JPH0199443A - Sequential shunt apparatus - Google Patents

Sequential shunt apparatus

Info

Publication number
JPH0199443A
JPH0199443A JP62256246A JP25624687A JPH0199443A JP H0199443 A JPH0199443 A JP H0199443A JP 62256246 A JP62256246 A JP 62256246A JP 25624687 A JP25624687 A JP 25624687A JP H0199443 A JPH0199443 A JP H0199443A
Authority
JP
Japan
Prior art keywords
power
load
voltage
switch
san
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62256246A
Other languages
Japanese (ja)
Inventor
Takeo Katsuki
香月 健男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62256246A priority Critical patent/JPH0199443A/en
Publication of JPH0199443A publication Critical patent/JPH0199443A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To relax sharp voltage change, by connecting superconducting coils in series respectively to switches. CONSTITUTION:To switches S1-Sn parallel-connected to solar batteries SA1-SAn in quantity n of a generating set 11, superconducting coils L1-Ln are connected in series. From the respective solar batteries SA1-SAn, power is fed to a load 12. When surplus power is generated and feed voltage is heightened, then output generated from a differential amplifier OP is increased, and by the working of a sequential shunt driving circuit SS14, the switches Sn, Sn-1,... are closed in order, and the input voltage of the load 12 is controlled to be constant. In this case, the solar battery SAn, the switch Sn, and the superconducting coil Ln form a closed loop, and power is stored in the superconducting coil Ln. For the coil Ln, superconducting material is used, and so there is no heat loss. Besides, at the transient time of closing the switch Sn, current change is relaxed.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、太陽電池から電力の供給を受は運転される
電気設備において、太陽電池の発生する余剰電力を制御
し、電気設備への電力供給を安定化するシーケンシャル
シャント装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) This invention provides a method for controlling surplus power generated by solar cells in electrical equipment that is operated while receiving power from solar cells. This invention relates to a sequential shunt device that stabilizes the power supply to electrical equipment.

(従来の技術) 日照時に負荷の所要電力の最大値を若干上まわる発生電
力をもつ太陽電池によって構成される発電装置にあって
は、負荷の要求電力の変動に応じて出力電圧を制御する
ためにシーケンシャルシャント装置が設けられている。
(Prior art) In a power generation device configured with a solar cell that generates power slightly higher than the maximum power required by the load during sunshine, the output voltage is controlled in accordance with fluctuations in the power required by the load. is equipped with a sequential shunt device.

このシーケンシャルシャント装置は、各太陽電池セルの
P−N間に無接点スイッチ等による開閉器を配備し、こ
れらを適宜開閉することにより太陽電池の発生する余剰
電力を抑制することによって出力電圧の安定化を図るよ
うにしたものである。
This sequential shunt device stabilizes the output voltage by installing a switch such as a non-contact switch between P and N of each solar cell, and opening and closing these as appropriate to suppress the surplus power generated by the solar cell. It was designed to make the

第3図にその一例を示す。すなわち、発電装置11はn
個の太陽電池セルSAI〜SAnと逆流防止用のブロッ
キングダイオードDAI〜DAnをそれぞれ直列に接続
し、各セル回路を互いに並列接続して構成されており、
その発生電圧は負荷12に供給されるようになっている
An example is shown in FIG. That is, the power generation device 11 has n
The solar battery cells SAI to SAn and the blocking diodes DAI to DAn for preventing backflow are connected in series, and each cell circuit is connected in parallel to each other.
The generated voltage is supplied to the load 12.

このような発電装置11に対し、シーケンシャルシャン
ト装置13は各太陽電池セルSAI〜SAnに並列に無
接点スイッチ等のスイッチング素子(例えばトランジス
タ)Ql〜Qnを接続する。
For such a power generation device 11, a sequential shunt device 13 connects switching elements (for example, transistors) Ql to Qn such as non-contact switches in parallel to each of the solar cells SAI to SAn.

そして、発電装置11の出力電圧(負荷供給電圧)と設
定電圧に対応するツェナーダイオードZDの電圧とを差
動増幅器OPに入力し、その差電圧量に従ってシーケン
シャルシャント駆動回路SSを。
Then, the output voltage (load supply voltage) of the power generation device 11 and the voltage of the Zener diode ZD corresponding to the set voltage are input to the differential amplifier OP, and the sequential shunt drive circuit SS is activated according to the amount of the difference voltage.

