JPH0210283B2 - - Google Patents

Info

Publication number
JPH0210283B2
JPH0210283B2 JP57055758A JP5575882A JPH0210283B2 JP H0210283 B2 JPH0210283 B2 JP H0210283B2 JP 57055758 A JP57055758 A JP 57055758A JP 5575882 A JP5575882 A JP 5575882A JP H0210283 B2 JPH0210283 B2 JP H0210283B2
Authority
JP
Japan
Prior art keywords
pressure
valve
hydraulic
differential pressure
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57055758A
Other languages
Japanese (ja)
Other versions
JPS58174705A (en
Inventor
Akira Sakamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiden KK
Original Assignee
Daiden KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiden KK filed Critical Daiden KK
Priority to JP57055758A priority Critical patent/JPS58174705A/en
Publication of JPS58174705A publication Critical patent/JPS58174705A/en
Publication of JPH0210283B2 publication Critical patent/JPH0210283B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/163Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load for sharing the pump output equally amongst users or groups of users, e.g. using anti-saturation, pressure compensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30525Directional control valves, e.g. 4/3-directional control valve
    • F15B2211/3053In combination with a pressure compensating valve
    • F15B2211/30535In combination with a pressure compensating valve the pressure compensating valve is arranged between pressure source and directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50536Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using unloading valves controlling the supply pressure by diverting fluid to the return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/515Pressure control characterised by the connections of the pressure control means in the circuit
    • F15B2211/5157Pressure control characterised by the connections of the pressure control means in the circuit being connected to a pressure source and a return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/52Pressure control characterised by the type of actuation
    • F15B2211/526Pressure control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6309Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6654Flow rate control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7058Rotary output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、油圧を用いて複数のアクチユエータ
を選択的に或いは同時に操作することができ、且
つこれらアクチユエータを負荷の変化に関係なく
常に設定された速度で作動させることができる油
圧駆動回路に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is capable of selectively or simultaneously operating a plurality of actuators using hydraulic pressure, and also allows these actuators to be set at all times regardless of changes in load. The present invention relates to a hydraulic drive circuit that can be operated at high speeds.

〔従来の技術〕[Conventional technology]

従来、上記を目的とした油圧駆動回路としては
第1図から第5図に掲げるものが知られている。
Conventionally, as hydraulic drive circuits for the above purpose, those shown in FIGS. 1 to 5 are known.

第1図は直列式の油圧駆動回路を示しており、
同回路において、油圧ポンプから吐出された作動
油は全量各操作弁を通り、各アクチユエータを動
かしタンクに戻るようになつている。かかる直列
式油圧駆動回路の利点は、(i)全アクチユエータが
停止場合アンロードされるのでエネルギの損失が
少ないということ、及び(ii)全アクチユエータが作
動している場合はそれぞれ負荷の合計に見合つた
圧力が油圧ポンプの吐出圧になる、ということに
ある。しかし反面、直列式油圧駆動回路は(i)ポン
プ側に近いアクチユエータほど高い耐圧を要求さ
れる、及び(ii)必要流量の異なるアクチユエータを
使用する場合、分流弁が必要でありエネルギの損
失がある、等の欠点を有している。
Figure 1 shows a series hydraulic drive circuit.
In this circuit, all of the hydraulic fluid discharged from the hydraulic pump passes through each operation valve, operates each actuator, and returns to the tank. The advantages of such a series hydraulic drive circuit are (i) less energy is lost as all actuators are unloaded when they are stopped, and (ii) less energy is lost when all actuators are in operation, each commensurate with the total load. This means that the resulting pressure becomes the discharge pressure of the hydraulic pump. However, on the other hand, in a series hydraulic drive circuit, (i) actuators closer to the pump are required to withstand higher pressure, and (ii) when using actuators with different required flow rates, a flow divider valve is required, resulting in energy loss. , etc.

