JPH02102446A - Method for evaluating corrosion resistance of painted metallic material - Google Patents

Method for evaluating corrosion resistance of painted metallic material

Info

Publication number
JPH02102446A
JPH02102446A JP25293488A JP25293488A JPH02102446A JP H02102446 A JPH02102446 A JP H02102446A JP 25293488 A JP25293488 A JP 25293488A JP 25293488 A JP25293488 A JP 25293488A JP H02102446 A JPH02102446 A JP H02102446A
Authority
JP
Japan
Prior art keywords
metallic material
value
resistance value
impedance
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25293488A
Other languages
Japanese (ja)
Inventor
Junichi Morita
順一 森田
Akihiro Kasuya
糟谷 晃弘
Takeo Oki
猛雄 沖
Masazumi Okido
正純 興戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP25293488A priority Critical patent/JPH02102446A/en
Publication of JPH02102446A publication Critical patent/JPH02102446A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To rapidly evaluate the corrosion resistance of the painted metallic material by immersing the painted metallic material which is unaged in an electrolyte soln., measuring the capacity value and resistance value from the impedance obtd. by energizing this material, further energizing the material for a prescribed period of time to cause the secular change of the material, then measuring the capacity value and the resistance value and determining the rate of the change from the previously measured values. CONSTITUTION:The metallic material which is formed by coating, prescribed steel, etc., with a synthetic resin such as epoxy resin and is unaged is immersed in the electrolyte soln. consisting of NaCl, etc. the material is then energized after the immersion and the current or voltage for which a since wave, etc., are used is superposed as signal source between the material and a counter electrode. The capacity value and the resistance value are obtd. by measuring the frequency response and measuring the impedance from this response. The impedance of the specified period of time in, for example, 24 hours, is thereafter measured and the change rate thereof is measured. As a result, the change rate of the capacity value and the resistance value is determined in a short period of time, by which the coefft. of corrosion resistance is determined and the evaluation is made. The change rate of the capacity value and resistance value of the painted metallic material which is unaged and the capacity value and resistance value of the painted metallic material which is subjected to the secular change is calculated in accordance with the prescribed equation and the rate of peeling which is one of corrosion resistance evaluations is decided.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、塗装金属材料の耐食性評価方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for evaluating corrosion resistance of painted metal materials.

(従来技術) 塗装金属材料の耐食性評価は、従来−殻内にJIS Z
 2371に規定されている塩水噴霧試験やJISK 
2246に規定されている湿潤試験が採用され、その試
験成績より寿命予測が実施されてきた。しかしながら、
様々な腐食環境における材料の耐食性能とは必ずしも一
致せず、改良試験方法として、乾燥−湿潤、高温−低温
の繰り返しを採り入れた種々のサイクル試験が提案され
ている。これらの試験は塗装金属材料の評価に2〜6ケ
月と長期間を要し、−殻内に促進条件が緩やかであれば
相関性の高い結果が得られるが、促進性が大きければ相
関性が悪く、しかもばらつきが大きいと言う欠点も有す
る。
(Prior art) Corrosion resistance evaluation of painted metal materials was conventionally conducted using JIS Z inside the shell.
Salt spray test specified in 2371 and JISK
The wet test specified in 2246 has been adopted, and life prediction has been carried out based on the test results. however,
The corrosion resistance performance of materials in various corrosive environments does not necessarily match, and various cycle tests incorporating dry-wet and high-temperature-low temperature cycles have been proposed as improved test methods. These tests require a long period of time (2 to 6 months) to evaluate coated metal materials; - If the accelerating conditions in the shell are mild, highly correlated results can be obtained; however, if the accelerating conditions are large, the correlation is poor. Moreover, it also has the disadvantage of large variations.

