JPH0210218B2 - - Google Patents

Info

Publication number
JPH0210218B2
JPH0210218B2 JP11524181A JP11524181A JPH0210218B2 JP H0210218 B2 JPH0210218 B2 JP H0210218B2 JP 11524181 A JP11524181 A JP 11524181A JP 11524181 A JP11524181 A JP 11524181A JP H0210218 B2 JPH0210218 B2 JP H0210218B2
Authority
JP
Japan
Prior art keywords
weight
wear
cast iron
cast
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11524181A
Other languages
Japanese (ja)
Other versions
JPS5834160A (en
Inventor
Yukio Shikada
Tomohiko Sato
Kanemitsu Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP11524181A priority Critical patent/JPS5834160A/en
Publication of JPS5834160A publication Critical patent/JPS5834160A/en
Publication of JPH0210218B2 publication Critical patent/JPH0210218B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は金型鋳造による耐摩耗鋳鉄に係り、更
に詳しくは実用上、高速、高面圧負荷下の摺動部
など過酷な摩耗条件下においても、優れた耐摩耗
性を発揮する、金型鋳造による耐摩耗鋳鉄に関す
る。 内燃機関のシリンダ部或いはロータリーエアコ
ンのローラ等の摺動機械部品など、過酷な摩耗条
件下で使用される各種機械部品の基材として耐摩
耗鋳鉄が汎用されている。これらの摺動部品は、
通常、高速、且つ高面圧負荷下で摺動する為に、
部品表面において微小部分の強度低下から機械的
破壊を生じて異常摩耗を起こしたり、或いは発生
する熱により潤滑剤の焼付けを起こすといつた不
都合がある。 そこで、かかる摺動部品としては、高硬度、高
強度で耐摩耗性に優れていることもさることなが
ら、部品表面の凹凸も極力少なく、微小部分の破
壊といつた不都合が生じないものが好ましい。 特公昭53−6929号公報には、かかる異常摩耗と
いつた不都合を解消すべく、その成分を調整した
耐摩耗鋳鉄が開示されている。この鋳鉄は、鋳放
しの状態の組織中における、軟質のフエライト相
の析出を抑さえ、且つ主としてバナジウム添加効
果により、析出黒鉛を粗大化して、かかる粗大黒
鉛の初期摩耗時の破砕により生成する微小黒鉛に
より潤滑性を高めるものである。 ところが、かかる粗大黒鉛が、高面圧負荷下、
高速で摺動する部品の摺動面に存在し、該摺動面
の表面粗さが大となつていると、寧ろ前述の異常
摩耗といつた不都合が生じ易いという難点があ
る。 本発明者等は、かかる微小部分の破壊による異
常摩耗といつた不都合のない耐摩耗鋳鉄を開発す
べく鋭意研究した結果、一般に、かかる鋳鉄とし
ては、基地組織中に軟質のフエライト相を有して
おらず、且つ析出黒鉛が粗大化していないものが
好ましく、更に限定すれば、基地金属がパーライ
ト組織(フエライトとセメンタイトの層状組織)
となつており、且つ黒鉛が、例えば米国鋳物協会
−米国材料試験協会(AFS−ASTM)の制定に
よる、黒鉛形態のD型(無方向配列)の如く、微
細且つ分散した共晶状黒鉛の析出相を有している
ものが好ましいという結論に達した。 従来、かかる共晶状黒鉛を有し、且つ基地がパ
ーライト組織である鋳鉄を砂型鋳造で得る為に
は、鋳鉄の炭素含有量を3.0重量%以下、硫黄含
有量を0.05重量%以下とし、微量のTi、Mo、
Ni、Cr、Cu等を合金元素として含ませたものが
製造されていた。ところが、かかる組成において
も、黒鉛が全て共晶状とはならず、或いは砂型の
ため表面と内部において黒鉛形状および組織が不
均一である。 一方金型鋳造の場合、一般に、砂型鋳造と比べ
て凝固速度が大となる為に、セメンタイト
(Fe3C)の晶出と共に黒鉛組織の不均一化が起こ
り、或いは、共晶状黒鉛が晶出すると共にフエラ
イト相が析出するといつた不都合があつた。 従来、かかる金型鋳造による耐摩耗鋳鉄の組成
としては、C3.1〜3.5重量%、Si1.6〜2.6重量%を
含み、他の成分としてCu0.05〜0.5重量%、
Sn0.01〜0.1重量%を合金元素として含むものが
汎用されていた。この組成によると、共晶状黒鉛
の周辺になおわずかなフエライトが析出し、1000
℃以下からの焼入れによつても基地組織が全マル
テンサイト化されにくい。従つて、実用上、鋳鉄
の耐摩耗性が十分なものとならない。 本発明の目的は、従来の耐摩耗鋳鉄が有してい
た上述の不都合を解消して、鋳放しの状態で、基
地がパーライト組織であり、且つ共晶状黒鉛の析
出相を有する組織形態を有し、また、1000℃以下
の焼入れによつてかかるパーライト基地が、容易
に全マルテンサイト組織となり、従つて、高速、
高面圧負荷下の摺動部など、過酷な摩耗条件下に
おいても、優れた耐摩耗性を発揮する、金型鋳造
による耐摩耗鋳鉄を提供することにある。 即ち、本発明の金型鋳造による耐摩耗鋳鉄は、
炭素(C)2.2〜2.4重量%、ケイ素(Si)3.6〜4.4
重量%、マンガン(Mn)0.3〜0.5重量%、リン
(P)0.1重量%以下、イオウ(S)0.1重量%以
下、クロム(Cr)0.3〜1.0重量%及びチタン
(Ti)0.05〜0.20重量%を含み、残部鉄(Fe)の
組成から成り、鋳放しの状態で基地組織がパーラ
イトであつて、該基地組織中に微細な共晶状黒鉛
が析出していることを特徴とするものである。 以下、本発明の金型鋳造による耐摩耗鋳鉄の組
成限定理由を説明する。本発明の鋳鉄を上記組成
に限定した主たる理由は、鋳放しの状態の鋳鉄の
基地組織を全てパーライト化し、析出する黒鉛を
微細な共晶状黒鉛とする為であり、またかかる鋳
鉄に調質熱処理を施して、基地組織を全てマルテ
ンサイト化する為である。更に詳しく説明する
と、炭素含有量の下限を2.2%(重量%、以下、