第2図は並列式の油圧駆動回路を示しており、
同回路において、定吐出油圧ポンプから吐出され
た作動油は各操作弁に行き、余剰の油はポンプ吐
出口近傍に設置されたリリーフ弁を通じてタンク
に戻るようになつている。かかる並列的油圧駆動
回路の利点は(i)全アクチユエータ及び操作弁とも
同じ耐圧でよい、及び(ii)各アクチユエータの必要
流量に大きな差があつても分流弁は不要である、
ということにある。しかし反面、並列式油圧駆動
回路は(i)ポンプは常にリリーフ弁の設定圧まで昇
圧しているので使用状態により大きなエネルギ損
失がある、すなわちポンプ吐出量は同時操作の必
要があるアクチユエータの要求流量になつている
ので、同時操作したい場合は余剰流量はリリーフ
弁を通り損失となる。
Figure 2 shows a parallel hydraulic drive circuit.
In this circuit, hydraulic oil discharged from a constant discharge hydraulic pump goes to each operating valve, and excess oil returns to the tank through a relief valve installed near the pump discharge port. The advantages of such a parallel hydraulic drive circuit are that (i) all actuators and operating valves can withstand the same pressure, and (ii) no diverter valve is required even if there is a large difference in the required flow rate of each actuator.
That's what it means. However, on the other hand, the parallel hydraulic drive circuit has the following disadvantages: (i) Since the pump is always increasing the pressure to the relief valve setting pressure, there is a large energy loss depending on the usage conditions.In other words, the pump discharge volume is the required flow rate of the actuator that requires simultaneous operation. Therefore, if you want to operate them simultaneously, the excess flow will pass through the relief valve and become a loss.

第3図は並列式の油圧駆動回路において可変吐
出ポンプを使用し省エネルギ化を図つたものであ
る。すなわち前述の並列式油圧駆動回路(第2
図)は、エネルギ損失が大であり、そのため油温
が上昇し、オイルクーラが必要となり、油圧機器
のオイルシール、Oリング等も劣化が著しい。こ
のためなるべくエネルギ損失の小さい回路が有利
である。しかしアクチユエータの数が多い場合は
損失の小さい直列回路で使用するには無理があ
る。また機器の耐圧に限界があるためパワーを出
すには流量を大きくしなければならず、機器が大
型化する。そこで可変吐出ポンプを使用した回路
が開発された。すなわち可変ポンプは一定圧保持
形レギユレータにより制御され、吐出量は負荷の
要求流量(圧力を保持するに必要な流量)とポン
プの内部リークと合計値になる。また無負荷状態
では油圧ポンプの吐出量はリーク分のみとなり、
エネルギ損失は少ない。しかしこの油圧駆動回路
においては、常に設定圧を保持しているため(設
定圧はアクチユエータ最大負荷の要求圧力)、負
荷圧が小さいときは損失が大きくなる。
FIG. 3 shows a parallel hydraulic drive circuit in which a variable discharge pump is used to save energy. In other words, the parallel hydraulic drive circuit (second
Figure) has a large energy loss, which causes the oil temperature to rise, necessitating an oil cooler, and the oil seals, O-rings, etc. of the hydraulic equipment also deteriorate significantly. Therefore, a circuit with as little energy loss as possible is advantageous. However, if the number of actuators is large, it is difficult to use it in a series circuit with low loss. Furthermore, since there is a limit to the pressure resistance of the equipment, the flow rate must be increased to generate power, which increases the size of the equipment. Therefore, a circuit using a variable discharge pump was developed. That is, the variable pump is controlled by a constant pressure regulator, and the discharge amount is the sum of the flow rate required by the load (the flow rate necessary to maintain the pressure) and the internal leakage of the pump. In addition, under no-load conditions, the hydraulic pump's discharge amount is only the leakage amount.
Energy loss is low. However, in this hydraulic drive circuit, since the set pressure is always maintained (the set pressure is the required pressure for the actuator maximum load), the loss becomes large when the load pressure is small.

第4図は第2図の並列式油圧駆動回路の改良に
係るものであり、ポンプに圧力補償付流量調整弁
をつけ、負荷圧に見合つた圧を発生することがで
きることを特徴とするものである。一方、第5図
は第3図の油圧駆動回路の改良に係るものであ
り、負荷圧、負荷流量に見合つた可変吐出ポンプ
制御を行うものである。
Figure 4 shows an improvement to the parallel hydraulic drive circuit shown in Figure 2, which is characterized by the fact that the pump is equipped with a pressure-compensating flow rate regulating valve, and can generate pressure commensurate with the load pressure. be. On the other hand, FIG. 5 shows an improvement of the hydraulic drive circuit shown in FIG. 3, which performs variable discharge pump control in accordance with the load pressure and load flow rate.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし第4図及び第5図に示す油圧駆動回路は
供給圧と負荷圧の差が一定となるように油圧発生
装置を制御するものであるが、複数の負荷がかな
り離れて散在する場合、負荷圧を導びく配管(破
線の部分)が長いものと短いものになり、圧力伝
達に時間差がでること、及び主配管(実線の部
分)を流れる作動油の圧力降下のためポンプ近傍
の供給圧と負荷近傍の供給圧に差が出て負荷の圧
と供給圧の差は一定にならず、ポンプ近傍の供給
圧と主配管の圧力降下に負荷圧を加えたものの差
が一定になる。
However, the hydraulic drive circuit shown in Figs. 4 and 5 controls the hydraulic pressure generator so that the difference between the supply pressure and the load pressure is constant, but when multiple loads are scattered far apart, the load The supply pressure near the pump is different due to the fact that the piping leading the pressure (dashed line part) is longer and shorter, and there is a time difference in pressure transmission, and the pressure of the hydraulic oil flowing through the main piping (solid line part) is lowered. There is a difference in the supply pressure near the load, and the difference between the load pressure and the supply pressure is not constant, but the difference between the supply pressure near the pump and the pressure drop in the main piping plus the load pressure becomes constant.

