保持部
、170・・・タイマ特許出願人    富士重工業株
式会社代理人 弁理士  小 矯 /N  淳同  弁
理士  村 井   進 第6 図
Fig. 1 is a sectional view showing an example of a continuously variable transmission to which the present invention is applied, Fig. 2 is a hydraulic circuit diagram showing an embodiment of the line pressure control device of the present invention, and Fig. 3 is an electronic control of a solenoid valve. A block diagram showing the system, FIG. 4 is a diagram of line pressure characteristics, FIG. 5 is a flowchart showing the action during sudden braking, and FIGS. 6(a) to 6d) are the same time charts. 3...Continuously variable transmission, 90...Line pressure regulating valve, 97
... Solenoid valve, 180 ... Control unit, 16
2...Operating mode determination section, 185...Sudden brake detection section, IH...High pressure setting section, 169...High pressure holding section, 170...Timer patent applicant Fuji Heavy Industries Co., Ltd. agent Patent attorney Masaru Ko / N Jundo Patent Attorney Susumu Murai Figure 6

Claims (1)

【特許請求の範囲】 無段変速機の油圧制御系にライン圧調整弁、制御ユニッ
トの信号によりライン圧を高、低に切換えるソレノイド
弁を有するものにおいて、 上記制御ユニットでタイヤロックを伴う急ブレーキ時に
はソレノイド弁によりライン圧を高圧に切換え、ブレー
キ解除後も所定時間ライン圧を高圧に保持するように構
成したことを特徴とする無段変速機のライン圧制御装置
[Scope of Claims] In a hydraulic control system of a continuously variable transmission having a line pressure regulating valve and a solenoid valve that switches the line pressure between high and low levels according to a signal from the control unit, the control unit is capable of causing sudden braking with tire lock. 1. A line pressure control device for a continuously variable transmission, characterized in that the line pressure is sometimes switched to a high pressure using a solenoid valve, and the line pressure is maintained at a high pressure for a predetermined period of time even after the brake is released.
JP63257646A 1988-10-13 1988-10-13 Line pressure control device for continuously variable transmission Expired - Lifetime JP2843838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63257646A JP2843838B2 (en) 1988-10-13 1988-10-13 Line pressure control device for continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63257646A JP2843838B2 (en) 1988-10-13 1988-10-13 Line pressure control device for continuously variable transmission

Publications (2)

Publication Number Publication Date
JPH02102960A true JPH02102960A (en) 1990-04-16
JP2843838B2 JP2843838B2 (en) 1999-01-06

Family

ID=17309136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63257646A Expired - Lifetime JP2843838B2 (en) 1988-10-13 1988-10-13 Line pressure control device for continuously variable transmission

Country Status (1)

Country Link
JP (1) JP2843838B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7074160B1 (en) 1999-10-29 2006-07-11 Toyota Jidosha Kabushiki Kaisha Controller for driving system of vehicle
WO2008041093A1 (en) * 2006-10-04 2008-04-10 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method of continuously variable transmission, program for realizing that method, and recording medium on which that program is recorded
WO2008044143A2 (en) * 2006-10-13 2008-04-17 Toyota Jidosha Kabushiki Kaisha Apparatus and method for controlling continuously variable transmission and program for performing the control method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283229A (en) * 1985-10-07 1987-04-16 Nissan Motor Co Ltd Control device for continuously variable transmission

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283229A (en) * 1985-10-07 1987-04-16 Nissan Motor Co Ltd Control device for continuously variable transmission

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7074160B1 (en) 1999-10-29 2006-07-11 Toyota Jidosha Kabushiki Kaisha Controller for driving system of vehicle
WO2008041093A1 (en) * 2006-10-04 2008-04-10 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method of continuously variable transmission, program for realizing that method, and recording medium on which that program is recorded
US8195369B2 (en) 2006-10-04 2012-06-05 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method of continuously variable transmission, program for realizing that method, and recording medium on which that program is recorded
WO2008044143A2 (en) * 2006-10-13 2008-04-17 Toyota Jidosha Kabushiki Kaisha Apparatus and method for controlling continuously variable transmission and program for performing the control method
WO2008044143A3 (en) * 2006-10-13 2008-06-12 Toyota Motor Co Ltd Apparatus and method for controlling continuously variable transmission and program for performing the control method
US8083640B2 (en) 2006-10-13 2011-12-27 Toyota Jidosha Kabushiki Kaisha Apparatus and method for controlling continuously variable transmission and program for performing the control method

Also Published As

Publication number Publication date
JP2843838B2 (en) 1999-01-06

Similar Documents

Publication Publication Date Title
US6183391B1 (en) Control apparatus for automatic transmission
JPH03200433A (en) Control device for continuously variable transmission
JPS60159456A (en) Hydraulic control device in stepless speed change gear
CA2005397C (en) Transmission ratio control system for a continuously variable transmission
JPS61249833A (en) Hydraulic control unit for four-wheel driving device
JP2781902B2 (en) Line pressure control device for continuously variable transmission
JPH02102960A (en) Line pressure control device of continuously variable transmission
JPS61249836A (en) Hydraulic control unit for four-wheel driving device
JP2796570B2 (en) Transmission control device for continuously variable transmission
JPH02109748A (en) Stop control device for vehicle with continuously variable transmission
JPH03255260A (en) Hydraulic controller for continuously variable transmission
JP2684047B2 (en) Transfer clutch control device for four-wheel drive vehicle
JP2796571B2 (en) Transmission control device for continuously variable transmission
JP2796569B2 (en) Line pressure control device for continuously variable transmission
JPH03255254A (en) Hydraulic controller for continuously variable transmission
JPS62265027A (en) Hydraulic pressure control unit for 4-wheel drive device
JPH0289851A (en) Hydraulic control device for continuously variable transmission
JPH0289855A (en) Speed change control device for continuously variable transmission
JPS6148658A (en) Speed-change controller for continuously variable transmission
JPS61249832A (en) Hydraulic control unit for four-wheel driving device
JP2005172008A (en) Control device for continuously variable transmission
JPS61249834A (en) Hydraulic control unit for four-wheel driving device
JPH03239862A (en) Hydraulic control device of continuously variable transmission
JPH0531699B2 (en)
JPS61249837A (en) Hydraulic control unit for four-wheel driving device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term