駆動し、負荷量と発生電力量に見合った数のセルにより
電力供給ができるように、逐次n個のスイッチング素子
Qを駆動するようになっている。尚、コンデンサCはス
イッチング素子Qの開閉時の出力電圧の過渡変動を吸収
するためのものである。
n switching elements Q are sequentially driven so that power can be supplied by a number of cells commensurate with the amount of load and the amount of generated power. Note that the capacitor C is for absorbing transient fluctuations in the output voltage when the switching element Q is opened and closed.

第4図に光量一定の場合の1個の太陽電池セルSAの出
力電圧−電流特性を示し、第5図に光量が変化するとき
の1個の太陽電池セルSAの出力電圧−電流特性を示す
。すなわち太陽電池セルSAは、第4図及び第5図から
明らかなように、負荷の変動によって発生電圧が変動し
、また太陽エネルギーの変動によっても発生電圧が変動
する。
Figure 4 shows the output voltage-current characteristics of one solar cell SA when the amount of light is constant, and Figure 5 shows the output voltage-current characteristics of one solar cell SA when the amount of light changes. . That is, as is clear from FIGS. 4 and 5, the generated voltage of the solar cell SA fluctuates due to load fluctuations, and the generated voltage also fluctuates due to solar energy fluctuations.

上記シーケンシャルシャント装置は発生電圧の変化を検
出してその変化分に対応した個数のセル回路を短絡する
ことによって負荷供給電圧の安定化を図っている。
The sequential shunt device detects a change in the generated voltage and short-circuits a number of cell circuits corresponding to the change, thereby stabilizing the load supply voltage.

しかしながら、上記のような従来のシーケンシャルシャ
ント装置では、単にスイッチング素子によって段階的に
セル回路を短絡していくため、過渡時に負荷供給電圧の
変動が大きく、この変動によるリップルを低減するため
に大容量コンデンサを必要とする。また、その段階的開
閉は急峻な電圧変化を伴うため、EMI (電磁誘導障
害)を生じやすい。
However, in the conventional sequential shunt device as described above, the cell circuit is simply short-circuited step by step using a switching element, so the load supply voltage fluctuates greatly during transients, and in order to reduce the ripple caused by this fluctuation, a large capacitance Requires capacitor. Further, since the stepwise opening and closing is accompanied by steep voltage changes, EMI (electromagnetic induction interference) is likely to occur.

(発明が解決しようとする問題点) 以上述べたように従来のシーケンシャルシャント装置で
は、複数個の太陽電池セル回路を段階的に短絡制御する
デジタル式であるため、過渡時の負荷供給電圧の変動を
抑制するための大容量コンデンサが必要となり、またE
MIを生じやすいという欠点があった。
(Problems to be Solved by the Invention) As described above, the conventional sequential shunt device is a digital type that short-circuits multiple solar cell circuits step by step, so fluctuations in the load supply voltage during transient A large capacity capacitor is required to suppress E.
There was a drawback that MI was likely to occur.

尚、開閉器としてのトランジスタを非飽和域でアナログ
動作させることにより、発生電圧を段階的でなくアナロ
グ的に制御するものもあるが、これでは開閉用トランジ
スタに発生する熱損失が大となる欠点があった。
In addition, there are some devices that control the generated voltage in an analog manner rather than stepwise by operating the transistor as a switch in an analog manner in a non-saturation region, but this has the disadvantage that the heat loss generated in the switching transistor is large. was there.

この発明は上記の問題点を解決するためになされたもの
で、負荷供給電圧を段階的に制御する場合でも、その時
に発生する急峻な電圧変化を緩和することができ、かつ
この時に発生するEMIを緩和することができ、さらに
余剰電力の一部を備蓄して日陰時の供給電力用として二
次蓄電池へ一時供給を行なうことができ、これによって
電力源としての合理的な運用が可能なシーケンシャルシ
ャント装置を提供することを目的とする。
This invention was made to solve the above problems, and even when controlling the load supply voltage in stages, it is possible to alleviate the sudden voltage changes that occur at that time, and to reduce the EMI that occurs at this time. In addition, it is possible to store a portion of surplus power and temporarily supply it to a secondary storage battery for power supply in the shade. The purpose is to provide a shunt device.

[発明の構成] (問題点を解決するための手段) 上記目的を達成するためにこの発明に係るシーケンシャ
ルシャント装置は、複数個の太陽電池セルを並列接続し
てなる太陽電池に対して各太陽電池セルのP−N間にそ
れぞれ開閉器を配置し、これらの開閉器を通じて必要な
数のセルを短絡することによって太陽電池の発生電力を
所要電力に抑えて余剰電力の制御を行なうものにおいて
、前記開閉器にそれぞれ直列に接続される複数個の超電
導コイルを具備して構成される。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the sequential shunt device according to the present invention provides A switch is placed between P and N of the battery cells, and the required number of cells are short-circuited through these switches to suppress the power generated by the solar cell to the required power and control surplus power. It is configured to include a plurality of superconducting coils each connected in series to the switch.