この場合、主配管の圧力降下は各負荷の流量に
より変化するので制御が不安定となり、対策とし
て制御の応答性を遅くして対処している。ところ
が、制御の応答性を遅くすると、操作弁を動かし
ても設定された流量になるまでタイムラグを生じ
る(増速時)。このタイムラグが長いと他の負荷
に影響を与え、アクチユエータに速度変動が生じ
る。
In this case, the pressure drop in the main piping changes depending on the flow rate of each load, making control unstable, and as a countermeasure, the response of control is slowed down. However, if the response of the control is slowed down, there will be a time lag until the set flow rate is reached even when the operating valve is moved (when increasing speed). If this time lag is long, it will affect other loads and cause speed fluctuations in the actuator.

本発明は上述した従来技術が有する欠点を解決
し、エネルギ損失もなくかつ応答性も極めて良好
な油圧駆動回路を提供することを目的とする。
It is an object of the present invention to solve the above-mentioned drawbacks of the prior art and to provide a hydraulic drive circuit with no energy loss and extremely good responsiveness.

〔課題を解決するための手段〕[Means to solve the problem]

この目的を達成するため、本発明の複数機器油
圧駆動回路は、複数の油圧機器を並例に接続した
油圧駆動回路において、それぞれの油圧機器に、
内部に可変絞り弁を有する切換弁及び前記可変絞
り弁で生じる差圧を一定にする動作をする流量制
御弁より構成される圧力補償付操作弁を取付け、
各圧力補償付操作弁の圧油供給ライン側及び前記
可変絞り弁出口側にそれぞれ圧力検出器を接続す
るとともに両圧力検出器の出力の差である差圧を
求める手段を設け、求められた各差圧の大きさを
比較して最小の差圧を求める比較器を設け、その
最小の差圧があらかじめ設定された負荷の変動に
対応できる値となるようにポンプ側電磁リリーフ
弁の圧力を制御する手段を備えたことを特徴とす
る。
In order to achieve this object, the multi-equipment hydraulic drive circuit of the present invention has a hydraulic drive circuit in which a plurality of hydraulic devices are connected in parallel, and each hydraulic device has a
Installing a pressure-compensated operation valve consisting of a switching valve having a variable throttle valve inside and a flow control valve that operates to constant the differential pressure generated by the variable throttle valve,
A pressure detector is connected to the pressure oil supply line side and the variable throttle valve outlet side of each pressure compensated operation valve, and means for determining the differential pressure, which is the difference between the outputs of both pressure detectors, is provided. A comparator is installed to compare the magnitude of the differential pressure and find the minimum differential pressure, and the pressure of the pump-side electromagnetic relief valve is controlled so that the minimum differential pressure is a value that can respond to preset load fluctuations. It is characterized by having a means to do so.

この駆動回路において、さらに複数台をパラレ
ルに接続した油圧ポンプの吐出圧と前記圧力補償
付操作弁の入口側圧力との差圧を検出する手段を
設け、その差圧とあらかじめ設定した値とを比較
して、所要台数のポンプの起動及び停止を行う手
段を備えることにより、油圧ポンプを必要台数の
み運転すればよく、さらに省エネルギ化を図るこ
とができる。
In this drive circuit, means is further provided to detect the differential pressure between the discharge pressure of a plurality of hydraulic pumps connected in parallel and the inlet side pressure of the pressure-compensated operation valve, and the differential pressure and a preset value are In comparison, by providing a means for starting and stopping a required number of pumps, only the required number of hydraulic pumps need be operated, and further energy savings can be achieved.