単に「%」と記す)としたのは、2.2%未満であ
ると、セメンタイト(Fe3C)が晶出する為であ
り、上限を2.4%としたのは、2.4%を超えると、
析出黒鉛が粗大化する為である。 ケイ素含有量を3.6〜4.4%と限定したのは、3.6
%未満では、チル化してセメンタイトが析出し、
4.4%を超えるとフエライト相が析出する為であ
る。 マンガン、リン、イオウの含有量は、通常の範
囲、即ち、夫々、Mn0.3〜0.5%、P0.1%以下、
S0.1%以下としている。このうち、マンガンは、
パーライト組織安定化元素であり、0.3%未満で
はこの効果の現出は難しく、また0.5%を超えて
添加配合するとセメンタイトを晶出させる。 クロムの含有量を0.3〜1.0%としたのは、0.3%
未満ではフエライト相が析出し、1.0%を超える
とチル化してセメンタイトが晶出する為である。
同様に、チタン含有量を0.05〜0.20%としたの
は、0.05%未満ではフエライト相が析出し、0.20
%を超えるとチル化してセメンタイトが晶出する
為である。 本発明の鋳鉄を鋳造するにあたつては、高周波
溶解炉等を用いて、例えば、各々所定量の、軟鋼
材、加炭材、フエロシリコン(Siを75重量%含む
市販のものなど)、フエロマンガン(Mnを75重
量%含む市販のものなど)、フエロクロム(Crを
65重量%含む市販のものなど)を配合して溶解
し、更には、セメンタイトもしくはフエライトの
晶出を抑さえる為に、鋳込み前に前記のフエロシ
リコンをSi量として0.2〜0.3重量%接種
(inoculation)するなどして、前記組成の溶湯を
作製する。次いで、得られた溶湯を所望の金型に
鋳込む。使用される金型の金型比〔金型の最大肉
厚と鋳造物の(最大肉厚×1/2)との比〕は、3
〜10であることが好ましい。3未満であると、金
型の寿命が低下し、割れなどが生じ易く、10を超
えると金型重量が大となり不経済となる為であ
る。かくして得られた鋳造品に、更に焼入れ、焼
戻しなどの熱処理を加えたり、或いは、そのまま
鋳放しの状態で使用することができる。 本発明の金型鋳造による耐摩耗鋳鉄によれば、
鋳放しの状態において、基地組織が全てパーライ
ト化すると共に、基地中に析出する黒鉛が、微細
な共晶状黒鉛となる為に、鋳放しの状態において
も、高硬度、高強度であり、耐摩耗性に優れてい
る。また、この鋳鉄に、更に焼入れ、焼戻し等の
熱処理を施すと、パーライト組織が、更に高硬度
のマルテンサイトとなり、耐摩耗性が更に向上す
ると共に、基地中にフエライトが存在する場合と
比べて、焼入れの加熱温度を900〜1000℃と比較
的低温にすることができ、また冷却速度を高めて
残留フエライトの減少に努める必要などがないと
いう利点をも有する。 従つて、本発明の金型鋳造による耐摩耗鋳鉄
は、内燃機関のシリンダ部、或いはロータリーエ
アコンのローラ等の摺動機械部品など、過酷な摩
耗条件下で使用される各種機械部品の基材として
極めて有用である。 実施例 実施例1〜3、参考例1〜5として、表に示し
た組成を有する各溶湯(湯温1350℃)を、350〜
400℃に予熱した鋳鉄製金型(肉厚50mm)に鋳込
み、金型比約7の条件下で、径50mm、厚さ15mmの
円板状鋳造品を得た。尚、溶湯を金型に鋳込むに
際しては、金型表面にNi80−Al20合金の粉末を
約0.2mmの厚さで塗布し、更にアセチレンすすを
その上に塗布した。
The present invention relates to wear-resistant cast iron made by die casting, and more specifically, in practical use, a die that exhibits excellent wear resistance even under severe wear conditions such as sliding parts under high speed and high surface pressure loads. Concerning wear-resistant cast iron by casting. Wear-resistant cast iron is widely used as a base material for various mechanical parts that are used under severe wear conditions, such as sliding machine parts such as cylinders of internal combustion engines and rollers of rotary air conditioners. These sliding parts are
Normally, in order to slide at high speed and under high surface pressure load,
There are inconveniences such as reduced strength of minute parts on the surface of the part, resulting in mechanical breakage, resulting in abnormal wear, or the generated heat causing seizing of the lubricant. Therefore, it is preferable that such sliding parts not only have high hardness, high strength, and excellent wear resistance, but also have as few irregularities on the surface of the parts as possible, and do not cause problems such as destruction of minute parts. . Japanese Patent Publication No. 53-6929 discloses a wear-resistant cast iron whose components are adjusted in order to eliminate such inconveniences such as abnormal wear. This cast iron suppresses the precipitation of soft ferrite phase in the structure of the as-cast state, and mainly by the effect of adding vanadium, coarsens the precipitated graphite, resulting in fine particles that are generated by crushing the coarse graphite during initial wear. Graphite improves lubricity. However, such coarse graphite under high surface pressure load,
