JPH0210288B2 - - Google Patents

Info

Publication number
JPH0210288B2
JPH0210288B2 JP57125316A JP12531682A JPH0210288B2 JP H0210288 B2 JPH0210288 B2 JP H0210288B2 JP 57125316 A JP57125316 A JP 57125316A JP 12531682 A JP12531682 A JP 12531682A JP H0210288 B2 JPH0210288 B2 JP H0210288B2
Authority
JP
Japan
Prior art keywords
sleeve
steel
thermal expansion
sleeve body
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57125316A
Other languages
Japanese (ja)
Other versions
JPS5937325A (en
Inventor
Masayuki Iijima
Hidetoshi Akutsu
Kazuyuki Hoshino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP12531682A priority Critical patent/JPS5937325A/en
Publication of JPS5937325A publication Critical patent/JPS5937325A/en
Publication of JPH0210288B2 publication Critical patent/JPH0210288B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/18Tracks
    • B62D55/20Tracks of articulated type, e.g. chains
    • B62D55/205Connections between track links

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、ブルドーザなどの土木建設機械が
備える履帯(キヤタピラ:商標名)の構造部材で
あるスリーブ(ブツシユ)に関するものである。 一般に、例えばブルドーザが、前後部に備える
スプロケツトを回転させ、この回転でスプロケツ
トとかみ合う履帯を駆動させて走行することは良
く知られている。 また、履帯が、スプロケツトとかみ合うスリー
ブ内に回転自在に嵌入されたピンの両端部を、例
えばシユーに取付けたリンクに固着し、これを連
続させて無端ベルトを形成することにより組立て
られることも知られている。 また、履帯が、その使用環境上苛酷な土砂摩耗
にさらされ、したがつて履帯の構造部材であるス
リーブには、スプロケツトとのかみ合い面に土砂
の入り込みによる異常摩耗が起り易いために耐摩
耗性が要求され、かつスリーブ自体にスプロケツ
トの回転駆動時に高い曲げ荷重がかかり、疲労破
壊が生じ易いために高強度が要求されることも知
られている。 このため、履帯のスリーブとしては、構造用鋼
または構造用合金鋼の鋼溶解材で構成され、かつ
浸炭焼入れ処理により表面硬化されたスリーブが
広く用いられている。 この従来スリーブは、構造用鋼および構造用合
金鋼の鋼溶解材のもつ高強度によつて、繰返し高
荷重に対してすぐれた耐久性を示すものの、表面
硬さが十分でないために、スプロケツトとのかみ
合い面に異常摩耗を生じ易く、満足する使用寿命
を示さないのが現状である。 そこで、本発明者等は、上述のような観点か
ら、土砂摩耗に対してすぐれた耐摩耗性を示すと
ともに、スプロケツトとのかみ合い時の繰り返し
曲げ荷重に対しても疲労破壊の発生のない高強度
を有する履帯用スリーブを開発すべく研究を行な
つた結果、履帯用スリーブを、 構造用鋼または構造用合金鋼の鋼溶解材からな
る高強度スリーブ本体における回転駆動するスプ
ロケツトとのかみ合い面の少なくとも主要部に、 50%以上がマルテンサイトで構成された素地中
にマイクロビツカース硬さ(MHv)で1000以上
の高硬度を有する硬質粒子が15%以上の面積比で
分散した組織、並びに、 上記高強度スリーブ本体との熱膨張係数の差が
0〜600℃の温度範囲で3×10-6/℃以下である
熱膨張係数、 を有する鉄系合金焼結材からなる硬質表面部材、
を拡散接合や硬ろうなどを用いて接合してなる構
造の複合スリーブとすると、上記高強度スリーブ
本体によつて繰り返しの高荷重に対してすぐれた
耐久性が確保され、かつ上記組織の硬質表面部材
によつて上記の建設機械が遭遇する程度の土砂摩
耗では容易に異常摩耗を生ずることのないすぐれ
た耐摩耗性が確保され、さらに上記高強度スリー
ブ本体と上記硬質表面部材との0〜600℃の温度
範囲における熱膨張係数の差を3×10-6/℃以下
とすることにより、これら両者間にはすぐれた接
合強度が確保されるようになり、すぐれた性能を
著しく長期に亘つて発揮するという研究結果を得
たのである。 この発明は、上記研究結果にもとづいてなされ
たものであつて、さらにこの発明の履帯用複合ス
リーブについて説明する。 (a) スリーブ本体 高強度を確保するためには、上記の通り機械
構造用炭素鋼鋼材などの構造用鋼や、クロムモ
リブデン鋼鋼材などの構造用合金鋼の溶解材で
構造する必要がある。 (b) 硬質表面部材 硬質表面部材としては、すぐれた耐摩耗性を
確保する目的で、MHvで1000以上の高硬度を
有するCr3C2やMo2Cなどの炭化物などの硬質
粒子が、50%以上がマルテンサイトで構成され
た素地中に15%以上の割合で分散した組織を有
する鉄系合金焼結材で構成するものであり、こ
の場合硬質粒子は、その硬さが、MHvで1000
以下では所望のすぐれた耐摩耗性を確保するこ
とができないので、MHvで1000以上の高硬度
をもつものでなければならないが、その含有に
関しては、硬質粒子が素地中に析出分散した上
記の各種合金鋼粉末を原料粉末として焼結材中
に分散含有させても、また硬質粒子が形成され
る条件で焼結して含有させてもよく、さらに原
料粉末として、MHvで1000以上の高硬度を有
するTiC粉末やNbC粉末などを用い、これらを
焼結材中に分散含有させるようにしてもよく、
また、マルテンサイトの素地に占める割合が50
%未満でも、硬質粒子の割合が15%未満でも所
望の高硬度を保持することができず、この結果
実用時にすぐれた耐摩耗性を確保するのが困難
になることから、素地に占めるマルテンサイト
の割合を50%以上にして、MHvで1000以上を
有する硬質粒子の割合を15%以上にしてすぐれ
た耐摩耗性を確保するようにする。 さらに、一般に、焼結材は、その内部に存在
する空孔が熱膨張を吸収するために、空孔の存
在しない溶解材に比して熱膨張係数は小さい
が、この発明の複合スリーブにおけるように、
鉄系合金焼結材の熱膨張係数をスリーブ本体を
構成する鋼溶解材に近づけて大きくするために
は、成分組成による調整のほかに、これにホツ
トプレスやHIP(熱間静水圧プレス)処理など
を施して空孔をできるだけ少なくし、99%以上
の理論密度比をもつようにするのがよく、これ
によつて実用温度範囲である0〜600℃におけ
るスリーブ本体と硬質表面部材の熱膨張係数の
差が3×10-6/℃以下になり、この状態になる
と、接合時や、接合後の浸炭焼入れ処理時に剥
離が生じることはなく、強固な接合状態を保持
するようになるのである。 つぎに、この発明の複合スリーブを実施例によ
り具体的に説明する。 実施例 いずれも通常の溶解鋳造法および熱間圧延法に
より成形した外径:60mm×内径:45mm×長さ:
120mmの寸法をもち、かつC:0.45%、Si:0.28
%、Mn:0.76%、P:0.013%、S:0.023%の組
成(以上重量%、以下同じ)をもつた構造用鋼の
溶解材(以下S45C溶解材という)、およびC:
0.16%、Si:0.21%、Mn:0.67%、S:0.021%、
P:0.018%、Cr:1.04%、Mo:0.21%の組成を
もつた構造用合金鋼の溶解材(以下SCM21溶解
材という)からなり、かつ第1表に示される熱膨
張係数および引張強度をもつた2種類のスリーブ
本体を用意し、一方原料粉末として、−100mcsh
の粒度を有するFe−Cr合金(Cr:63%含有)粉
末、Fe−Mo合金(Mo:61%含有)粉末、Fe−
W合金(W:80%含有)粉末、Fe−V合金
(V:50%含有)粉末、Fe−Nb合金(Nb:65%
含有)粉末、Fe−P合金(P:27%含有)粉末、
Fe粉末、および炭素粉末を用い、これら原料粉
末を硬質表面部材を形成する目的で、それぞれ第
1表に示される配合組成に配合し、ボールミル中
で72時間湿式混合し、乾燥した後、5ton/cm2の圧
力で圧粉体にプレス成形し、この圧粉体を真空雰
囲気中、1000〜1050℃の範囲内の所定温度に加熱
して、外径:70mm×内径:60mm×長さ:120mmの
寸法をもつた円筒状仮焼結体を成形し、ついでこ
のうちから、長さだけを90mmに短かくしたもの、
長さを80mmにつめて中心角:90゜の円弧部分を切
除したもの、および長さ:35mmのリング状にした
ものをそれぞれ加工し、ついでこの結果得られた
スリーブ本体と各種形状の仮焼結体をそれぞれ第
1図a〜dに斜視図で示される通りセツトし、こ
の状態で窒素雰囲気中、温度:1150℃、圧力:
1000気圧の条件でHIP処理を施して、スリーブ本
体1の表面所要個所にいずれも99%以上の理論密
度比を有する鉄系合金焼結材からなる硬質表面部
材2が強固に拡散接合した構造とし、さらに前記
スリーブ本体の露出面の硬さを向上させる目的
で、900℃の浸炭雰囲気に5時間保持後、870℃の
温度から油焼入れし、150℃に2時間保持の焼戻
し処理を施す浸炭焼入れ処理を行なうことにより
本発明複合スリーブ1〜4をそれぞれ製造した。 ついで、この結果の本発明複合スリーブ1〜4
について、硬質表面部材における素地のマルテン
サイトおよび硬質粒子の面積割合を金属顕微鏡写
真を用いて測定すると共に、硬質粒子のMHvを
測定し、さらに硬質表面部材の熱膨張係数を測定
