JPH0210151B2 - - Google Patents

Info

Publication number
JPH0210151B2
JPH0210151B2 JP58187132A JP18713283A JPH0210151B2 JP H0210151 B2 JPH0210151 B2 JP H0210151B2 JP 58187132 A JP58187132 A JP 58187132A JP 18713283 A JP18713283 A JP 18713283A JP H0210151 B2 JPH0210151 B2 JP H0210151B2
Authority
JP
Japan
Prior art keywords
group
prostaglandin
formula
same
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58187132A
Other languages
Japanese (ja)
Other versions
JPS6078962A (en
Inventor
Ryoji Noyori
Masaaki Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP58187132A priority Critical patent/JPS6078962A/en
Publication of JPS6078962A publication Critical patent/JPS6078962A/en
Publication of JPH0210151B2 publication Critical patent/JPH0210151B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明はプロスタグランデインD1(以下PGD1
と略記)類の新規な製法に関する。さらに詳しく
は9位、15位を水酸基の酸素原子とアセタール結
合を形成する基で保護し、11位をシリル基で保護
したPGD1類を誘導する新規な製法に関する。 PGD1類はprinary PG群の中でPGE1、PGF1α
と共に1型PG類に属し、生物活性で白小板凝集
抑制活性ではPGE、に次いで強く特異な生物活
性を有する化合物であるが、さらに詳しい生物活
性はあまり知られていない。最近PGD1類縁体に
抗血小板、抗喘息作用のある化合物が見い出され
た(エリツク、ウイリアム、コリントウ、特開昭
57−102877参照)。 従来PGD1類の製取にあたつては4つの方法、
すなわち (1) all―シス―8,11,14―エイコサトリエン
酸より生合成によつて得る方法(CJ.SihS,
Bioch emistry,11,2271(1972)参照)。 (2) PGF1αの9,11位の水酸基の選択的参加に
よつて得る方法。(G,L,BundyS,J,
Med,Chem,26,790(1983)参照)。 (3) 11位のカルボニル基が1,3―ジチオアセタ
ール基で保護された化合物から得る方法(A,
T,Hewson S,Fitnahedwn hitt.,23,561
(1982)参照)。 (4) 9,11,15位の異なるシリル基で保護された
PGF1α誘導体から誘導する方法(JT.W.Hart
S,J.Chem.Comm,156(1979)参照) が知られている。 しかるに、これらの方法において(1)の生合成に
よつて得る方法では原料である多価不飽和脂肪酸
が入手困難であるばかりでなく、生合成では常に
PGE1,PGF1αが副生し、PGD1の製取にはこれ
らと分離しなければならず工業的な意味で難点が
多い。(2)の化学合成法では9,11位の2つの遊離
の水酸基の内、11位のみを選択的に酸化する所に
反応の微妙な制御をしなければならず、しかも収
率も低く、工業的に必ずしも満足の行くものでは
ない。(3)の方法では11位のカルボニルを1,3―
ジチオアセタールで保護した中間体を利用するた
め、12位の立体構造はPG骨格合成時には制御出
来なく、生成物は非天然型の異性体との混合物と
なり、これらの分離の点に難点がある。(4)の方法
では9位、11位を15位のシリル保護基とは異なる
同じ保護基で保護し、11位のみを9位と区別して
選択的に脱保護とは異なる同じ保護基で保護し、
11位のみを9位と区別して選択的に脱保護基する
という方法であり、微妙な反応制御を必要とし、
しかも11位の保護基変換を2回も行なうという工
程上の複雑さがあり、工業的に満足すべき方法て
言えない。 本発明者らはかかる点に着目し、プロスタグラ
ンデインD1類の有利な化学合成法を見いだすべ
く鋭意研究した結果、PG骨格合成時に用いられ
る水酸基保護基を巧みに利用し、9位、15位と水
酸基の酸素原子とアセタール結合を形成する基で
保護6、11位をシリル基で保護したPGF1α類か
ら、11位のみを所定の官能基変換することにより
PGD1類を得ることに成功し、本発明に到達した
ものである。 すなわち 下記式(1) 式中R11はC1〜C10のアルキル基、又はトリ
(C1〜C7)炭化水素シリル基を現わし、R2,R3
同一もしくは異なり水素原子、置換もしくは非置
換のC1〜C10のアルキル基又は置換もしくは非置
換の5〜6員のシクロアルキル基を表わし、R31
はトリ(C1〜C7)炭化水素シリル基を表わし、
R41は水酸基の酸素原子と共にアセタール結合を
形成する基を表わす。 で表わされるプロスタグランテインF1α類の9位
の水酸基を水酸基の酸素原子と共にアセタール結
合を 形成する基で保護し、下記式(2) 式中R11,R2,R3,R41は上記に同じで、R51
R41と同一又は異なり水酸基の酸素原子と共にア
セリール結合を形成する基を表わす。 で表わされるプロスタグランテインF1α類を得、
これを選択的脱保護、次いで酸化した後必要に応
じて脱保護及び/又は加水分解反応に付すことを
特徴とする下記式(3) 式中R2,R3は上記定義に同じ、R1は水素原子、
C1〜C10のアルキル基又はトリ(C1〜C7)炭化水
素シリル基を表わし、R45は同一もしくは異な
り水素原子又は水酸基の酸素原子と共にアセター
サ結合を形成する基を表わす。 で表わされるプロスタグランデインD1類の製法
である。 本発明方法において用いられる上記式(1)で表わ
されるプロスタグランデインD1α類はまえ提案さ
れている方法(特願昭57−163082参照)によりワ
ーヒドロキシPGEまたはF類(特開昭58−99462
号参照)から容易にかつ高収率で調製することが
出来る。 上記式(1)において、R11は、C1〜C10のアルキ
ル基又はトリ(C1〜C7)炭化水素−シリル基を
表わす。C1〜C10のアルキル基としては、例えば
メチル、エチル、n―プメピル、iso―プロピル、
n―ブチル、sec―ブチル、tert―ブチル、n―
ペンチル、n―ヘキシル、n―ヘプチル、n―オ
タチル、n―ノニル、n―デシル等の直領状又は
分岐状のものを挙げることができる。なかでもメ
チル基、エチル基が好ましい。トリ(C1〜C7
炭化水素−シリル基としては、例えばトリメチル
シリル、トリエチルシリル、t―ブチルジメチル
シリル基の如くトリ(C1〜C4)アルキルシリル
基;t―ブチルジフエニルシリル基の如くジフエ
ニル(C1〜C4)アルキルシリル基又はトリベン
ジルシリル基等を挙げることができる。 R2,R3は同一もしくは異なり、水素原子また
は置換もしくは非置換のC1〜C10のアルキル基と
しては例えば、メチル、エチルn―プロピル、
Iso―プロピル、n―ブチル、m―ペンチル、n
―ヘキシル、2―メチル―1―ヘキシル、2―メ
チル―2―ヘキシル、n―ヘプチル、n―オクチ
ル等の直領状又は分岐状のものが挙げられる。非
置換の5〜6員のシクロアルキル基としては、シ
クロペンチル基、シクロヘキシル基などが挙げら
れる。かかる非置換のC1〜C10のアルキル基、非
置換の5〜6員のシクロアルキル基の置換基とし
ては例えば、メチル、エチル、フエノキシ、トリ
フルオロメチル、トリフルオロメチルフエノキシ
基などが好ましく挙げられる。特にR2としては、
メチル、フエノキシ基もしくはトリフルオロメチ
ルフエノキシ基で置換されていてもよいメチル、
n―ペンチル、n―ヘキシル、2―メチル―1―
ヘキシル、シクロペンチル基又はシクロヘキシル
基が好ましく、かでもn―ペンチル、n―ヘキシ
ル、2―メチル―1―ヘキシル、シクロペンチ
ル、シクロヘキシルが好ましい。R3ととしては
水素原子又はメチル基が好ましく、特に水素原子
が好ましい。 R31、トリ(C1〜C7)炭化水素−シリル基を表
わし、なかでもt―ブチルジメチルシリル基、ト
リエチルシリル基が好ましい。R41は水酸基の酸
素原子と共にアセタール結合を形成する基を泡わ
し、例えばメトキシメチル、1―エトキシエチ
ル、2―メトキシ―2―プロピル、2―エトキシ
―2プロピル、(2―メトキシエトキシエトキシ)
メチル、ベンジルオキシメチル、2―テトラヒド
ロピラニルネ2―テトラヒドロフラニル、6,6
―ジメチル―3―オキサ―2―オキソ―ビシクロ
(3,1,0)ヘキス―4―イル基などが挙げら
れる。R41はなかでも、ヒドロビラニル基、1―
エトキシエチル基、2―メトキシ―2―プロピル
基が好ましい。 本発明方法における前記式(1)〜(3)で表わされる
PG類はその、8位、9位、11位、12位、15位、
に不斉炭素原子を有するため、各種の立体異性体
が存在するが、本発明方法におけるPG類はこれ
らの鏡像体、光学異性体及びそれらのそれらの混
合物を包含する。 本発明方法は上記式(1)のプロスタクランデイン
D1α類の9位水酸基を水酸基の酸素原子と共にア
セタール結合を形成する基で保護することがら開
始される。保護剤としては2―3―ジヒドロピラ
ン、エチルビニルI―ラル、アセトンジメチルア
セタル、等が用いられる。これら保護剤は原料の
プロスタグランデインD1α類に対して1〜20当
量、好ましくは1〜5当量用られる。反応助剤と
してピリジンパラトルエンスルホン酸塩
(PPTS)、カンフアスルホン酸等を原料プロスタ
グランデインF1α類に対して0.1〜100重量%好ま
しくは1〜30重量%用いるのが良い。反応は無水
のエーテル類、例えばエチルエーテル、テトラヒ
ドメフラン、ジオチサン等はまたは無水ハロゲン
化炭化水素、たとゆばメチレシクロリドクロロホ
ルム、ジクロロエタン等中で行なうことも出来
る。反応温度は−10℃〜60℃好ましくは0℃〜30
℃で進行、反応の終点は薄層クロマトグラフイー
等で原料の消失を観測して確認する。かくして反
応液は通常の方法により後処理し、生成物として
上記式(2)で表わされる11位ガシリル基で保護さ
れ、9位、15位が水酸基の酸素原子と共にアセタ
ール結合を形成する基で保護されたPGF1α類が
得られる。次にこの化合物の11位のシリル保護基
を選択的に脱保護する。これはテトラ―n―プチ
ルアンモニウムフルオリド、フツ化水素−ピリジ
ン、特に好ましくは、テトラ―n―ブチルアンモ
ニウムフルオリドを用いることにより通常の方法
により達成される。かくして下記式(4) (式中R11,R2,R3,R41,R51は上記に同じ。)
で表わされる9位,15位が保護されたPGF1α類
を容易にることが出来る。この生成物はそれ自体
公知の方法(E,E,Nihiqawa S P
tostaglandio9,109(1975)参照)により、例え
ばJones試集、クロルクロム酸ピリジウム等のク
ロム酸系酸化剤により、11位の水酸基を酸化し、
必要に応じてR4151の保護基を除去しても良い。
除去にあたつては例えば酢酸−水−テトロヒドロ
フラン混合物(3:1:1〜3:2:2)中で生
成物を室温で処理することによつて達成される
(E.J.Coreyら,J,Amer,Chom.Soc.,24,
6190(1972)を参照)。 また必要に応じて、1位のエステル基(R11
を加水分解してもよい。かかる加水分解は、例え
ばF型PGはアルカリ性水溶液、E型PGはリパー