(作用) 上記構成によるシーケンシャルシャント装置では、開閉
器と直列に超電導コイルを接続しているので、開閉時の
過渡時に超電導コイルが高インピーダンスとなって太陽
電池セルを分岐して短絡される太陽電池セルの電流変化
率を緩和し、電磁誘導障害を抑制することができる。そ
してコイルに超電導コイルを使用しているので、短絡電
流による電力が超電導コイルに貯蔵され、開閉器の開時
にこの電力を二次蓄電池へ備蓄することができ、さらに
超電導コイルの使用によって熱損失を低減することがで
きる。 ・ (実施例) 以下、第1図及び第2図を参照してこの発明の詳細な説
明する。
(Function) In the sequential shunt device with the above configuration, since the superconducting coil is connected in series with the switch, the superconducting coil becomes high impedance during the transition during opening and closing, and the solar cells are branched and the solar cells are short-circuited. It is possible to moderate the cell current change rate and suppress electromagnetic induction interference. Since a superconducting coil is used for the coil, the power generated by the short circuit current is stored in the superconducting coil, and when the switch is opened, this power can be stored in the secondary storage battery.Furthermore, by using the superconducting coil, heat loss can be reduced. can be reduced. - (Example) Hereinafter, the present invention will be explained in detail with reference to FIGS. 1 and 2.

第1図は第3図に示したシーケンシャルシャント装置に
この発明を適用した場合の構成を示すものである。第1
図において第3図と同一部分には同一符号を付して示す
FIG. 1 shows a configuration in which the present invention is applied to the sequential shunt device shown in FIG. 3. 1st
In the figure, the same parts as in FIG. 3 are designated by the same reference numerals.

第1図において、発電装置11のn個の太陽電池セルS
AI〜SAnに並列接続された各開閉器81〜Snには
超電導コイルし1〜Lnが直列に接続され、さらにブロ
ッキングダイオードDBI〜DBnを介して充電制御回
路141に接続される。
In FIG. 1, n solar cells S of a power generation device 11
Superconducting coils 1 to Ln are connected in series to each of the switches 81 to Sn connected in parallel to AI to SAn, and further connected to the charging control circuit 141 via blocking diodes DBI to DBn.

この充電制御回路141は各ブロッキングダイオードD
BL〜DBnからの電流を充電量調整回路142による
調整値に応じて二次蓄電池143に充電電流を供給する
ものである。この二次蓄電池143の充電電圧はブロッ
キングダイオードDCを介して負荷12に供給されるよ
うになっている。
This charging control circuit 141 includes each blocking diode D.
A charging current is supplied from the currents from BL to DBn to the secondary storage battery 143 according to the adjusted value by the charging amount adjustment circuit 142. The charging voltage of this secondary storage battery 143 is supplied to the load 12 via a blocking diode DC.

すなわち、各太陽電池セルSAI〜SAnは7’ロツキ
ングダイオードDAI〜DAnを経て負荷12に電力を
供給するが、ここで余剰電力が発生して供給電圧が低下
した場合、シーケンシャルシャント装置14の差動増幅
器OPが出力増となり、シーケンシャルシャント駆動回
路SSの作動により開閉器Sn、5n−1,・・・が順
に閉じられ、適宜短絡される。これによって太陽電池に
よる発電装置11の発生電力と負荷12の消費電力が均
衡し、負荷12の入力電圧が一定に制御される。
That is, each of the solar cells SAI to SAn supplies power to the load 12 via the 7' locking diodes DAI to DAn, but if surplus power is generated here and the supply voltage decreases, the difference in the sequential shunt device 14 The output of the dynamic amplifier OP increases, and the switches Sn, 5n-1, . As a result, the power generated by the solar cell power generation device 11 and the power consumption of the load 12 are balanced, and the input voltage of the load 12 is controlled to be constant.