一方、最近では電気化学的方法を用いた耐食性評価方法
が注目されつつある。これらは主として、塗膜下の金属
材料の腐食に注目したもので、ある一定期間、塗装金属
材料を腐食環境に曝した後の評価手法であり、前述のサ
イクル試験と組み合わせて用いることが多い。このよう
な電気化学的手法として、腐食電流の測定による方法(
防食技術。
On the other hand, recently, corrosion resistance evaluation methods using electrochemical methods have been attracting attention. These mainly focus on the corrosion of the metal material under the paint film, and are evaluation methods after exposing the painted metal material to a corrosive environment for a certain period of time, and are often used in combination with the above-mentioned cycle test. As such an electrochemical method, there is a method based on measurement of corrosion current (
Anti-corrosion technology.

28、(1978)  ;電気化学、 26,695(
1960)) 、腐食抵抗の測定による方法(防食技術
、 36.134(1987))などが提案されている
。しかしながら、これらの電気化学的手法は、塗装した
金属材料が腐食環境に曝されて、塗膜下の金属材料の腐
食が生じて、はじめて評価できるものであり、評価に長
期間を要する等の欠点がある。
28, (1978); Electrochemistry, 26,695 (
1960)), a method by measuring corrosion resistance (Corrosion Prevention Technology, 36.134 (1987)), etc. have been proposed. However, these electrochemical methods can only be evaluated after the coated metal material is exposed to a corrosive environment, causing corrosion of the metal material under the coating film, and they have drawbacks such as the long time required for evaluation. There is.

(発明が解決しようとする課題) 本発明は、このような欠点を有利に解決するためになさ
れたものである。
(Problems to be Solved by the Invention) The present invention has been made to advantageously solve these drawbacks.

(課題を解決するための手段) 本発明の要旨とするところは、未経時の塗装金属材料を
電解質溶液に浸漬、通電して得たインピーダンスから容
量値と抵抗値を測定し、さらに−定時間通電して、経時
変化せしめ、そのインピーダンスから容量値と抵抗値を
測定し、前記測定値との変化量を求めることを特徴とす
る塗装金属材料の耐食性評価方法にある。
(Means for Solving the Problems) The gist of the present invention is to immerse an unaged painted metal material in an electrolyte solution, energize it, measure the capacitance value and resistance value from the impedance obtained, and then - for a certain period of time. A method for evaluating corrosion resistance of a coated metal material is characterized in that a current is applied to cause a change over time, a capacitance value and a resistance value are measured from the impedance, and the amount of change from the measured value is determined.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は次の如〈実施される。例えば、鋼、ステンレス
鋼、銅、ニッケル、アルミニウム等、またはこれらの金
属表面に亜鉛等の非鉄金属をめっきした材料に、エポキ
シ樹脂、アミノエポキシ樹脂、アルキッド樹脂、塩化ビ
ニル樹脂等の合成樹脂を一層または複層塗装した未経時
の金属材料(塗装前にりん酸塩処理等の前処理を施す場
合もある)をNaC1,Na25Oa、 HgSO4,
HCf等の電解質溶液に浸漬する。溶液は、実際の腐食
環境に近いものを選択することが好ましいが上記のごと
き溶液であれば、概ねどのような環境にも合致した状態
になる。浸漬後、通電し、対極との間に信号源として、
正弦波、インパルス波、ステップ波、ホワイトノイズ波
等を用いた電流または電圧を重畳し、周波数応答を測定
し、この応答からインピーダンスを測定して容量値と抵
抗値を得る。このためには、本測定時間は、腐食前でな
ければ意味がなく、塗膜の電気抵抗が大であり、金属材
料自体の腐食測定に用いられている100 mV未満の
重畳電圧より大なる10抛V超〜50Vの電圧印加が好
ましい。
The present invention is carried out as follows. For example, synthetic resins such as epoxy resins, aminoepoxy resins, alkyd resins, and vinyl chloride resins are added to steel, stainless steel, copper, nickel, aluminum, etc., or materials whose surfaces are plated with non-ferrous metals such as zinc. Alternatively, multi-layer coated virgin metal materials (sometimes pre-treatment such as phosphate treatment is applied before coating) are treated with NaCl, Na25Oa, HgSO4,
Immerse in an electrolyte solution such as HCf. It is preferable to select a solution that is close to the actual corrosive environment, but if the solution is as described above, it will be suitable for almost any environment. After immersion, energize and connect the counter electrode as a signal source.
A current or voltage using a sine wave, impulse wave, step wave, white noise wave, etc. is superimposed, the frequency response is measured, and the impedance is measured from this response to obtain the capacitance value and resistance value. For this purpose, the actual measurement time is meaningless unless corrosion occurs, and the electrical resistance of the coating film is large, and the measurement time must be 10 mV, which is greater than the superimposed voltage of less than 100 mV used to measure corrosion of the metal material itself. It is preferable to apply a voltage of more than 50V.