ゼ、エステラーゼ等の加水分解酵素を用いて行な
うことができる。 かくして目的とする上記式(3)で表わされる
PGD1類を容易に、高収率で得ることが出来る。 本発明方法の特徴は次にある。すなわち出発原
料(1)おいて生じた9位、11位、15位の水酸基の保
護状態の相違をそのまま利用して、従来法にある
ような保護基変換をすることなく上記式(4)で示さ
れる中間体を誘導し、これをPGD1類に導びくと
いう方法である。この方法は従来法に比較しては
るかに有利に、しかも立体構造の異性体分離をす
ることなくPGD1類を提供することが出来る方法
といえる。以下本発明方法を実施例により更に詳
細に説明する。 参考例 3 (103mg)を10mlのナスフラスコにとり1mlの
dry CH2Cl2を加えた。水浴で冷却し、33mgの2,
3ジヒトロビランを加え、つづいて14mgのPPTS
を加え、0℃で10分間、30℃で5時間攪拌した。
反応液を塩化メチレン5mlで希釈したのち、飽和
食塩を抽出した。(2×10ml)有機層を合わせ、
無水硫酸ナトリウムで乾燥した。減圧濃縮後、シ
リカゲルカラムクロマトグラフイーに供し、
(Merck社製シリカゲル12g;酢エチ:ヘキサン
=1:10)、生成物としてを111mg(収率94%)
得た。 IR(CHCl3):1730cm-1 HNMR(CDCl3,90MHz,ppm)δ: 0.007(s,6,SiCH3×2),0.7−1.0(12,SiC
(CH33andCH3),1.1―2.5(m,36,CH2×
17),4.5−4.8(m,2,OCHO×2),5.40(m,
2,viny1) TLC:Rf:0.54(EtOAc−hexane =1:4) 旋光度:[α]=15.9゜(C0.365, MeOH) 参考例 4 (26mg)を5mlの試験管にとり、0.1mlの乾
燥CH2Cl2を加えた。水浴で冷却し、4.7mgの2,
3―ジヒドロビランを加え、つづいてPPTS0.2
mgを加え、0℃で10分間室温(20℃)で1時間、
30℃で1時間攪拌後、2,3―ジヒドロビラン
4.7mgPPTS0.2mgを加え、30℃で2時間攪拌した。
さらに2,3―ジヒドロビラン4.7mg、PPTS0.2
mgを加え、1時間攪拌した。反応液を塩化メチレ
ン5mlで希釈したのち、飽和食塩水10mlを加え、
よく振とうした。有機層、水層を分離後、ナトリ
ウムで乾燥した。減圧濃縮後、シリカゲルカラム
クロマトグラフイーに供し(Merck社シリカゲ
ル1.7g;酢エチ:ヘキサン=1:10)、生成物
を29mg(収率97%)得た。スペクトルデータは参
考例3に同じであつた。 参考例 5 10mlのナスラフラスコに2を103.5mgとり
THF1mlで溶解したのちに、n―Bu4NF(IM/
THF)1.58mlを加え、室温(23℃)で酢酸エチ
ル5mlを加えてよく振りまぜ、有機層と水層を分
けた。水層を酢酸エチルで抽出した(5ml×2)、
有機層を合わせ、無水硫酸ナトリウムで乾燥し
た。減圧濃縮後、シリカゲルカラムクロマトグラ
フイーに供し(Merckシリカゲル10g;酢エチ
ル:n―ヘキサン=1:4)、生成物として
71.7mg(収率84%)得た。 IR(CHCl3):3620−3280,1730cm-1 HNMR(CDCl3,90MHz,ppm)δ: 0.88(t,3,4.5Hz,CH3),1.1−2.5(m,37,
CH2×17,CH×2,andOH),3.3−4.5(m,
10,OCH3,CHO×3,and CH2O×2),4.5
−4.8(m,2,OCHO×2),5.45(m,2,
viny1) 薄層クロマトグラフイー :Rf:0.54(EtOAc−hexane =1:4) 旋光度:[α][α]=+0.65゜ (C0.588,MeOH) 参考例 6 5mlの試験管に6を29.2mgとりTHF0.5mlで溶
解したのち、n―Bu4NF(IM/THF)0.45mlを
加え、室温(21℃、PM4:40)で4時間攪拌し
た。THF2mlで希釈ののち飽和食塩水2mlを加
え、よく振りまぜた。酢酸エチル5mlを加えてよ
く振りまぜ、有機層と水層を分けた。水層を酢酸
エチルで抽出した(5ml×2)。濃縮後シリカゲ
ルカラムクロマトグラフイーに供し(メルクシリ
カゲル1.5g)、酢酸エチル:n―ヘキサン=1:
2)、生成物7を20mg(収率83%)得た。 このものの性質は参考例5のと同じであつ
た。 実施例 1 10mlのナスフラスコに5を65.1mgとり、アセト
ン3mlで用意した。アルゴン気流下、−30℃でジ
ヨーンズ反応剤55.4mlをマイクロシリンジで滴下
した。−30℃で50分攪拌後、飽和炭酸水素ナトリ
ウム水溶液3mlを加え、激しく攪拌した。水層が
緑色に変化したのち、酢酸エチル10ml、飽和炭酸
水素ナトリウム水溶液10mlを加え、激しく振とう
した。有機層を合わせ、無水硫酸ナトリウムで乾
燥した。減圧濃縮後、シリカゲルカラムクロマト
グラフイーに供し(Merckシリカゲル7g;酢
エチ:ヘキサン=1:2)、生成物として
64.7mg(収率99%)得た。 IR(CHCl3):1735cm-1; HNMR(CDCl3,90MHz,ppm)δ: 0.88(t,3,J=6.0Hz,CH3),1.1−2.9(m,
36,CH2×17and CH×2),3.3−4.8(m,11,
OCH3,CHO×2,CH2O×2and OCHO×
2),5.3−5.6(m,2,viny1) TLC:Rf:0.33(Et OAc−hexane=1:2) 旋光度:[α]=0.63゜(C0.7575, MeOH) 実施例 2 5mlの試験管に7を11.6mlとり、アセトン0.6
mlで溶解した。アルゴン気流下、−30℃でジヨー
ンズ反応剤をシリンジで滴下した。−30℃で40分
攪拌後、酢酸エチル1mlで希釈し、飽和炭酸水素
ナトリウム水溶液1mlを加え、激しく攪拌した。
水層が緑色に変化したのち、さらに酢酸エチル10
ml飽和炭酸水素ナトリウム10mlを加え激しく攪拌
した。有機層、水層を分離後、水層を酢酸エチル
で抽出した(2×10ml)有機層を合わせ、無水硫
酸ナトリウムで乾燥した。減圧濃縮後、シリカゲ
ルカラムクロマトグラフイーに供し(Merck0.9
g;酢エチ:ヘキサン=1:2)、生成物として
9を11mg(収率95%)得た。このものの性質は実
施例1に同じであつた。 実施例 3 (55.2ml)を7mlのCH3COOH−H2O−
THF(3:1:1)に溶かし、45℃で10.7時間攪
拌した。ロータリーエバポレーターで濃縮し、ト
ルエンで共沸した(3回)。濃縮液を直接シリカ
ゲルカラムクロマトグラフイー(Merckシリカ
ゲル5g;酢エチ:ヘキサン=1:1)に供し、
生成物としてPGD1メチルエステル10を28.7mg
(収率76%)得た。 IR(CHCl3):3720−3240,1730cm-1 HNMR(CDCl3,90MHz,ppm)δ: 0.89(t,3,J=6.4Hz,CH3),1.1−2.1(m,
21,CH2×9,CH,and OH×2),2.32(t,
2,J=7.0Hz,CH2COOC),2.44(d,2,J
=2.6Hz,CH2C=O),2.79(dd,1,J=11.6
Hz,7.0Hz,CHC=O),3.67(s,3,OCH3),
4.08(br,q,1,J=6.2Hz,CHO),4.51
(m,1,CHO),5.37(dd,1,J=15.4,7.0
Hz,Viny1),5.63(dd,1,J=15.4,6.2
Hz); CNMR(CDCl3,90MHz,ppm)δ 14.1,22.7,24.8,25.2,26.9,28.0,29.0,
29.5,31.8,34.0,36.9,47.9,48.2,51.5,
54.9,68.1,72.8,126.6,138.8,174.4,217.3 TLC:Rf:0.64(Et OAc− cyclohexane−THF=6:3:1) 旋光度:[α]=+23.8゜(1.355, MeOH) 実施例 4 3.3mgを0.5mlのAcOH−H2O−THF(3:
1:1)に溶かし、45℃で7時間攪拌した。真空
ポンプで溶媒し、トルエンで共沸(3回)で溶媒
を溜去し、シリカゲルカラムクロマト(Merck
シリカゲル0.6g;酢エチ:ヘキサン=3:2)
で精製し、生成物として11を2.0mg(収率88%)
得た。 IR(CHCl3):3720−3240,740,1730cm-1 HNMR(CDCl3,90MHz,ppm)δ: 0.89(t,3,J=6.4Hz,CH3),1.1−2.1(m,
21,CH2×9,CH,and OH×2),2.32(t,
2,J=7.0Hz,CH2COOC),2.44(d,2,J
=2.6Hz,CH2C=O),2.79(dd,1,J=11.6
Hz,7.0Hz,CHC=O),3.67(s,3,OCH3),
4.08(br,q.1,J=6.2Hz,CHO),4.51(m,
1,CHO),5.37(dd,1,J=15.4,7.0Hz,
Viny1),5.63(dd,1,J=15.4,6.2Hz); CNMR(CDCl3,90MHz,ppm)δ 14.1,22.7,24.8,25.2,26.9,28.0,29.0,
29.5,31.8,34.0,36.9,47.9,48.2,51.5,
54.9,68.1,72.8,126.6,138.8,174.4,217.3 参考例 1 100mlのナスラフラスコにアルゴン気流下、−78
℃で2,6―t―ボチル―4―メチルフエノール
とジネノ−ブチルアルミニウムの当量トルエン溶
液0.146を20.4mlを入れ攪拌しておく、そこへdry
トルエン6mlに溶かした12をステンレスチユーブ
で加えた。3時間かけて−20℃に昇温したのち、
−20℃で25時間攪拌した。反応液を酢酸エチル10
mlで希釈したのち、飽和酒石酸水素ナトリウム水
溶液40mlを加え、よく振とうした。有機層、水層
を分離したのち、水層を酢酸エチルで抽出した。
(20ml×2)。有機層を合わせ、無水硫酸ナトリウ
ム上で乾燥した。減圧濃縮後、シリカゲルカラム
クロマトグラフイーに供し(Merckシリカゲル
15g;酢エチ:ヘキサン:ベンゼン=1:7:1
→1:O:O)、生成物としてを121mg(収率86
%)得た。 IR(CHCl3):3600−3320,1725cm-1 HNMR(CDCl3,90MHz,ppm)δ: 0.04(s,6,SiCH3×2),0.7−1.1(12,SiC
(CH33and CH3),1.1−2.7(m,31,CH2×
14,CH×2,and OH),3.3−4.3(m,8,
OCH3,CHO×3and CH2O),4.67(m,1,
OCHO),5.2−5.6(m,2,viny1) 参考例 2 10mlの試験管にアルゴン気流下、−78℃で参考
例1と同じ還元剤17mlを入れ攪拌しおく。そこへ
dry Toluene2mlに溶かした13をステンレスチユ
ーブで加えた。3時間かけて−20℃に昇温したの
ち、0.83mlの還元剤を追加し、−20℃でさらに3
時間攪拌し、再び0.83ml加え、2時間30分攪拌し
た。反応液を酢酸エチル5mlで希釈したのち、飽
和酒石酸水酸ナトリウム溶液10mlを加え、よく攪
拌した。有機層、水層分離後、水層を酢酸エチル
で2回抽出した(2×10ml)有機層を合わせ、無
水硫酸ナトリウムで乾燥した。減圧濃縮後、シリ
カゲルカラムクロマトグラフイーに供し、
(Merckシリカゲル3g;酢エチ:ヘキサン:ベ
ンゼン=1:7:1)、生成物を26mg(収率76
%)得た。 このものの性質は参考例1のそれと同じであつ
た。
[Detailed Description of the Invention] The present invention relates to prostaglandin D 1 (hereinafter referred to as PGD 1