If it is present on the sliding surface of parts that slide at high speed and the surface roughness of the sliding surface is large, it has the disadvantage that problems such as abnormal wear described above are more likely to occur. The present inventors conducted extensive research to develop a wear-resistant cast iron that does not have the disadvantages of abnormal wear caused by the destruction of such minute parts, and found that such cast iron generally has a soft ferrite phase in its matrix structure. It is preferable that the precipitated graphite does not become coarse, and more specifically, the base metal has a pearlite structure (layered structure of ferrite and cementite).
, and graphite is formed by the precipitation of fine and dispersed eutectic graphite, such as the D-type (non-directional alignment) graphite form established by the American Foundry Society-American Society for Testing and Materials (AFS-ASTM). The conclusion was reached that one having a phase is preferable. Conventionally, in order to obtain cast iron with such eutectic graphite and a pearlite matrix by sand casting, the carbon content of the cast iron should be 3.0% by weight or less, the sulfur content should be 0.05% by weight or less, and a trace amount of Ti, Mo,
Products containing Ni, Cr, Cu, etc. as alloying elements were manufactured. However, even in such a composition, the graphite is not entirely eutectic, or because of the sand mold, the shape and structure of the graphite are non-uniform on the surface and inside. On the other hand, in the case of mold casting, the solidification rate is generally higher than that in sand mold casting, so the graphite structure becomes heterogeneous as cementite (Fe 3 C) crystallizes, or eutectic graphite crystallizes. There was an inconvenience that a ferrite phase precipitated as the liquid was removed. Conventionally, the composition of wear-resistant cast iron produced by die casting includes 3.1 to 3.5% by weight of C, 1.6 to 2.6% by weight of Si, and 0.05 to 0.5% by weight of Cu as other components.
Those containing 0.01 to 0.1% by weight of Sn as an alloying element were commonly used. According to this composition, a small amount of ferrite still precipitates around the eutectic graphite, and 1000