し、かつスリーブ本体との接合強度を測定した。
The present invention relates to a sleeve (bush) that is a structural member of a crawler track (Trademark name) provided on a civil engineering construction machine such as a bulldozer. It is generally well known that, for example, a bulldozer rotates sprockets provided at the front and rear, and this rotation drives crawler tracks that mesh with the sprockets. It is also known that the crawler track can be assembled by fixing both ends of a pin rotatably fitted in a sleeve that engages with a sprocket to links attached to a shoe, for example, and making these links continuous to form an endless belt. It is being In addition, the track is exposed to severe abrasion due to the environment in which it is used, and therefore the sleeve, which is a structural member of the track, is prone to abnormal wear due to dirt entering the meshing surface with the sprocket. It is also known that high strength is required because the sleeve itself is subjected to a high bending load when the sprocket is rotated, and fatigue fracture is likely to occur. For this reason, as the sleeve of the crawler track, a sleeve made of melted steel such as structural steel or structural alloy steel and whose surface is hardened by carburizing and quenching is widely used. Although this conventional sleeve shows excellent durability against repeated high loads due to the high strength of structural steel and structural alloy steel melted steel, the sleeve does not have sufficient surface hardness and cannot be used with sprockets. The current situation is that the mating surfaces are prone to abnormal wear and do not have a satisfactory service life. Therefore, from the above-mentioned viewpoint, the present inventors have developed a high-strength product that exhibits excellent wear resistance against earth and sand abrasion, and that does not cause fatigue failure even under repeated bending loads when engaged with a sprocket. As a result of research to develop a track sleeve having The main part has a structure in which hard particles having a microvitkers hardness (MHv) of 1000 or more are dispersed in an area ratio of 15% or more in a matrix of which 50% or more is martensite, and the above. A hard surface member made of a sintered iron-based alloy material having a coefficient of thermal expansion in which the difference in coefficient of thermal expansion with the main body of the high-strength sleeve is 3 × 10 -6 / °C or less in the temperature range of 0 to 600 °C.
When a composite sleeve is formed by bonding using diffusion bonding or hard solder, the high-strength sleeve body ensures excellent durability against repeated high loads, and the hard surface of the tissue The members ensure excellent abrasion resistance that does not easily cause abnormal wear under the level of earth and sand abrasion encountered by the above-mentioned construction machinery, and furthermore, the high-strength sleeve body and the hard surface member have excellent wear resistance of 0 to 600. By keeping the difference in thermal expansion coefficients within the temperature range of 3×10 -6 /°C, excellent bonding strength can be ensured between the two, and excellent performance can be maintained over an extremely long period of time. The research results showed that it was effective. This invention has been made based on the above research results, and the composite sleeve for crawler belts of this invention will be further explained. (a) Sleeve body In order to ensure high strength, as mentioned above, it is necessary to construct the sleeve using structural steel such as carbon steel for machine structures, or melted structural alloy steel such as chromium-molybdenum steel. (b) Hard surface member For the purpose of ensuring excellent wear resistance, hard surface members are made of hard particles such as carbides such as Cr 3 C 2 and Mo 2 C, which have a high hardness of 1000 or more in MHv. It is composed of an iron-based alloy sintered material having a structure dispersed at a ratio of 15% or more in a matrix composed of martensite or more, and in this case, the hard particles have a hardness of 1000 MHv.
Since it is not possible to secure the desired excellent wear resistance with the following, it is necessary to have a high hardness of 1000 or more on MHv. The alloy steel powder may be dispersed and contained in the sintered material as a raw material powder, or it may be sintered and contained under conditions that form hard particles. It is also possible to use TiC powder, NbC powder, etc., and disperse them in the sintered material.