(abbreviated as )). More specifically, the present invention relates to a novel production method for inducing PGD type 1 in which the 9th and 15th positions are protected with a group that forms an acetal bond with the oxygen atom of a hydroxyl group, and the 11th position is protected with a silyl group. PGD 1 is a primary PG group that includes PGE 1 and PGF 1 α.
It belongs to the type 1 PG group together with PGE, and is a compound with a strong and unique biological activity, second only to PGE in terms of white platelet aggregation inhibiting activity, but its more detailed biological activity is not well known. Recently, a compound with antiplatelet and antiasthmatic effects was discovered in PGD 1 analogues (Erick, William, Corinthau, JP-A-Sho).
57-102877). Conventionally, there are four methods for producing PGD type 1 .
Namely, (1) a method of obtaining biosynthesis from all-cis-8,11,14-eicosatrienoic acid (CJ.SihS,
Biochemistry, 11, 2271 (1972)). (2) A method of obtaining PGF 1 α by selective participation of hydroxyl groups at positions 9 and 11. (G, L, BundyS, J,
(See Med, Chem, 26, 790 (1983)). (3) Method of obtaining from a compound in which the carbonyl group at position 11 is protected with a 1,3-dithioacetal group (A,
T, Hewson S, Fitnahedwn hitt., 23, 561
(1982)). (4) Protected with different silyl groups at positions 9, 11, and 15
Method of deriving from PGF 1 α derivative (JT.W.Hart
S., J.Chem.Comm, 156 (1979)) is known. However, in these methods (1), not only is it difficult to obtain the raw material polyunsaturated fatty acids, but biosynthesis always requires
PGE 1 and PGF 1 α are produced as by-products, and these must be separated in order to produce PGD 1 , which is difficult from an industrial standpoint. In the chemical synthesis method (2), the reaction must be delicately controlled to selectively oxidize only the 11th position of the two free hydroxyl groups at the 9th and 11th positions, and the yield is low. This is not necessarily industrially satisfactory. In method (3), the carbonyl at position 11 is 1,3-
Since a dithioacetal-protected intermediate is used, the steric structure at position 12 cannot be controlled during the synthesis of the PG skeleton, and the product is a mixture of non-natural isomers, making it difficult to separate them. In method (4), positions 9 and 11 are protected with the same protecting group different from the silyl protecting group at position 15, and only position 11 is selectively protected with the same protecting group different from the 9-position. death,
This method selectively deprotects only position 11, distinguishing it from position 9, and requires delicate reaction control.
Furthermore, the process is complicated in that the protecting group at position 11 is converted twice, and this method cannot be said to be industrially satisfactory. The present inventors focused on this point, and as a result of intensive research to find an advantageous chemical synthesis method for prostaglandin D 1 , they cleverly utilized the hydroxyl protecting group used in the synthesis of the PG skeleton. Protected with a group that forms an acetal bond with the oxygen atom of the hydroxyl group From the PGF 1 α series, in which the 6th and 11th positions are protected with a silyl group, only the 11th position is converted to a specified functional group.
The present invention was achieved by successfully obtaining PGD type 1 . In other words, the following formula (1) In the formula, R 11 represents a C 1 to C 10 alkyl group or a tri(C 1 to C 7 ) hydrocarbon silyl group, and R 2 and R 3 are the same or different and are hydrogen atoms, substituted or unsubstituted C 1 ~ C10 alkyl group or substituted or unsubstituted 5- to 6-membered cycloalkyl group, R31
represents a tri(C 1 to C 7 ) hydrocarbon silyl group,
R 41 represents a group that forms an acetal bond with the oxygen atom of a hydroxyl group. The hydroxyl group at the 9-position of the prostaglantein F 1 α group represented by is protected with a group that forms an acetal bond with the oxygen atom of the hydroxyl group, and the following formula (2) is obtained. In the formula, R 11 , R 2 , R 3 , R 41 are the same as above, and R 51 is
Represents a group that forms an acelyl bond with the oxygen atom of a hydroxyl group, which may be the same as or different from R 41 . Prostaglantein F 1 α expressed as
The following formula (3) is characterized in that it is selectively deprotected, then oxidized, and then subjected to deprotection and/or hydrolysis reaction as necessary. In the formula, R 2 and R 3 are the same as defined above, R 1 is a hydrogen atom,
It represents a C 1 -C 10 alkyl group or a tri(C 1 -C 7 )hydrocarbon silyl group, and R 4 and 5 are the same or different and represent a group that forms an acetase bond with a hydrogen atom or an oxygen atom of a hydroxyl group. This is a method for producing prostaglandin D type 1 , which is expressed by The prostaglandin D 1 α group represented by the above formula (1) used in the method of the present invention can be prepared by the previously proposed method (see Japanese Patent Application No. 57-163082). 99462