Even by quenching at temperatures below ℃, the matrix structure is difficult to become completely martensite. Therefore, for practical purposes, cast iron does not have sufficient wear resistance. The purpose of the present invention is to eliminate the above-mentioned disadvantages of conventional wear-resistant cast iron, and to create a microstructure in an as-cast state in which the base is a pearlite structure and has a precipitated phase of eutectic graphite. Furthermore, by quenching at temperatures below 1000°C, the pearlite base easily becomes an all-martensitic structure, and therefore can be used at high speeds.
The object of the present invention is to provide a wear-resistant cast iron made by die casting that exhibits excellent wear resistance even under severe wear conditions such as sliding parts under high surface pressure loads. That is, the wear-resistant cast iron produced by die casting of the present invention is
Carbon (C) 2.2-2.4% by weight, silicon (Si) 3.6-4.4
Weight%, manganese (Mn) 0.3-0.5% by weight, phosphorus (P) 0.1% by weight or less, sulfur (S) 0.1% by weight or less, chromium (Cr) 0.3-1.0% by weight, and titanium (Ti) 0.05-0.20% by weight The base structure is pearlite in the as-cast state, and fine eutectic graphite is precipitated in the base structure. . The reasons for limiting the composition of the wear-resistant cast iron produced by die casting of the present invention will be explained below. The main reason why the cast iron of the present invention is limited to the above composition is to transform all the matrix structure of the cast iron in the as-cast state into pearlite, and to make the precipitated graphite into fine eutectic graphite. This is to perform heat treatment to transform the entire base structure into martensite. To explain in more detail, the lower limit of carbon content is set at 2.2% (weight%, hereinafter referred to as
The reason for setting the upper limit as 2.4% is that if it is less than 2.2%, cementite (Fe 3 C) will crystallize.
This is because the precipitated graphite becomes coarse. The silicon content was limited to 3.6 to 4.4%.
If it is less than %, it will be chilled and cementite will precipitate.
This is because if it exceeds 4.4%, a ferrite phase will precipitate. The contents of manganese, phosphorus, and sulfur are in the normal range, that is, Mn 0.3 to 0.5% and P 0.1% or less, respectively.
S is set at 0.1% or less. Among these, manganese is
It is a pearlite structure stabilizing element, and if it is less than 0.3%, it is difficult to achieve this effect, and if it is added in an amount exceeding 0.5%, cementite will crystallize. The chromium content is 0.3% to 1.0%.
If it is less than 1.0%, a ferrite phase will precipitate, and if it exceeds 1.0%, it will be chilled and cementite will crystallize.
Similarly, the reason for setting the titanium content to 0.05 to 0.20% is that if it is less than 0.05%, a ferrite phase will precipitate,