次に、−殻内耐食性評価では通常腐食環境に数時間曝す
程度では、十分な腐食進行変化は得られず、数日間の腐
食経時が必要となるが、本発明においては、例えば、2
4時間以内の一定時間インピーダンスを測定し、その変
化量を測定する。あるいは、加速試験としては直流バイ
アス電圧を印加してインピーダンスを測定することによ
り、24時間以内と極めて短時間に容量値及び抵抗値の
変化量を求め、耐食性係数を求め評価できる。
Next, in the evaluation of in-shell corrosion resistance, normally exposure to a corrosive environment for several hours does not result in sufficient changes in corrosion progress, and several days of corrosion aging are required; however, in the present invention, for example,
Impedance is measured for a certain period of time within 4 hours, and the amount of change is measured. Alternatively, as an accelerated test, by applying a DC bias voltage and measuring the impedance, the amount of change in capacitance value and resistance value can be determined within a very short time of 24 hours, and the corrosion resistance coefficient can be determined and evaluated.

しかして、前記未経時の塗装金属材料の容量値及び抵抗
値と上記経時変化させた塗装金属材料の容量値及び抵抗
値との変化量を例えば、下記式に基き計算し、塗装金属
材料の耐食性評価の1つである剥離率を判定する。
Therefore, the amount of change between the capacitance value and resistance value of the unaged painted metal material and the capacitance value and resistance value of the painted metal material changed over time is calculated, for example, based on the following formula, and the corrosion resistance of the painted metal material is determined. The peeling rate, which is one of the evaluations, is determined.

A t = F (Co/RO,ΔC/Δ11.t)A
t:塩水噴霧を日後の塗装金属材料の塗膜剥離率 C0:未経時の塗装金属材料の容量値 R0:未経時の塗装金属材料の抵抗値 ΔC:容量値の1日当りの経時変化量 ΔR:抵抗値の1日当りの経時変化量 t :期間(日数) (実施例) 次に本発明の実施例を挙げる。
A t = F (Co/RO, ΔC/Δ11.t) A
t: Paint film peeling rate of the painted metal material after salt spraying C0: Capacity value of the unaged painted metal material R0: Resistance value of the unaged painted metal material ΔC: Amount of change in capacitance value over time ΔR per day: Amount of change in resistance value over time t per day: Period (number of days) (Example) Next, examples of the present invention will be described.

金属材料として、通常の冷延鋼板(板厚0.8 ml1
)を用い、アルカリ脱脂、りん酸塩処理後、ポリアミノ
エポキシ塗料を20μm電着塗装し、塗装金属材とした
。この未経時金属材料を室温および空気開放下で、電解
質溶液として5%NaCl溶液中へ浸漬し、1−面積で
インピーダンスを測定した。
As a metal material, ordinary cold-rolled steel plate (plate thickness 0.8 ml1
), and after alkali degreasing and phosphate treatment, a 20 μm thick polyaminoepoxy paint was electrodeposited to obtain a coated metal material. This unaged metal material was immersed in a 5% NaCl solution as an electrolyte solution at room temperature and open to air, and the impedance was measured in terms of 1-area.