In addition, the proportion of martensite in the matrix is 50%.
Even if the proportion of hard particles is less than 15%, it will not be possible to maintain the desired high hardness, and as a result, it will be difficult to ensure excellent wear resistance in practical use. The ratio of hard particles with MHv of 1000 or more is set to 15% or more to ensure excellent wear resistance. Furthermore, in general, sintered materials have a smaller coefficient of thermal expansion than molten materials without pores because the pores existing inside the sintered material absorb thermal expansion. To,
In order to increase the coefficient of thermal expansion of the sintered iron-based alloy material to be closer to that of the molten steel material that makes up the sleeve body, in addition to adjusting the composition, hot pressing, HIP (hot isostatic pressing) treatment, etc. It is best to reduce the number of pores as much as possible and to have a theoretical density ratio of 99% or more, thereby reducing the thermal expansion coefficient of the sleeve body and hard surface member in the practical temperature range of 0 to 600℃. The difference between the two is 3×10 -6 /°C or less, and in this state, peeling does not occur during bonding or during carburizing and quenching after bonding, and a strong bonded state is maintained. Next, the composite sleeve of the present invention will be specifically explained using examples. Examples All molded by normal melt casting method and hot rolling method.Outer diameter: 60 mm x inner diameter: 45 mm x length:
It has a dimension of 120mm, and C: 0.45%, Si: 0.28
%, Mn: 0.76%, P: 0.013%, S: 0.023% (the above weight %, the same below) melted structural steel material (hereinafter referred to as S45C melted material), and C:
0.16%, Si: 0.21%, Mn: 0.67%, S: 0.021%,
It consists of a melted material of structural alloy steel (hereinafter referred to as SCM21 melted material) with a composition of P: 0.018%, Cr: 1.04%, Mo: 0.21%, and has a thermal expansion coefficient and tensile strength shown in Table 1. Two types of sleeve bodies were prepared, and one was -100mcsh as a raw material powder.
Fe-Cr alloy (containing 63% Cr) powder, Fe-Mo alloy (containing 61% Mo) powder, Fe-
W alloy (W: 80% content) powder, Fe-V alloy (V: 50% content) powder, Fe-Nb alloy (Nb: 65%)
) powder, Fe-P alloy (P: 27% content) powder,
Using Fe powder and carbon powder, these raw material powders were blended into the compositions shown in Table 1 for the purpose of forming a hard surface member, wet mixed in a ball mill for 72 hours, dried, and then mixed at 5 tons/min. It is press-formed into a green compact under a pressure of cm2 , and this green compact is heated to a predetermined temperature within the range of 1000 to 1050℃ in a vacuum atmosphere.Outer diameter: 70mm x inner diameter: 60mm x length: 120mm A cylindrical temporary sintered body with dimensions of is formed, and then only the length is shortened to 90 mm,
The length was reduced to 80mm and the arc part with a center angle of 90° was cut out, and the ring-shaped part was processed to have a length of 35mm.Then, the resulting sleeve body and various shapes were calcined. The bodies were set as shown in perspective views in Figures 1a to d, and in this state they were heated in a nitrogen atmosphere at a temperature of 1150°C and a pressure of:
The hard surface member 2 made of a sintered iron alloy material having a theoretical density ratio of 99% or more is firmly diffusion-bonded to the required locations on the surface of the sleeve body 1 by performing HIP treatment under the conditions of 1000 atmospheres. Furthermore, in order to improve the hardness of the exposed surface of the sleeve body, carburizing and quenching is carried out by holding in a carburizing atmosphere at 900°C for 5 hours, oil quenching at 870°C, and tempering at 150°C for 2 hours. Composite sleeves 1 to 4 of the present invention were manufactured by performing the treatment. Next, the resulting composite sleeves 1 to 4 of the present invention
The area ratio of the base martensite and hard particles in the hard surface member was measured using a metallurgical microscope photograph, the MHv of the hard particles was measured, the thermal expansion coefficient of the hard surface member was measured, and the sleeve body The bond strength was measured.