〔作用〕[Effect]

本発明においては、各負荷の圧力補償付操作弁
の圧油供給ライン側及び前記可変絞り弁出口側に
それぞれ圧力検出器を設け、その差圧を検出する
とともに各操作弁の差圧出力を比較器を通して比
較し、その中で最も小さい差圧を発生しているも
のがあらかじめ設定された圧になるようにポンプ
側を制御する。
In the present invention, pressure detectors are provided on the pressure oil supply line side of the pressure-compensated operation valve of each load and on the outlet side of the variable throttle valve, and the differential pressure is detected and the differential pressure output of each operation valve is compared. The pump side is controlled so that the pressure that generates the smallest differential pressure becomes the preset pressure.

〔実施例〕〔Example〕

以下添付図に示す一実施例をもつて具体的に本
発明に係る油圧駆動回路について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A hydraulic drive circuit according to the present invention will be specifically described below with reference to an embodiment shown in the accompanying drawings.

<第1実施例(第6図及び第7図)> 第6図において1は始端を油圧ポンプ2に連結
した圧油供給ライン、3は終端を油圧タンク4に
連通する圧油排出ラインであり、これら両ライン
1,3にそれぞれ流量制御弁5a,5b,…、可
変絞り弁を内蔵する切換弁6a,6b,…より構
成される圧力補償付操作弁A1,A2…を介して負
荷7a,7b,…が並列に連結されている。また
圧力補償付操作弁A1,A2…は、負荷7a,7b,
…の入口側の圧力を流量制御弁5a,5b,…に
伝達するための圧力伝達ライン8a,8b,…を
有しており、同圧力伝達ライン8a,8b,…に
圧力検出器として、圧力−電気変換器P1c、P2c
…が取付けられている。一方各流量制御弁5a,
5b,…の入口側にも圧力−電気変換器P1,P2
…が取付けられている。また9は圧油供給ライン
1に連結されているポンプ側電磁リリーフ弁であ
る。
<First embodiment (FIGS. 6 and 7)> In FIG. 6, 1 is a pressure oil supply line whose starting end is connected to a hydraulic pump 2, and 3 is a pressure oil discharge line whose terminal end is connected to a hydraulic tank 4. , the load is applied to both lines 1 and 3 through pressure-compensated operating valves A 1 , A 2 , which are composed of flow control valves 5a, 5b, . . . and switching valves 6a, 6b, . 7a, 7b, . . . are connected in parallel. In addition, the pressure compensated operation valves A 1 , A 2 ... are connected to the loads 7a, 7b,
It has pressure transmission lines 8a, 8b, . . . for transmitting the pressure on the inlet side of the flow control valves 5a, 5b, . - electrical converters P 1c , P 2c ,
...is installed. On the other hand, each flow control valve 5a,
Also on the inlet side of 5b,... are pressure-electrical converters P 1 , P 2 ,
...is installed. Further, 9 is a pump-side electromagnetic relief valve connected to the pressure oil supply line 1.

また第7図に電気制御回路が示されており、図
中20a,20b,…は第6図の油圧回路の各圧
力補償付操作弁A1,A2…における圧力(P1C)と
(P1)、(P2C)と(P2),…の差圧ΔP1,ΔP2,…
を発信する差圧発信器、21は差圧発信器20
a,20b,…から発信される差圧ΔP1,ΔP2
…を比較する比較回路、22は比較回路からの出
力させた一番小さい差圧ΔP1又はΔP2を受け、設
定差圧になるようにポンプ側電磁リリーフ弁9に
電流を流し、油圧ポンプ2の吐出圧を制御する演
算回路、23は電磁リリーフ弁用駆動コイルであ
る。
Further, an electric control circuit is shown in FIG. 7, where 20a , 20b , ... are the pressure (P 1C ) and (P 1 ), differential pressure ΔP 1 , ΔP 2 ,… between (P 2C ) and (P 2 ),…
A differential pressure transmitter 21 is a differential pressure transmitter 20 that transmits
Differential pressures ΔP 1 , ΔP 2 , transmitted from a, 20b, ...
A comparison circuit 22 receives the smallest differential pressure ΔP 1 or ΔP 2 outputted from the comparison circuit, and supplies a current to the pump-side electromagnetic relief valve 9 so that the set differential pressure is reached, and the hydraulic pump 2 23 is a drive coil for an electromagnetic relief valve.