This is because if it exceeds %, it will be chilled and cementite will crystallize. When casting the cast iron of the present invention, for example, a predetermined amount of each of mild steel, recarburized material, ferrosilicon (commercially available products containing 75% Si, etc.) is cast using a high-frequency melting furnace or the like. , ferromanganese (commercially available products containing 75% Mn by weight), ferrochrome (Cr
In addition, in order to suppress the crystallization of cementite or ferrite, the above-mentioned ferrosilicon is inoculated with 0.2 to 0.3% by weight of Si (Si content) before casting. A molten metal having the above composition is prepared by, for example, inoculation. Next, the obtained molten metal is cast into a desired mold. The mold ratio of the mold used [ratio between the maximum wall thickness of the mold and the (maximum wall thickness x 1/2) of the casting] is 3.
-10 is preferred. If it is less than 3, the life of the mold will be shortened and cracks will easily occur, and if it exceeds 10, the weight of the mold will increase and become uneconomical. The thus obtained cast product can be further subjected to heat treatment such as quenching and tempering, or can be used as-is as cast. According to the wear-resistant cast iron produced by die casting of the present invention,
In the as-cast state, all the matrix structure becomes pearlite, and the graphite precipitated in the matrix becomes fine eutectic graphite, so even in the as-cast state, it has high hardness, high strength, and high durability. Excellent abrasion resistance. In addition, when this cast iron is further subjected to heat treatment such as quenching and tempering, the pearlite structure becomes martensite with even higher hardness, which further improves wear resistance and improves the wear resistance compared to when ferrite is present in the matrix. It has the advantage that the heating temperature for quenching can be kept at a relatively low temperature of 900 to 1000°C, and there is no need to increase the cooling rate to reduce residual ferrite. Therefore, the wear-resistant cast iron made by die casting of the present invention can be used as a base material for various mechanical parts used under severe wear conditions, such as cylinder parts of internal combustion engines or sliding mechanical parts such as rollers of rotary air conditioners. Extremely useful. Examples As Examples 1 to 3 and Reference Examples 1 to 5, each molten metal (hot water temperature 1350°C) having the composition shown in the table was heated at 350°C to
It was cast into a cast iron mold (wall thickness: 50 mm) preheated to 400°C, and a disc-shaped cast product with a diameter of 50 mm and a thickness of 15 mm was obtained under conditions of a mold ratio of approximately 7. In addition, when pouring the molten metal into the mold, Ni80-Al20 alloy powder was coated on the mold surface to a thickness of about 0.2 mm, and acetylene soot was further coated on top.