インピーダンスの測定は、IOVの交流電圧をポテンシ
オスタットを介して塗装金属材料表面に重畳し、測定周
波数は測定時間を短くするためにIIIIIIIH2〜
100kH2までの間に15点の周波数で周波数応答解
析器を用いてインピーダンスを測定した。
To measure impedance, IOV AC voltage is superimposed on the surface of the painted metal material via a potentiostat, and the measurement frequency is set from IIIIIIH2 to shorten the measurement time.
Impedance was measured using a frequency response analyzer at 15 frequencies up to 100 kHz.

その結果、容量値3. I X 10−10F、抵抗値
1.6×105Ωであった。次いで、5時間10Vの電
圧を印加し、経時変化させた後、上記同様にふくれが発
生する前のインピーダンスを測定した結果、容量値5.
2 X 1,0−10F、抵抗値1.2X10’Ωであ
った。しかして、前記未経時のインピーダンス測定結果
と、経時変化時のインピーダンス測定結果のそれぞれ容
量値及び抵抗値のものは、JIS Z2371に準拠し
た耐食性試験で、30日後の塗膜剥離率(塗膜剥離面積
/試料全面積)1%以下と評価した。
As a result, the capacity value was 3. The resistance was 1.6×10 5 Ω. Next, after applying a voltage of 10V for 5 hours and allowing it to change over time, the impedance before blistering was measured in the same manner as above, and as a result, the capacitance value was 5.
2 x 1.0-10F, resistance value 1.2 x 10'Ω. Therefore, the capacitance value and resistance value of the impedance measurement result before aging and the impedance measurement result after aging, respectively, were determined by the corrosion resistance test in accordance with JIS Z2371, and the paint film peeling rate (paint film peeling) after 30 days was determined. area/total sample area) was evaluated to be 1% or less.

この結果の適合性を確認するため、次のごとく試験を実
施した。実施例で評価した未経時の塗装金属材料をJI
S Z 2371に準拠、即ち、5%塩水(35°C)
を30日連続して噴霧したところ塗膜剥離率(塗膜剥離
面積/試料全面積)0.5%で、本発明(実施例)と評
価結果は一致した。
In order to confirm the suitability of this result, the following test was conducted. The unaged painted metal material evaluated in the example was JI
According to S Z 2371, i.e. 5% saline (35°C)
When sprayed for 30 consecutive days, the coating film peeling rate (paint film peeling area/total sample area) was 0.5%, which agreed with the evaluation results of the present invention (Example).

(発明の効果) 本発明によれば、塗装金属材料の耐食性評価が従来の1
ケ月以上に比べ、迅速に(1日以内)でき、作業能率を
著しく向上することができる。
(Effects of the Invention) According to the present invention, corrosion resistance evaluation of painted metal materials is improved to 1.
It can be done more quickly (within one day) than in the past, and work efficiency can be significantly improved.

また、塗装金属材料の品質管理が正確且つ確実にでき、
工業的に大きな効果を奏する。
In addition, quality control of painted metal materials can be performed accurately and reliably.
It has great industrial effects.

更に、塗装金属材料の開発が迅速にできる等の優れた効
果が得られる。
Furthermore, excellent effects such as rapid development of coated metal materials can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 未経時の塗装金属材料を電解質溶液に浸漬、通電して得
たインピーダンスから容量値と抵抗値を測定し、さらに
一定時間通電して、経時変化せしめ、そのインピーダン
スから容量値と抵抗値を測定し、前記測定値との変化量
を求めることを特徴とする塗装金属材料の耐食性評価方
法。
The unaged painted metal material is immersed in an electrolyte solution, and the capacitance and resistance values are measured from the impedance obtained by energizing.The capacitance and resistance values are then measured from the impedance obtained by energizing for a certain period of time, and the capacitance and resistance are measured from the impedance. , a method for evaluating corrosion resistance of painted metal materials, characterized in that the amount of change from the measured value is determined.
JP25293488A 1988-10-08 1988-10-08 Method for evaluating corrosion resistance of painted metallic material Pending JPH02102446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25293488A JPH02102446A (en) 1988-10-08 1988-10-08 Method for evaluating corrosion resistance of painted metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25293488A JPH02102446A (en) 1988-10-08 1988-10-08 Method for evaluating corrosion resistance of painted metallic material