ついで上記油圧回路及び電気制御回路を有する
複数機器油圧作動回路による油圧制御方法につい
て述べる。
Next, a hydraulic control method using a multi-equipment hydraulic operating circuit having the above-mentioned hydraulic circuit and electric control circuit will be described.

まず油圧ポンプ2を駆動して単一負荷7aに作
動油が流れた場合を考える。この場合、切換弁6
aに内蔵する可変絞り弁の両側にΔPcの圧力差が
でる。いま流量制御弁5aのバネ圧をΔPcと同等
にすると、流量制御弁5aは負荷圧P1cが変動し
ても常にΔPcを一定に保つように開閉して流量が
一定に保たれる。ポンプ圧P1が一定の場合、流
量制御弁5aの入口側と出口側の圧力差ΔPv
ΔPv=P1−Δc−P1cで表わされる。
First, consider the case where the hydraulic pump 2 is driven and hydraulic oil flows to the single load 7a. In this case, the switching valve 6
There is a pressure difference of ΔP c on both sides of the variable throttle valve built into a. Now, if the spring pressure of the flow rate control valve 5a is made equal to ΔP c , the flow rate control valve 5a will open and close to keep ΔP c constant even if the load pressure P 1c changes, and the flow rate will be kept constant. When the pump pressure P 1 is constant, the pressure difference ΔP v between the inlet side and the outlet side of the flow control valve 5a is expressed as ΔP v =P 1 −Δ c −P 1c .

(なお、ΔPv+Pc=ΔP=P1−P1c) P1、ΔPcは一定であるから、ΔPvは負荷7aが
軽くP1cが小さいと大きく、逆の場合は小さくな
る。そこでΔPvが負荷の変動に対応できる最低の
圧力差を保つように油圧ポンプ2の吐出圧を制御
すると、負荷7aの大小によつて圧力損失が変ら
ず小さくなる。すなわち、ΔPv+ΔPc(=ΔP)を
一定に保つように油圧ポンプ2の吐出圧を制御す
ればよい。
(Incidentally, ΔP v +P c = ΔP=P 1 −P 1c ) Since P 1 and ΔP c are constant, ΔP v is large when the load 7a is light and P 1c is small, and becomes small in the opposite case. Therefore, if the discharge pressure of the hydraulic pump 2 is controlled so that ΔP v maintains the lowest pressure difference that can accommodate variations in the load, the pressure loss will remain small regardless of the magnitude of the load 7a. That is, the discharge pressure of the hydraulic pump 2 may be controlled so as to keep ΔP v +ΔP c (=ΔP) constant.

つぎに複数の機器が並列に接続され同時に作動
している場合を考える。それぞれの負荷圧7a,
7b,…の負荷圧P1c,P2c,…は異なるとする。
全機器が満足に動作するには一番大きな負荷が流
量制御弁5a,5b,…により制御できるポンプ
圧でなければならない。そこでそれぞれの操作弁
A1,A2,,…の入口側圧力P1,P2,…と負荷圧1
,P2c,…の差をとり、第7図の比較回路21で
一番小さい差圧(ΔP=ΔPv+ΔPc)を出力させ、
その差圧が演算回路22で設定された差圧になる
ようにポンプ側電磁リリーフ弁9に電流を流し、
ポンプ圧を制御する。演算回路22で設定する差
圧としては、想定される負荷の変動に十分対応で
きる値を選ぶ。
Next, consider the case where multiple devices are connected in parallel and operating at the same time. Each load pressure 7a,
It is assumed that the load pressures P 1c , P 2c , ... of 7b, ... are different.
In order for all the devices to operate satisfactorily, the largest load must be at a pump pressure that can be controlled by the flow rate control valves 5a, 5b, . Therefore, each operation valve
Inlet side pressure P 1 , P 2 ,… and load pressure 1 of A 1 , A 2 , ,…
c , P 2c , ... and output the smallest differential pressure (ΔP = ΔP v + ΔP c ) in the comparator circuit 21 in FIG.
A current is applied to the pump-side electromagnetic relief valve 9 so that the differential pressure becomes the differential pressure set by the calculation circuit 22,
Control pump pressure. The differential pressure set by the arithmetic circuit 22 is selected to be a value that can sufficiently accommodate expected load fluctuations.

このように本実施例に係る複数機器油圧作動回
路は、複数の機器を作動するにあたつて必要圧し
か立たないので、省エネルギ化を図ることがで
き、且つ応答性も迅速なものとすることができ
る。
In this way, the multi-equipment hydraulic operating circuit according to this embodiment builds up only the necessary pressure to operate multiple devices, so it is possible to save energy and provide quick response. be able to.