【表】 かくして、実施例1〜3として得られた、本発
明の金型鋳造による耐摩耗鋳鉄、及び参考例1〜
5として得られた鋳鉄の、夫々の鋳放しの状態に
おける組織形態を、金属顕微鏡を用いて観察した
ところ、実施例1〜3として得られた本発明の鋳
鉄は、全て、基地がパーライト組織であり、析出
黒鉛も共晶状の微細なものであつた。一方、参考
例1及び参考例2として得られた鋳鉄は何れも表
面がチル化してセメンタイトが晶出した。また、
参考例3及び参考例4として得られた鋳鉄は何れ
も基地組織中にフエライト相が析出し、析出黒鉛
も一部粗大化した。更に参考例5として得られた
鋳鉄は、参考例3、4に比べ、フエライトおよび
粗大黒鉛の析出量が多いものとなつた。 次に、実施例1〜3、及び参考例1〜5として
得られた鋳放しの状態の各鋳造物に、更に950℃
の油焼入れ処理、次いで400℃の焼戻し処理を施
した。かかる処理を施した各鋳鉄の基地金属の組
織状態を、金属顕微鏡を用いて観察したところ、
実施例1〜3の鋳鉄は、全て基地金属がマルテン
サイト組織となつていたが、参考例1〜5の鋳鉄
の場合は、基地中に一部フエライト相が残留して
いた。 前記実施例2として作製された、鋳放しの状態
の鋳鉄(以下試料aという)、前記実施例1〜3、
及び比較例3〜5として作製された鋳鉄に、更に
上述の焼入れ・焼戻し処理を施したもの(以下、
試料b〜gという)の夫々の鋳鉄から15×12×10
mmの摩耗試験片を切り出し、これらをアムスラー
形摩耗試験機に懸け、以下の条件で摩耗試験を行
つた。 〈試験条件〉 相手材:S55C(JIS機械構造用炭素鋼、直径40
mm、厚さ10mm) 荷重:70Kg 速度:2.5〜2.7m/sec 潤滑油:タービン油90番 上記試料a〜gの摩耗量を図面に示した。 図中、曲線A、点B,C,D、及び曲線E〜G
は夫々、試料a〜gにおける試験距離と摩耗量の
関係を示したものである。
[Table] Thus, wear-resistant cast irons obtained by die casting of the present invention as Examples 1 to 3, and Reference Examples 1 to 3
When the structure morphology of each of the cast irons obtained in Examples 1 to 3 in the as-cast state was observed using a metallurgical microscope, all of the cast irons of the present invention obtained as Examples 1 to 3 had a pearlite structure as a matrix. The precipitated graphite was also fine and eutectic. On the other hand, the surfaces of the cast irons obtained as Reference Examples 1 and 2 were both chilled and cementite crystallized. Also,
In both of the cast irons obtained as Reference Examples 3 and 4, a ferrite phase was precipitated in the matrix structure, and the precipitated graphite was also partially coarsened. Furthermore, the cast iron obtained as Reference Example 5 had a larger amount of precipitated ferrite and coarse graphite than Reference Examples 3 and 4. Next, each of the as-cast castings obtained as Examples 1 to 3 and Reference Examples 1 to 5 was further heated to 950°C.
It was subjected to oil quenching treatment and then tempering treatment at 400℃. When the structure of the base metal of each cast iron subjected to such treatment was observed using a metallurgical microscope, it was found that
In all of the cast irons of Examples 1 to 3, the base metal had a martensitic structure, but in the case of the cast irons of Reference Examples 1 to 5, a portion of the ferrite phase remained in the base. As-cast cast iron produced as Example 2 (hereinafter referred to as sample a), Examples 1 to 3,
The cast irons produced as Comparative Examples 3 to 5 were further subjected to the above-mentioned quenching and tempering treatment (hereinafter referred to as
15 × 12 × 10 from each cast iron of samples b to g)
Abrasion test pieces of mm were cut out and placed in an Amsler type abrasion tester to perform a wear test under the following conditions. <Test conditions> Mating material: S55C (JIS mechanical structural carbon steel, diameter 40
(mm, thickness 10mm) Load: 70Kg Speed: 2.5-2.7m/sec Lubricating oil: Turbine oil No. 90 The wear amount of the above samples a to g is shown in the drawing. In the figure, curve A, points B, C, D, and curves E to G
shows the relationship between the test distance and the amount of wear for samples a to g, respectively.