It can be prepared easily and in high yield from (see No.). In the above formula (1), R 11 represents a C 1 to C 10 alkyl group or a tri(C 1 to C 7 ) hydrocarbon-silyl group. Examples of C 1 to C 10 alkyl groups include methyl, ethyl, n-pumepyl, iso-propyl,
n-butyl, sec-butyl, tert-butyl, n-
Straight or branched ones such as pentyl, n-hexyl, n-heptyl, n-otatyl, n-nonyl, and n-decyl can be mentioned. Among these, methyl group and ethyl group are preferred. Bird ( C1 - C7 )
Examples of hydrocarbon-silyl groups include tri(C 1 -C 4 )alkylsilyl groups such as trimethylsilyl, triethylsilyl, and t-butyldimethylsilyl; diphenyl (C 1 -C 4 ) such as t-butyldiphenylsilyl; ) an alkylsilyl group, a tribenzylsilyl group, etc. R 2 and R 3 are the same or different, and examples of the hydrogen atom or substituted or unsubstituted C 1 to C 10 alkyl group include methyl, ethyl n-propyl,
Iso-propyl, n-butyl, m-pentyl, n
-hexyl, 2-methyl-1-hexyl, 2-methyl-2-hexyl, n-heptyl, n-octyl, and other straight or branched ones. Examples of the unsubstituted 5- to 6-membered cycloalkyl group include a cyclopentyl group and a cyclohexyl group. Examples of substituents for such unsubstituted C 1 -C 10 alkyl groups and unsubstituted 5- to 6-membered cycloalkyl groups include methyl, ethyl, phenoxy, trifluoromethyl, and trifluoromethylphenoxy groups. Preferably. Especially as R 2 ,
Methyl, methyl optionally substituted with a phenoxy group or a trifluoromethylphenoxy group,
n-pentyl, n-hexyl, 2-methyl-1-
Hexyl, cyclopentyl or cyclohexyl groups are preferred, and n-pentyl, n-hexyl, 2-methyl-1-hexyl, cyclopentyl and cyclohexyl are especially preferred. R 3 is preferably a hydrogen atom or a methyl group, particularly preferably a hydrogen atom. R 31 represents a tri(C 1 -C 7 ) hydrocarbon-silyl group, of which t-butyldimethylsilyl group and triethylsilyl group are preferred. R 41 is a group that forms an acetal bond with the oxygen atom of a hydroxyl group, such as methoxymethyl, 1-ethoxyethyl, 2-methoxy-2-propyl, 2-ethoxy-2propyl, (2-methoxyethoxyethoxy)
Methyl, benzyloxymethyl, 2-tetrahydropyranylne 2-tetrahydrofuranyl, 6,6
-dimethyl-3-oxa-2-oxo-bicyclo(3,1,0)hex-4-yl group and the like. R 41 is, among others, a hydrobilanyl group, 1-
Ethoxyethyl group and 2-methoxy-2-propyl group are preferred. Represented by the above formulas (1) to (3) in the method of the present invention
PG class is 8th, 9th, 11th, 12th, 15th,
Since it has an asymmetric carbon atom, various stereoisomers exist, and the PGs in the method of the present invention include these mirror images, optical isomers, and mixtures thereof. The method of the present invention uses prostaclandin of the above formula (1).
The process starts by protecting the hydroxyl group at the 9-position of the D 1 α group with a group that forms an acetal bond with the oxygen atom of the hydroxyl group. As the protective agent, 2-3-dihydropyran, ethyl vinyl I-ral, acetone dimethyl acetal, etc. are used. These protective agents are used in an amount of 1 to 20 equivalents, preferably 1 to 5 equivalents, relative to prostaglandin D 1 α as the raw material. As a reaction aid, pyridine para-toluene sulfonate (PPTS), camphorsulfonic acid, etc. are preferably used in an amount of 0.1 to 100% by weight, preferably 1 to 30% by weight, based on the raw material prostaglandin F 1 α. The reaction can also be carried out in anhydrous ethers, such as ethyl ether, tetrahydromefuran, diotisane, etc., or in anhydrous halogenated hydrocarbons, such as methylene cyclolide chloroform, dichloroethane, etc. The reaction temperature is -10℃~60℃, preferably 0℃~30℃
The reaction proceeds at ℃, and the end point of the reaction is confirmed by observing the disappearance of the raw materials using thin layer chromatography, etc. The reaction solution is thus post-treated by a conventional method, and the product is protected with the 11th-position gacylyl group represented by the above formula (2), and the 9th- and 15th-positions are protected with groups that form an acetal bond with the oxygen atom of the hydroxyl group. PGF 1 α species are obtained. Next, the silyl protecting group at position 11 of this compound is selectively deprotected. This is achieved in a customary manner by using tetra-n-butylammonium fluoride, hydrogen fluoride-pyridine, particularly preferably tetra-n-butylammonium fluoride. Thus, the following formula (4) (In the formula, R 11 , R 2 , R 3 , R 41 , and R 51 are the same as above.)
PGF 1 α species with protected positions 9 and 15 can be easily prepared. This product can be prepared by methods known per se (E, E, Nihiqawa S P
tostaglandio 9, 109 (1975)), oxidize the hydroxyl group at position 11 with a chromic acid-based oxidizing agent such as Jones sample collection, pyridium chlorochromate,
The protecting groups for R 41 and 51 may be removed if necessary.
Removal is accomplished, for example, by treating the product in an acetic acid-water-tetrohydrofuran mixture (3:1:1 to 3:2:2) at room temperature (EJCorey et al., J. Amer, Chom.Soc., 24,
6190 (1972)). In addition, if necessary, the 1-position ester group (R 11 )
may be hydrolyzed. Such hydrolysis can be carried out using, for example, an alkaline aqueous solution for F-type PG, and a hydrolase such as lipase or esterase for E-type PG. Thus, the desired expression (3) is expressed by the above equation (3).