また本実施例に係る油圧作動回路は第7図に示
す制御回路にNOR回路を取付けることによつて
全機器の負荷P1c,P2c,…が0の場合、油圧ポン
プ2を迅速にアンロードすることができる。すな
わち第7図において30はNOR回路、31はア
ンロード圧を設定する演算回路、32はアンロー
ド用電磁弁コイルである。
In addition , the hydraulic operation circuit according to this embodiment has a NOR circuit installed in the control circuit shown in FIG. can do. That is, in FIG. 7, 30 is a NOR circuit, 31 is an arithmetic circuit for setting the unloading pressure, and 32 is an unloading solenoid valve coil.

<第2実施例(第8図及び第9図)> 本実施例は油圧ポンプが複数の油圧ポンプ10
2a,102bをパラレルに連結することによつ
て構成されることを特徴とするもので、103,
104,105は圧油供給ライン101a,10
1bに取付けられる絞り弁、逆止弁及び電気一圧
力変換器である。また第9図の制御回路におい
て、負荷107aのラインに立つ圧力P1は油圧
ポンプ102aの吐出圧(PP)とともに差圧発
信器150にかけられ差圧を発信し、これは油圧
ポンプ102bの起動及び停止圧力を設定してい
る比較回路151及びポンプ制御回路152を介
して油圧ポンプ102b用クラツチコイル153
を作動させるとともに、電磁リリーフ弁9b用駆
動コイル154を作動させることができる。なお
油圧回路及び電気制御回路のその他の構成は第1
実施例と同じである。
<Second Embodiment (FIGS. 8 and 9)> In this embodiment, the hydraulic pump is a plurality of hydraulic pumps 10.
2a and 102b are connected in parallel, and 103,
104, 105 are pressure oil supply lines 101a, 10
A throttle valve, a check valve, and an electric pressure transducer are attached to 1b. In the control circuit shown in FIG. 9, the pressure P 1 standing on the line of the load 107a is applied to the differential pressure transmitter 150 together with the discharge pressure (PP) of the hydraulic pump 102a to transmit a differential pressure, which is used to activate the hydraulic pump 102b and The clutch coil 153 for the hydraulic pump 102b is connected to the hydraulic pump 102b via a comparison circuit 151 that sets the stop pressure and a pump control circuit 152.
At the same time, the drive coil 154 for the electromagnetic relief valve 9b can be operated. The other configurations of the hydraulic circuit and electric control circuit are as follows.
It is the same as the example.

本実施例における油圧駆動回路は上記油圧回路
構成及び制御回路を有することにより、油圧ポン
プを必要台数のみ運転すればよい。すなわち台数
制御を図ることができ、さらに省エネルギ化を図
ることができる。
Since the hydraulic drive circuit in this embodiment has the above-mentioned hydraulic circuit configuration and control circuit, it is sufficient to operate only the required number of hydraulic pumps. In other words, it is possible to control the number of units and further save energy.