【表】 これらの結果を第1表に示した。 また、比較の目的で、上記の2種類のスリーブ
本体に、同じく上記の条件で浸炭焼入れ処理を施
すことにより従来スリーブ1,2をそれぞれ製造
した。 引続いて、これらの各種のスリーブを、実機の
ブルドーザに組み込み、1ケ月走行使用後の最大
摩耗深さを測定した。これらの結果も第1表に示
した。 第1表に示される結果から、本発明複合スリー
ブ1〜4は、いずれも65Kg/mm2以上の引張強さを
有するスリーブ本体によつて高強度が確保され、
一方MHvで1000以上の高硬度を有する硬質粒子
が、マルテンサイトの割合が50%以上の素地に15
%以上の割合で分散した組織を有する鉄系合金焼
結材で構成された硬質表面部材によつてすぐれた
耐摩耗性が確保され、さらにスリーブ本体と硬質
表面部材がスリーブ本体の引張強さと同等の高い
接合強度で接合され、かつこれら両者の0〜600
℃の実用温度範囲における熱膨張係数はほぼ同じ
値を示し、その差が3×10-6/℃以下となつてお
り、したがつてこれを実用に供した場合、高い曲
げ荷重が繰り返しかかる苛酷な土砂摩耗環境下
で、スリーブ本体から硬質表面部材が剥離するこ
となく、すぐれた耐摩耗性を示し、従来スリーブ
1,2に比して著しく長い使用寿命を示すことが
明らかである。 上述のように、この発明の複合スリーブは、土
砂摩耗に対してすぐれた耐摩耗性を示すと共に、
繰り返し曲げ荷重に対してもすぐれた疲労強度を
示すので、これらの特性が要求されるブルドーザ
などの履帯の構造部材として用いた場合、すぐれ
た性能を著しく長期に亘つて安定的に発揮するの
である。
[Table] These results are shown in Table 1. Further, for the purpose of comparison, conventional sleeves 1 and 2 were manufactured by subjecting the above two types of sleeve bodies to carburizing and quenching treatment under the same conditions as above. Subsequently, these various sleeves were assembled into an actual bulldozer, and the maximum wear depth was measured after running for one month. These results are also shown in Table 1. From the results shown in Table 1, the composite sleeves 1 to 4 of the present invention all have high strength due to the sleeve body having a tensile strength of 65 kg/mm 2 or more,
On the other hand, hard particles with a high hardness of 1000 or more in MHv are added to a matrix with a martensite content of 50% or more.
Excellent wear resistance is ensured by the hard surface member made of iron-based alloy sintered material with a dispersed structure of more than bonded with a high bonding strength of 0 to 600
The thermal expansion coefficients in the practical temperature range of °C show almost the same value, and the difference is less than 3 × 10 -6 / °C. It is clear that the hard surface member does not peel off from the sleeve body under a sandy abrasion environment, exhibiting excellent wear resistance, and exhibiting a significantly longer service life than the conventional sleeves 1 and 2. As mentioned above, the composite sleeve of the present invention exhibits excellent abrasion resistance against earth and sand abrasion, and
It exhibits excellent fatigue strength even under repeated bending loads, so when used as a structural member for tracks such as bulldozers that require these characteristics, it stably exhibits excellent performance over an extremely long period of time. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図a〜dはこの発明の複合スリーブの実施
態様を示す斜視図である。 1……スリーブ本体、2……硬質表面部材。
1A to 1D are perspective views showing an embodiment of the composite sleeve of the present invention. 1...Sleeve body, 2...Hard surface member.