PGD type 1 can be easily obtained in high yield. The characteristics of the method of the present invention are as follows. That is, by directly utilizing the difference in the protection state of the hydroxyl groups at the 9-, 11-, and 15-positions that occurred in the starting material (1), the above formula (4) can be obtained without converting the protecting groups as in conventional methods. This method involves deriving the indicated intermediate and converting it into PGD 1 class. This method is much more advantageous than conventional methods and can provide PGD 1 without separating the steric isomers. The method of the present invention will be explained in more detail below with reference to Examples. Reference example 3 1 (103 mg) into a 10 ml eggplant flask and add 1 ml of
Dry CH2Cl2 was added. Cool in a water bath, 33 mg 2,
Add 3 dihydrobirane followed by 14 mg PPTS
was added and stirred at 0°C for 10 minutes and at 30°C for 5 hours.
After diluting the reaction solution with 5 ml of methylene chloride, saturated sodium chloride was extracted. (2 x 10ml) Combine the organic layers,
It was dried with anhydrous sodium sulfate. After concentration under reduced pressure, it was subjected to silica gel column chromatography.
(12 g of silica gel manufactured by Merck; ethyl acetate: hexane = 1:10), 111 mg of 2 as a product (yield 94%)
Obtained. IR (CHCl 3 ): 1730 cm -1 HNMR (CDCl 3 , 90 MHz, ppm) δ: 0.007 (s, 6, SiCH 3 ×2), 0.7−1.0 (12, SiC
(CH 3 ) 3 andCH 3 ), 1.1―2.5 (m, 36, CH 2 ×
17), 4.5-4.8 (m, 2, OCHO x 2), 5.40 (m,
2, vinyl1) TLC: Rf: 0.54 (EtOAc−hexane = 1:4) Optical rotation: [α] = 15.9° (C0.365, MeOH) Reference example 4 3 (26 mg) was placed in a 5 ml test tube, and 0.1 ml of dry CH 2 Cl 2 was added. Cool in a water bath, 4.7 mg of 2,
Add 3-dihydrobilane, followed by PPTS0.2
mg at room temperature (20°C) for 10 minutes at 0°C.
After stirring at 30℃ for 1 hour, 2,3-dihydrobilane
0.2 mg of 4.7 mg PPTS was added and stirred at 30°C for 2 hours.
In addition, 2,3-dihydrobirane 4.7 mg, PPTS 0.2
mg was added and stirred for 1 hour. After diluting the reaction solution with 5 ml of methylene chloride, 10 ml of saturated saline was added.
Shake well. After separating the organic layer and the aqueous layer, they were dried over sodium. After concentration under reduced pressure, it was subjected to silica gel column chromatography (1.7 g of Merck silica gel; ethyl acetate:hexane = 1:10) to obtain product 4.
29 mg (yield 97%) was obtained. The spectral data were the same as Reference Example 3. Reference example 5 Add 103.5 mg of 2 to a 10 ml eggplant flask.
After dissolving in 1 ml of THF, n-Bu 4 NF (IM/
1.58 ml of THF) was added thereto, and 5 ml of ethyl acetate was added at room temperature (23°C) and mixed well to separate the organic and aqueous layers. The aqueous layer was extracted with ethyl acetate (5 ml x 2),
The organic layers were combined and dried over anhydrous sodium sulfate. After concentration under reduced pressure, it was subjected to silica gel column chromatography (Merck silica gel 10 g; ethyl acetate: n-hexane = 1:4) to obtain 5 as a product.
71.7 mg (yield 84%) was obtained. IR (CHCl 3 ): 3620-3280, 1730 cm -1 HNMR (CDCl 3 , 90 MHz, ppm) δ: 0.88 (t, 3, 4.5 Hz, CH 3 ), 1.1-2.5 (m, 37,
CH 2 × 17, CH × 2, andOH), 3.3−4.5 (m,
10, OCH 3 , CHO×3, and CH 2 O×2), 4.5
-4.8 (m, 2, OCHO x 2), 5.45 (m, 2,
vinyl1) Thin layer chromatography: Rf: 0.54 (EtOAc-hexane = 1:4) Optical rotation: [α] [α] = +0.65° (C0.588, MeOH) Reference example 6 After taking 29.2 mg of 6 in a 5 ml test tube and dissolving it in 0.5 ml of THF, 0.45 ml of n-Bu 4 NF (IM/THF) was added, and the mixture was stirred at room temperature (21° C., PM4:40) for 4 hours. After diluting with 2 ml of THF, 2 ml of saturated saline was added and mixed well. Add 5 ml of ethyl acetate, shake well, and separate the organic and aqueous layers. The aqueous layer was extracted with ethyl acetate (5 ml x 2). After concentration, it was subjected to silica gel column chromatography (Merck silica gel 1.5 g), and ethyl acetate: n-hexane = 1:
2), 20 mg of product 7 (yield 83%) was obtained. The properties of this product were the same as those of Reference Example 5 . Example 1 65.1 mg of 5 was placed in a 10 ml eggplant flask and prepared with 3 ml of acetone. Under a stream of argon, 55.4 ml of John's reagent was added dropwise at −30° C. using a microsyringe. After stirring at -30°C for 50 minutes, 3 ml of a saturated aqueous sodium bicarbonate solution was added and stirred vigorously. After the aqueous layer turned green, 10 ml of ethyl acetate and 10 ml of a saturated aqueous sodium bicarbonate solution were added, followed by vigorous shaking. The organic layers were combined and dried over anhydrous sodium sulfate. After concentration under reduced pressure, it was subjected to silica gel column chromatography (Merck silica gel 7g; ethyl acetate:hexane = 1:2) to obtain 8 as a product.
64.7 mg (yield 99%) was obtained. IR (CHCl 3 ): 1735 cm -1 ; HNMR (CDCl 3 , 90 MHz, ppm) δ: 0.88 (t, 3, J = 6.0 Hz, CH 3 ), 1.1-2.9 (m,
36, CH 2 × 17and CH × 2), 3.3−4.8 (m, 11,
OCH 3 , CHO×2, CH 2 O×2and OCHO×