〔発明の効果〕〔Effect of the invention〕

以上述べてきた如く、本願に係る複数機器油圧
作動回路は、複数の機器が同時又は選択時のいず
れに作動される場合であつても、負荷の変動に応
じて最小の吐出圧にて全機器を稼動でき、省エネ
ルギ化を図ることができる。
As described above, the multi-equipment hydraulic operating circuit according to the present application allows all equipment to be operated at the minimum discharge pressure according to load fluctuations, even when multiple equipment is operated simultaneously or at the time of selection. can be operated, resulting in energy savings.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第5図は従来の複数機器油圧作動回
路の回路図、第6図は本発明の第1実施例に係る
複数機器油圧作動回路の油圧回路図、第7図は電
気制御回路図、第8図は第2実施例の油圧回路
図、第9図は電気制御回路図である。 1:圧油供給ライン、2:油圧ポンプ、3:圧
油排出ライン、4:油圧タンク、5a,5b:流
量制御弁、6a,6b:切換弁、7a,7b:負
荷、8a,8b:圧力伝達ライン、9,9a,9
b:ポンプ側電磁リリーフ弁、A1,A2:圧力補
償付操作弁、P1,P2:圧力−電気変換器、P1c
P2c:圧力−電気変換器、20a,20b:差圧
発信器、21:比較回路、22:演算回路、2
3:電磁リリーフ弁用駆動コイル、30:NOR
回路、31:演算回路、32:アンロード用電磁
弁駆動コイル、101a,101b:圧油供給ラ
イン、102a,102b:油圧ポンプ、10
3:絞り弁、104:逆止弁、105:電気一圧
力変換器、107a,107b:負荷、150:
差圧発信器、151:比較回路、152:ポンプ
制御回路、153:クラツチコイル、154:電
磁リリーフ弁用駆動コイル。
1 to 5 are circuit diagrams of a conventional multi-equipment hydraulic operating circuit, FIG. 6 is a hydraulic circuit diagram of a multi-equipment hydraulic operating circuit according to the first embodiment of the present invention, and FIG. 7 is an electrical control circuit diagram. , FIG. 8 is a hydraulic circuit diagram of the second embodiment, and FIG. 9 is an electrical control circuit diagram. 1: Pressure oil supply line, 2: Hydraulic pump, 3: Pressure oil discharge line, 4: Hydraulic tank, 5a, 5b: Flow control valve, 6a, 6b: Switching valve, 7a, 7b: Load, 8a, 8b: Pressure Transmission line, 9, 9a, 9
b: Pump side electromagnetic relief valve, A 1 , A 2 : Pressure compensated operation valve, P 1 , P 2 : Pressure-electrical converter, P 1c ,
P 2c : Pressure-electrical converter, 20a, 20b: Differential pressure transmitter, 21: Comparison circuit, 22: Arithmetic circuit, 2
3: Drive coil for electromagnetic relief valve, 30: NOR
Circuit, 31: Arithmetic circuit, 32: Unloading solenoid valve drive coil, 101a, 101b: Pressure oil supply line, 102a, 102b: Hydraulic pump, 10
3: Throttle valve, 104: Check valve, 105: Electric pressure transducer, 107a, 107b: Load, 150:
Differential pressure transmitter, 151: comparison circuit, 152: pump control circuit, 153: clutch coil, 154: drive coil for electromagnetic relief valve.

Claims (1)

【特許請求の範囲】 1 複数の油圧機器を並列に接続した油圧駆動回
路において、それぞれの油圧機器に、内部に可変
絞り弁を有する切換弁及び前記可変絞り弁で生じ
る差圧を一定にする動作をする流量制御弁より構
成される圧力補償付操作弁を取付け、各圧力補償
付操作弁の圧油供給ライン側及び前記可変絞り弁
出口側にそれぞれ圧力検出器を接続するとともに
両圧力検出器の出力の差である差圧を求める手段
を設け、求められた各差圧の大きさを比較して最
小の差圧を求める比較器を設け、その最小の差圧
があらかじめ設定された負荷の変動に対応できる
値となるようにポンプ側電磁リリーフ弁の圧力を
制御する手段を備えたことを特徴とする複数機器
油圧駆動回路。 2 複数の油圧機器を並列に接続した油圧駆動回
路において、それぞれの油圧機器に、内部に可変
絞り弁を有する切換弁及び前記可変絞り弁で生じ
る差圧を一定にする動作をする流量制御弁より構
成される圧力補償付操作弁を取付け、各圧力補償
付操作弁の圧油供給ライン側及び前記可変絞り弁
出口側にそれぞれ圧力検出器を接続するとともに
両圧力検出器の出力の差である差圧を求める手段
を設け、求められた各差圧の大きさを比較して最
小の差圧を求める比較器を設け、その最小の差圧
があらかじめ設定された負荷の変動に対応できる
値となるようにポンプ側電磁リリーフ弁の圧力を
制御する手段を備え、さらに複数台をパラレルに
接続した油圧ポンプの吐出圧と前記圧力補償付操
作弁の入口側圧力との差圧を検出する手段を設
け、その差圧とあらかじめ設定した値とを比較し
て、所要台数のポンプの起動及び停止を行う手段
を備えたことを特徴とする複数機器油圧駆動回
路。
[Scope of Claims] 1. In a hydraulic drive circuit in which a plurality of hydraulic devices are connected in parallel, each hydraulic device has a switching valve having an internal variable throttle valve, and an operation that makes the differential pressure generated by the variable throttle valve constant. A pressure-compensated operation valve consisting of a flow rate control valve is installed, and a pressure detector is connected to the pressure oil supply line side of each pressure-compensated operation valve and the outlet side of the variable throttle valve. A means for determining the differential pressure, which is the difference in output, is provided, and a comparator is provided to compare the magnitude of each determined differential pressure to determine the minimum differential pressure, and the minimum differential pressure is a preset load fluctuation. A multi-equipment hydraulic drive circuit characterized by comprising means for controlling the pressure of a pump-side electromagnetic relief valve to a value that can correspond to. 2. In a hydraulic drive circuit in which a plurality of hydraulic devices are connected in parallel, each hydraulic device is provided with a switching valve having an internal variable throttle valve and a flow rate control valve that operates to keep the differential pressure generated by the variable throttle valve constant. A pressure-compensated operation valve consisting of the following pressure-compensated operation valves is installed, and a pressure detector is connected to the pressure oil supply line side and the variable throttle valve outlet side of each pressure-compensated operation valve, respectively, and a difference between the outputs of both pressure detectors is connected. A means for determining the pressure is provided, and a comparator is provided to compare the magnitude of each differential pressure obtained and determine the minimum differential pressure, and the minimum differential pressure is a value that can respond to preset load fluctuations. The pump is provided with means for controlling the pressure of the electromagnetic relief valve on the pump side, and further provided with means for detecting the differential pressure between the discharge pressure of a plurality of hydraulic pumps connected in parallel and the pressure on the inlet side of the operating valve with pressure compensation. A multi-equipment hydraulic drive circuit characterized by comprising means for starting and stopping a required number of pumps by comparing the differential pressure with a preset value.
JP57055758A 1982-04-03 1982-04-03 Hydraulically-driven circuit for plural machines Granted JPS58174705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57055758A JPS58174705A (en) 1982-04-03 1982-04-03 Hydraulically-driven circuit for plural machines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57055758A JPS58174705A (en) 1982-04-03 1982-04-03 Hydraulically-driven circuit for plural machines