Claims (1)

【特許請求の範囲】 1 構造用鋼または構造用合金鋼の鋼溶解材から
なる高強度スリーブ本体における回転駆動するス
プロケツトとのかみ合い面の少なくとも主要部
に、 50%以上がマルテンサイトで構成された素地中
にマイクロビツカース硬さで1000以上の高硬度を
有する硬質粒子が15%以上の面積比で分散した組
織、並びに、 上記高強度スリーブ本体との熱膨張係数の差が
0〜600℃の温度範囲で3×10-6/℃以下である
熱膨張係数、 を有する鉄系合金焼結材からなる硬質表面部材、
を接合してなる履帯用複合スリーブ。
[Scope of Claims] 1. A high-strength sleeve body made of melted steel material of structural steel or structural alloy steel, in which at least 50% or more of the engagement surface with the rotationally driven sprocket is composed of martensite. A structure in which hard particles with a microvitkers hardness of 1000 or more are dispersed in an area ratio of 15% or more, and a difference in coefficient of thermal expansion from the above-mentioned high-strength sleeve body is 0 to 600℃. A hard surface member made of a sintered iron-based alloy material having a coefficient of thermal expansion of 3×10 -6 /℃ or less in a temperature range,
Composite sleeve for crawler tracks made by joining.
JP12531682A 1982-07-19 1982-07-19 Combined sleeve for driving caterpillar Granted JPS5937325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12531682A JPS5937325A (en) 1982-07-19 1982-07-19 Combined sleeve for driving caterpillar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12531682A JPS5937325A (en) 1982-07-19 1982-07-19 Combined sleeve for driving caterpillar