2), 5.3-5.6 (m, 2, vinyl1) TLC: Rf: 0.33 (Et OAc-hexane = 1:2) Optical rotation: [α] = 0.63° (C0.7575, MeOH) Example 2 Pour 11.6ml of 7 into a 5ml test tube and add 0.6ml of acetone.
Dissolved in ml. John's reagent was added dropwise with a syringe at −30° C. under an argon stream. After stirring at -30°C for 40 minutes, the mixture was diluted with 1 ml of ethyl acetate, 1 ml of saturated aqueous sodium bicarbonate solution was added, and the mixture was stirred vigorously.
After the aqueous layer turns green, add 10 ethyl acetate
10 ml of saturated sodium bicarbonate was added and stirred vigorously. After separating the organic layer and the aqueous layer, the aqueous layer was extracted with ethyl acetate (2 x 10 ml). The organic layers were combined and dried over anhydrous sodium sulfate. After concentration under reduced pressure, it was subjected to silica gel column chromatography (Merck0.9
g; ethyl acetate:hexane=1:2), 11 mg (yield 95%) of 9 was obtained as a product. The properties of this product were the same as in Example 1. Example 3 8 (55.2 ml) to 7 ml of CH 3 COOH−H 2 O−
It was dissolved in THF (3:1:1) and stirred at 45°C for 10.7 hours. It was concentrated on a rotary evaporator and azeotroped with toluene (3 times). The concentrated solution was directly subjected to silica gel column chromatography (Merck silica gel 5 g; ethyl acetate: hexane = 1:1),
28.7 mg of PGD 1 methyl ester 10 as product
(yield 76%). IR (CHCl 3 ): 3720-3240, 1730 cm -1 HNMR (CDCl 3 , 90 MHz, ppm) δ: 0.89 (t, 3, J = 6.4 Hz, CH 3 ), 1.1-2.1 (m,
21, CH 2 × 9, CH, and OH × 2), 2.32 (t,
2, J = 7.0Hz, CH 2 COOC), 2.44 (d, 2, J
= 2.6Hz, CH 2 C = O), 2.79 (dd, 1, J = 11.6
Hz, 7.0Hz, CHC = O), 3.67 (s, 3, OCH 3 ),
4.08 (br, q, 1, J=6.2Hz, CHO), 4.51
(m, 1, CHO), 5.37 (dd, 1, J = 15.4, 7.0
Hz, Viny1), 5.63 (dd, 1, J=15.4, 6.2
Hz); CNMR (CDCl 3 , 90MHz, ppm) δ 14.1, 22.7, 24.8, 25.2, 26.9, 28.0, 29.0,
29.5, 31.8, 34.0, 36.9, 47.9, 48.2, 51.5,
54.9, 68.1, 72.8, 126.6, 138.8, 174.4, 217.3 TLC: Rf: 0.64 (EtOAc-cyclohexane-THF=6:3:1) Optical rotation: [α] = +23.8° ( C 1.355, MeOH) Implementation Example 4 9 3.3 mg to 0.5 ml of AcOH-H 2 O-THF (3:
1:1) and stirred at 45°C for 7 hours. The solvent was removed using a vacuum pump, the solvent was distilled off azeotropically with toluene (3 times), and then chromatographed using silica gel column chromatography (Merck
0.6g of silica gel; ethyl acetate:hexane=3:2)
2.0 mg of 11 (yield 88%)
Obtained. IR (CHCl 3 ): 3720-3240, 740, 1730 cm -1 HNMR (CDCl 3 , 90 MHz, ppm) δ: 0.89 (t, 3, J = 6.4 Hz, CH 3 ), 1.1-2.1 (m,
21, CH 2 × 9, CH, and OH × 2), 2.32 (t,
2, J = 7.0Hz, CH 2 COOC), 2.44 (d, 2, J
= 2.6Hz, CH 2 C = O), 2.79 (dd, 1, J = 11.6
Hz, 7.0Hz, CHC = O), 3.67 (s, 3, OCH 3 ),
4.08 (br, q.1, J=6.2Hz, CHO), 4.51 (m,
1, CHO), 5.37 (dd, 1, J=15.4, 7.0Hz,
Viny1), 5.63 (dd, 1, J = 15.4, 6.2Hz); CNMR (CDCl 3 , 90MHz, ppm) δ 14.1, 22.7, 24.8, 25.2, 26.9, 28.0, 29.0,
29.5, 31.8, 34.0, 36.9, 47.9, 48.2, 51.5,
54.9, 68.1, 72.8, 126.6, 138.8, 174.4, 217.3 Reference example 1 In a 100 ml eggplant flask under argon flow, -78
At ℃, add 20.4 ml of an equivalent toluene solution of 2,6-t-botyl-4-methylphenol and dineno-butylaluminum (0.146), stir, and dry.
12 dissolved in 6 ml of toluene was added in a stainless steel tube. After raising the temperature to -20℃ over 3 hours,
Stirred at -20°C for 25 hours. Dilute the reaction solution with ethyl acetate10
ml, 40 ml of saturated aqueous sodium hydrogen tartrate solution was added, and the mixture was thoroughly shaken. After separating the organic layer and the aqueous layer, the aqueous layer was extracted with ethyl acetate.
(20ml x 2). The organic layers were combined and dried over anhydrous sodium sulfate. After concentration under reduced pressure, it was subjected to silica gel column chromatography (Merck silica gel
15g; ethyl acetate: hexane: benzene = 1:7:1
→1:O:O), 121mg of 1 as product (yield 86
%)Obtained. IR (CHCl 3 ): 3600−3320, 1725 cm -1 HNMR (CDCl 3 , 90MHz, ppm) δ: 0.04 (s, 6, SiCH 3 ×2), 0.7−1.1 (12, SiC
(CH 3 ) 3 and CH 3 ), 1.1−2.7 (m, 31, CH 2 ×
14, CH×2, and OH), 3.3−4.3(m, 8,
OCH 3 , CHO×3and CH 2 O), 4.67 (m, 1,
OCHO), 5.2-5.6 (m, 2, vinyl1) Reference example 2 Add 17 ml of the same reducing agent as in Reference Example 1 to a 10 ml test tube at -78°C under an argon stream and stir. there
13 dissolved in 2 ml of dry toluene was added in a stainless steel tube. After raising the temperature to -20℃ over 3 hours, add 0.83ml of reducing agent and heat at -20℃ for another 3 hours.
After stirring for an hour, 0.83 ml was added again, and the mixture was stirred for 2 hours and 30 minutes. After diluting the reaction solution with 5 ml of ethyl acetate, 10 ml of saturated sodium tartrate hydroxide solution was added and stirred thoroughly. After separating the organic and aqueous layers, the aqueous layer was extracted twice with ethyl acetate (2 x 10 ml), and the organic layers were combined and dried over anhydrous sodium sulfate. After concentration under reduced pressure, it was subjected to silica gel column chromatography.
(Merck silica gel 3g; ethyl acetate: hexane: benzene = 1:7:1), 26 mg of product 3 (yield 76
%)Obtained. The properties of this product were the same as those of Reference Example 1.