Publications (1)

Publication Number Publication Date
JPH02102446A true JPH02102446A (en) 1990-04-16

Family

ID=17244195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25293488A Pending JPH02102446A (en) 1988-10-08 1988-10-08 Method for evaluating corrosion resistance of painted metallic material

Country Status (1)

Country Link
JP (1) JPH02102446A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012179564A (en) * 2011-03-02 2012-09-20 Nippon Telegr & Teleph Corp <Ntt> Coating film
JP2016050915A (en) * 2014-09-02 2016-04-11 国立大学法人広島大学 Corrosion resistance evaluation method and corrosion resistance evaluation device for pre-painted metal material
JP2016050916A (en) * 2014-09-02 2016-04-11 マツダ株式会社 Corrosion resistance evaluation method and corrosion resistance evaluation device for pre-painted metal material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012179564A (en) * 2011-03-02 2012-09-20 Nippon Telegr & Teleph Corp <Ntt> Coating film
JP2016050915A (en) * 2014-09-02 2016-04-11 国立大学法人広島大学 Corrosion resistance evaluation method and corrosion resistance evaluation device for pre-painted metal material
JP2016050916A (en) * 2014-09-02 2016-04-11 マツダ株式会社 Corrosion resistance evaluation method and corrosion resistance evaluation device for pre-painted metal material

Similar Documents

Publication Publication Date Title
Tsai et al. Determination of coating deterioration with EIS: Part II. Development of a method for field testing of protective coatings
Bacon et al. Electrolytic resistance in evaluating protective merit of coatings on metals
Scully et al. Lifetime prediction for organic coatings on steel and a magnesium alloy using electrochemical impedance methods
Mansfeld et al. Electrochemical impedance tests for protective coatings
Kendig et al. Rapid electrochemical assessment of paint
SE441012B (en) PROCEDURE FOR THE MANUFACTURING OF STEEL PLATE WITH IMPROVED CORROSION RESISTANCE, Separate for car bodies
JPS63303090A (en) Continuous electroplating method
JPS5993882A (en) Sensor for metal coating
Frechette et al. Evaluation of the corrosion resistance of painted steels by impedance measurements
Losch et al. A new electrochemical method for the determination of the free surface of phosphate layers
JPS5948649A (en) Method and apparatus for corrosion resistance evaluation of painted metal
Davis et al. Coating evaluation and validation of accelerated test conditions using an in-situ corrosion sensor
JPH02102446A (en) Method for evaluating corrosion resistance of painted metallic material
Pérez et al. Electrochemical impedance spectroscopy study of the corrosion process on coated galvanized steel in a salt spray fog chamber
US5324399A (en) Method and system for monitoring quality of phosphate coating
Katayama et al. Corrosion monitoring of Zn and Zn–Al coated steels under wet-dry cyclic conditions using AC impedance method
Worsley et al. Influence of remote cathodes on corrosion mechanism at exposed cut edges in organically coated galvanized steels
JPH07234202A (en) Adhesion testing method for coating material and its device
Hussain Corrosion Studies Using the Scanning Vibrating Electrode Technique (SVET)-A Brief Review
US3770593A (en) Accelerated test method for determining coating adherence and ability to withstand corrosion
JP2000055860A (en) Method for testing corrosion-resisting performance of coating film
Elsner et al. Comparison between electrochemical impedance and salt spray tests in evaluating the barrier effect of epoxy paints
Cerisola et al. Electrochemical test methods for the protective power control of painted steel surfaces
Attar et al. Investigation on the effect of various surface preparations on corrosion performance of powder coated steel by EIS
Zhu et al. Application of electrochemical impedance spectroscopy to study perforation corrosion of automotive materials