【表】【table】

【表】 図面から明らかな様に、本発明の金型鋳造によ
る耐摩耗鋳鉄は、鋳放しの状態、或いは更に焼入
れ、焼戻し処理等を施した状態において優れた耐
摩耗性を有する。
[Table] As is clear from the drawings, the wear-resistant cast iron produced by die casting of the present invention has excellent wear resistance in the as-cast state or in the state where it has been further subjected to quenching, tempering, etc. treatment.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、「実施例」において作製された、鋳放
しの状態の鋳鉄か、又はこの鋳鉄に焼入れ、焼戻
し処理を施したものである、本発明の金型鋳造に
よる耐摩耗鋳鉄、及び参考例の耐摩耗性を比較し
て示した図であり、曲線A、点B,C,Dは本発
明実施例、曲線E,F,Gは参考例の各鋳鉄の耐
摩耗性を表わす。
The drawings show the as-cast cast iron produced in the "Example" or the wear-resistant cast iron produced by die casting of the present invention, which is a cast iron that has been quenched and tempered, and the reference example. It is a diagram showing a comparison of wear resistance, where curve A and points B, C, and D represent the wear resistance of each cast iron according to an example of the present invention, and curves E, F, and G represent a reference example.

Claims (1)

【特許請求の範囲】[Claims] 1 炭素2.2〜2.4重量%、ケイ素3.6〜4.4重量%、
マンガン0.3〜0.5重量%、リン0.1重量%以下、イ
オウ0.1重量%以下、クロム0.3〜1.0重量%及びチ
タン0.05〜0.20重量%を含み、残部鉄の組成から
成り、鋳放しの状態で基地組織がパーライトであ
つて、該基地組織中に微細な共晶状黒鉛が析出し
ていることを特徴とする金型鋳造による耐摩耗鋳
鉄。
1 Carbon 2.2-2.4% by weight, Silicon 3.6-4.4% by weight,
It contains 0.3-0.5% by weight of manganese, 0.1% by weight or less of phosphorus, 0.1% by weight or less of sulfur, 0.3-1.0% by weight of chromium, and 0.05-0.20% by weight of titanium, with the balance being composed of iron, and the matrix structure is in the as-cast state. A wear-resistant cast iron produced by die casting, which is made of pearlite and is characterized by having fine eutectic graphite precipitated in the matrix structure.
JP11524181A 1981-07-24 1981-07-24 Wear resistant cast iron cast in metallic mold Granted JPS5834160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11524181A JPS5834160A (en) 1981-07-24 1981-07-24 Wear resistant cast iron cast in metallic mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11524181A JPS5834160A (en) 1981-07-24 1981-07-24 Wear resistant cast iron cast in metallic mold

Publications (2)

Publication Number Publication Date
JPS5834160A JPS5834160A (en) 1983-02-28
JPH0210218B2 true JPH0210218B2 (en) 1990-03-07

Family

ID=14657835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11524181A Granted JPS5834160A (en) 1981-07-24 1981-07-24 Wear resistant cast iron cast in metallic mold

Country Status (1)

Country Link
JP (1) JPS5834160A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3730148B2 (en) * 2001-09-06 2005-12-21 本田技研工業株式会社 Fe-based alloy material for thixocasting and casting method thereof
JP2003076275A (en) * 2001-09-07 2003-03-14 Wayoo Kk Display device for bottle

Also Published As

Publication number Publication date
JPS5834160A (en) 1983-02-28

Similar Documents

Publication Publication Date Title
US8333923B2 (en) High strength gray cast iron
CA2469536C (en) Gray cast iron for cylinder heads
US4194906A (en) Wear resistant low alloy white cast iron
KR100716343B1 (en) Brake disk and method for manufacturing the same
JP4527304B2 (en) High strength high toughness spheroidal graphite cast iron
JP3964675B2 (en) Non-austempered spheroidal graphite cast iron
JPH0210218B2 (en)
JP3218625B2 (en) Scuff and wear-resistant sliding parts
JP4123903B2 (en) Hot roll outer layer material and hot roll composite roll
JPH044374B2 (en)
CN109306430A (en) A kind of casting technique of thermal crack resistant vermicular cast iron brake disc
JPH0140900B2 (en)
JPS60204843A (en) Manufacture of wear-resistant and lightweight rocker arm
CN1271028A (en) Antifriction cast steel containing chromium and tungsten sulfide
SU926057A1 (en) Cast iron composition
SU1098971A1 (en) Cast iron
JPH0561325B2 (en)
KR20230025184A (en) Cgi cast iron having enhanced manufacturability and manufacturing method thereof
JPH1161322A (en) Rolling roll outer layer material and rolling roll using the material
JPH0742544B2 (en) High alloy grain cast iron material for rolling rolls with excellent surface roughening resistance
JPH0135062B2 (en)
JP4162461B2 (en) Spheroidal graphite cast iron and manufacturing method
SU855050A1 (en) Steel
JPH02173240A (en) High-speed rotating member and its production
JPH0313541A (en) Cylinder liner material having excellent wear resistance