Claims (1)

【特許請求の範囲】 1 下記式(1) 式中R11はC1〜C10のアルキル基、又はトリ
(C1〜C7)炭化水素シリル基を表わし、R2,R3
同一もしくは異なり水素原子、置換もしくは非置
換のC1〜C10のアルキル基又は置換もしくは非置
換の5〜6員のシクロアルキル基を表わし、R31
はトリ(C1〜C7)炭化水素シリル基を表わし、
R41は水酸基の酸素原子と共にアセタール結合を
形成する基を表わす。 で表わされるプロスタグランデインF1α類の9位
の水酸基の酸素原子と共にアセタール結合を形成
する基で保護し、下記式(2) 式中R11,R2,R3,R31,R41は上記に同じで、
R51はR41と同一又は異なり水酸基の酸素原子と
共にアセタール結合を形成する基を表わす。 で表わされる保護されたプロスタグランデイン
F1α類を得、これを選択的脱保護、次いで酸化し
た後必要に応じて脱保護及び/又は加水分解反応
に付すことを特徴とする下記式(3) 式中R2,R3は上記定義に同じ、R1は水素原子、
C1〜C10のアルキル基を表わし、R4,R5は同一も
しくは異なり水素原子又は水酸基の酸素原子と共
にアセタール結合を形成する基を表わす。 で表わされるプロスタグラテインD1類の製法。 2 選択的脱保護反応をテトラ―n―ブチルアン
モニウムフルオリドを用いて行なう特許請求の範
囲第1項記載のプロスタグランデインD1類の製
法。 3 酸化反応をクロム酸素酸化剤を用いて行なう
特許請求の範囲第1項又は第2のいづれか1項記
載のプロスタグラデインD1類の製法。 4 上記式(1)において、R11がメチル基又はエチ
ル基である特許請求の範囲第1項〜第3項のいず
れか1項記載のプロスタグランデインD1類の新
製造法。 5 上記式(1)において、R3が水素原子である特
許請求の範囲第1項〜第4項のいずれか1項記載
のプロスタグランデインD1類の新製造法。 6 上記式(1)において、R2がn―ペンチル基、
n―ヘクシル基、2―メチル―1ヘクシル基、シ
クロヘキシル基、又はシクロペンチル基である特
許請求の範囲第1項〜第5項のいずれか1項記載
のプロスタグランデインD1類の製法。 7 上記式(1)においてR31がトリエチルシリル基
又はt―ブチルジメチルシリル基である特許請求
の範囲第1項〜第6項のいずれか1項記載のプロ
スタグランデインD1類の製法。 8 上記式(2)において、R41,R51が同一もしく
は異なり2―テトラヒドロピラニル基、1―エト
キシエチル基、2―メトキシ―2―プロピル基又
は(2―メトキシエトキシ)メチル基である特許
請求の範囲第1項〜第7項のいずれか1項記載の
プロスタグランデインD1類の新製造法。
[Claims] 1 The following formula (1) In the formula, R 11 represents a C 1 to C 10 alkyl group or a tri(C 1 to C 7 ) hydrocarbon silyl group, and R 2 and R 3 are the same or different and are hydrogen atoms, substituted or unsubstituted C 1 to Represents a C 10 alkyl group or a substituted or unsubstituted 5- to 6-membered cycloalkyl group, R 31
represents a tri(C 1 to C 7 ) hydrocarbon silyl group,
R 41 represents a group that forms an acetal bond with the oxygen atom of a hydroxyl group. Protected with a group that forms an acetal bond with the oxygen atom of the hydroxyl group at the 9-position of the prostaglandin F 1 α group represented by the following formula (2) In the formula, R 11 , R 2 , R 3 , R 31 , R 41 are the same as above,
R 51 is the same as or different from R 41 and represents a group that forms an acetal bond with the oxygen atom of a hydroxyl group. Protected prostaglandin expressed as
The following formula (3) is characterized in that F 1 α is obtained, selectively deprotected, then oxidized, and then subjected to deprotection and/or hydrolysis reaction as necessary. In the formula, R 2 and R 3 are the same as defined above, R 1 is a hydrogen atom,
It represents a C 1 -C 10 alkyl group, and R 4 and R 5 are the same or different and represent a group that forms an acetal bond with a hydrogen atom or an oxygen atom of a hydroxyl group. Production method of prostagratein D type 1 expressed as 2. The method for producing prostaglandin D 1 according to claim 1, wherein the selective deprotection reaction is carried out using tetra-n-butylammonium fluoride. 3. A method for producing prostagladein D 1 according to claim 1 or 2, wherein the oxidation reaction is carried out using a chromium oxygen oxidizing agent. 4. A new method for producing prostaglandin D 1 according to any one of claims 1 to 3, wherein in the above formula (1), R 11 is a methyl group or an ethyl group. 5. A new method for producing prostaglandin D 1 type according to any one of claims 1 to 4, wherein in the above formula (1), R 3 is a hydrogen atom. 6 In the above formula (1), R 2 is an n-pentyl group,
The method for producing prostaglandin D 1 according to any one of claims 1 to 5, wherein the prostaglandin D 1 is an n-hexyl group, 2-methyl-1hexyl group, cyclohexyl group, or cyclopentyl group. 7. The method for producing prostaglandin D 1 according to any one of claims 1 to 6, wherein R 31 in the above formula (1) is a triethylsilyl group or a t-butyldimethylsilyl group. 8 A patent in which R 41 and R 51 are the same or different and are a 2-tetrahydropyranyl group, 1-ethoxyethyl group, 2-methoxy-2-propyl group, or (2-methoxyethoxy)methyl group in the above formula (2) A new method for producing prostaglandin D 1 according to any one of claims 1 to 7.
JP58187132A 1983-10-07 1983-10-07 Production of prostaglandin d1 Granted JPS6078962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58187132A JPS6078962A (en) 1983-10-07 1983-10-07 Production of prostaglandin d1