Publications (2)

Publication Number Publication Date
JPS58174705A JPS58174705A (en) 1983-10-13
JPH0210283B2 true JPH0210283B2 (en) 1990-03-07

Family

ID=13007739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57055758A Granted JPS58174705A (en) 1982-04-03 1982-04-03 Hydraulically-driven circuit for plural machines

Country Status (1)

Country Link
JP (1) JPS58174705A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023201865A1 (en) 2022-03-25 2023-09-28 Ngk Insulators, Ltd. METHOD FOR MAKING A SHRINK FIT ELEMENT
DE102023200448A1 (en) 2022-03-25 2023-09-28 Ngk Insulators, Ltd. METHOD AND APPARATUS FOR PRODUCING A SHRINK FIT ELEMENT

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023201865A1 (en) 2022-03-25 2023-09-28 Ngk Insulators, Ltd. METHOD FOR MAKING A SHRINK FIT ELEMENT
DE102023200448A1 (en) 2022-03-25 2023-09-28 Ngk Insulators, Ltd. METHOD AND APPARATUS FOR PRODUCING A SHRINK FIT ELEMENT

Also Published As

Publication number Publication date
JPS58174705A (en) 1983-10-13

Similar Documents

Publication Publication Date Title
CA1128174A (en) Flow control
US5522707A (en) Variable frequency drive system for fluid delivery system
US3987622A (en) Load controlled fluid system having parallel work elements
US4082111A (en) Load responsive fluid control valve
JPH0784884B2 (en) Load compensation Directional control valve load detection circuit
CN109695599A (en) Variable delivery hydraulic system, pump output flow control method, engineering machinery
US4120233A (en) Hydraulic control system for at least two consumers
US11060533B2 (en) Logic-controlled flow compensation circuit for operating single-rod hydrostatic actuators
US4408453A (en) Hydraulic control system
US3385312A (en) Fluid regulator circuit
JPH0210284B2 (en)
US4487018A (en) Compensated fluid flow control
US3529422A (en) Speed control system
EP0111208A1 (en) Power transmission
EP0607108B1 (en) A method for controlling a hydraulic motor and a hydraulic valve therefor
JPH0210283B2 (en)
EP0075577A1 (en) Fully compensated fluid control valve.
CN102635604B (en) Hydrostatic drive system
CN205059984U (en) Hydraulic equipment&#39;s of boats and ships monitoring device
CN111255757A (en) Efficient and energy-saving load-sensitive hydraulic system realized through variable displacement motor
US4416304A (en) Fully compensated fluid control valve
JPH08100805A (en) Pressure control valve
JP2830525B2 (en) Pump displacement control device for fluid working system
US4436115A (en) Pressure compensated fluid control valve with maximum flow adjustment
US20230117627A1 (en) Hydraulic Circuit Equipped with a System for Controlling a Hydraulic Component