Publications (2)

Publication Number Publication Date
JPS5937325A JPS5937325A (en) 1984-02-29
JPH0210288B2 true JPH0210288B2 (en) 1990-03-07

Family

ID=14907085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12531682A Granted JPS5937325A (en) 1982-07-19 1982-07-19 Combined sleeve for driving caterpillar

Country Status (1)

Country Link
JP (1) JPS5937325A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0497096U (en) * 1990-12-18 1992-08-21

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02262482A (en) * 1989-03-31 1990-10-25 Sanyo Special Steel Co Ltd Composite steel pipe for track bush

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829965A (en) * 1971-08-18 1973-04-20
JPS54108164A (en) * 1978-02-13 1979-08-24 Sumitomo Electric Ind Ltd Superhard mechanical seal and method of manufacturing the same
JPS5715077A (en) * 1980-06-09 1982-01-26 Caterpillar Tractor Co Track bush used for connecting track link on chassis of caterpillar type car

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829965A (en) * 1971-08-18 1973-04-20
JPS54108164A (en) * 1978-02-13 1979-08-24 Sumitomo Electric Ind Ltd Superhard mechanical seal and method of manufacturing the same
JPS5715077A (en) * 1980-06-09 1982-01-26 Caterpillar Tractor Co Track bush used for connecting track link on chassis of caterpillar type car

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0497096U (en) * 1990-12-18 1992-08-21

Also Published As

Publication number Publication date
JPS5937325A (en) 1984-02-29

Similar Documents

Publication Publication Date Title
US7998238B2 (en) Sintered sliding member and connecting device
JP4183346B2 (en) Mixed powder for powder metallurgy, iron-based sintered body and method for producing the same
US8404356B2 (en) Contact material, composite sintered contact component and method of producing same
US9003681B2 (en) Bucket teeth having a metallurgically bonded coating and methods of making bucket teeth
JPS6146522B2 (en)
JP4823183B2 (en) Copper-based sintered sliding material and sintered sliding member using the same
US7163754B2 (en) Sprocket wheel having a metallurgically bonded coating and method for producing same
JP2003137150A (en) Crawler, crawler pin, crawler bush and manufacturing method of crawler
US20040144203A1 (en) Sintered body and production method thereof
CN113088968B (en) Multi-material gradient composite high-toughness wear-resistant steel and preparation method thereof
JPH0210288B2 (en)
JP2003342700A (en) Sintered sliding material, sintered sliding member, and production method thereof
JPH0210289B2 (en)
JP2777716B2 (en) Floating seal made of sintered alloy and method of manufacturing the same
KR100205795B1 (en) Valve lifter and its mamufacturing method of internal combustion engine
US3450511A (en) Sintered carbide hard alloy
Chagnon et al. Effect of density on mechanical properties of sinter hardened P/M materials
WO2024034494A1 (en) Copper alloy for sliding members, sliding member and method for producing copper alloy for sliding members
JPH0959740A (en) Powder mixture for powder metallurgy and its sintered compact
EP1239122B1 (en) Hollow shaft with wear resistant parts and method for producing such a shaft
DE2947393C2 (en) Method for producing a cemented carbide-cast steel composite body
KR100606356B1 (en) Method for manufacturing tooth of crusher not be tore
JPS5937326A (en) Combined sleeve for driving caterpillar
Graham et al. The effect of nickel content, sintering temperature and density on the properties of a warm compacted 0. 85 wt.% molybdenum prealloy
US4396440A (en) Crushing bodies forged from steel