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58187132A JPS6078962A (en) 1983-10-07 1983-10-07 Production of prostaglandin d1

Publications (2)

Publication Number Publication Date
JPS6078962A JPS6078962A (en) 1985-05-04
JPH0210151B2 true JPH0210151B2 (en) 1990-03-06

Family

ID=16200680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58187132A Granted JPS6078962A (en) 1983-10-07 1983-10-07 Production of prostaglandin d1

Country Status (1)

Country Link
JP (1) JPS6078962A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10850892B2 (en) 2018-07-12 2020-12-01 Kao Corporation Sheet material container

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10850892B2 (en) 2018-07-12 2020-12-01 Kao Corporation Sheet material container

Also Published As

Publication number Publication date
JPS6078962A (en) 1985-05-04

Similar Documents

Publication Publication Date Title
JPH0210151B2 (en)
US4618690A (en) Process for the preparation of (1S, 4R)-4-hydroxy-2-cyclopentenyl esters
JPH029585B2 (en)
EP1169467B1 (en) Process for the preparation of prostaglandin precursors
DE3689338T2 (en) Isocarbacyclin derivatives.
US4886903A (en) Process for production of prostaglandins D2
JP2943306B2 (en) Cyclopentanaldehydes and their production
JP2709807B2 (en) Process for producing 3-chloro-4-silyloxy-2-cyclopenten-1-ones
JP3715673B2 (en) Method for producing vitamin D synthetic intermediate
JPH025745B2 (en)
JPH0430951B2 (en)
JPH0210147B2 (en)
JPH038352B2 (en)
JPH0660155B2 (en) Isocarbacyclines
JPH027312B2 (en)
JPH0798796B2 (en) Method for producing isocarbacyclines
JPH026755B2 (en)
JPH0141139B2 (en)
JPH0318630B2 (en)
JPH0714948B2 (en) Method for producing isocarbacyclines
JPS64941B2 (en)
JPH0680024B2 (en) Method for producing isocarbacyclines
JPH027578B2 (en)
JPH0655716B2 (en) Punaglandins and their manufacturing method
JPS62138448A (en) Production of 3-oxaisocarbacycline compound