一方、発生電力増により開閉器Snが閉路した場合、S
An −3n−Lnは閉ループとなり、超電導コイルL
nにはノl5c2/2(ただし)はLnのインダクタン
ス、I scはLnに流れる電流である)の電力が貯蔵
される。このとき、コイルLnに超電導材料を使用して
いるため、熱損失はない。また開閉器Sn閉の過渡時は
超電導コイルLnにより電流変化が緩和されるため、E
MIの発生も抑制される。また、発生電力の低下又は負
荷消費電力の急増時には開閉器Snが開となり、太陽電
池セルSAnの発生電力は負荷12に入力され、超電導
コイルLnに貯蔵された電力は充電制御回路141によ
り二次蓄電池143に充電される。
On the other hand, if the switch Sn is closed due to an increase in the generated power,
An -3n-Ln becomes a closed loop, and the superconducting coil L
The power of 15c2/2 (where Isc is the inductance of Ln and Isc is the current flowing through Ln) is stored in n. At this time, since a superconducting material is used for the coil Ln, there is no heat loss. Also, during the transition period when the switch Sn closes, the superconducting coil Ln moderates the current change, so E
The occurrence of MI is also suppressed. In addition, when the generated power decreases or the load power consumption increases rapidly, the switch Sn is opened, the generated power of the solar cell SAn is input to the load 12, and the power stored in the superconducting coil Ln is transferred to the secondary battery by the charging control circuit 141. The storage battery 143 is charged.

したがって、上記構成のシーケンシャルシャント装置1
4を用いれば、各太陽電池セル毎に超電導コイルと開閉
器を直列に設置しているので、従来のデジタル型シャン
ト装置に比べてEMIが少なく、熱損失もない。また超
電導コイルにシャント電力の一部を備蓄できるので、日
陰特電力の一部として二次蓄電池143に貯蔵すること
ができる。
Therefore, the sequential shunt device 1 having the above configuration
4, a superconducting coil and a switch are installed in series for each solar cell, so there is less EMI and no heat loss compared to conventional digital shunt devices. Further, since a part of the shunt power can be stored in the superconducting coil, it can be stored in the secondary storage battery 143 as part of the shade special power.

第2図はパーシャルシーケンシャルシャント装置として
応用した例を示すもので、太陽電池セルは5A1nと5
A2nの2段に分割し、下段のセル5A2nに上記のシ
ャント装置を配置したものである。
Figure 2 shows an example of application as a partial sequential shunt device, where the solar cells are 5A1n and 5A1n.
It is divided into two stages of cell A2n, and the above-mentioned shunt device is placed in the lower cell 5A2n.

この場合も下段のセル5A2nを含むシャント装置の動
作は上記の通りであるが、5A2nがSnにより短絡さ
れた瞬時は5A2nの短絡電流変化が緩慢であるために
、5A1nと5A2nの直列端子電圧の変化が緩慢とな
る。したがって、負荷供給電圧のリップルは抑制され、
より安定した電圧の電力が供給されるようになる。
In this case as well, the operation of the shunt device including the lower cell 5A2n is as described above, but at the moment when 5A2n is short-circuited by Sn, the change in the short-circuit current of 5A2n is slow, so the series terminal voltage of 5A1n and 5A2n is Change becomes slow. Therefore, the ripple in the load supply voltage is suppressed and
Power will be supplied at a more stable voltage.

[発明の効果] 以上述べたようにこの発明によれば、負荷供給電圧を段
階的に制御する場合でも、その時に発生する急峻な電圧
変化を緩和することができ、かつこの時に発生するEM
Iを緩和することができ、さらに余剰電力の一部を備蓄
して日陰時の供給電力用として二次蓄電池へ一時供給を
行なうことができ、これによって電力源としての合理的
な運用が可能なシーケンシャルシャント装置を提供する
ことができる。
[Effects of the Invention] As described above, according to the present invention, even when the load supply voltage is controlled in stages, it is possible to alleviate the sudden voltage change that occurs at that time, and to reduce the EM that occurs at this time.
In addition, it is possible to store a portion of the surplus power and temporarily supply it to a secondary storage battery for power supply in the shade, making it possible to operate it rationally as a power source. A sequential shunt device can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係るシーケンシャルシャント装置の
一実施例を示す回路図、第2図はこの発明に係る他の実
施例を示す回路図、第3図は従来使用されているシーケ
ンシャルシャント装置の構成を示す回路図、第4図及び
第5図はそれぞれ太陽電池セルの出力電圧−電流特性を
示す特性図である。 11・・・発電装置、12・・・負荷、13.14・・
・シーケンシャルシャント装置、Ll〜Ln・・・超電
導コイル、31〜Sn=開閉器、DAI 〜DAn 、
DBI〜DBn、DC・・・ブロッキングダイオード、
SS・・・シーケンシャルシャント駆動回路、SAI〜
SAn 、5All 〜5Aln、5A21〜5A2n
・=太陽電池セル。 出願人代理人 弁理士 鈴江武彦
FIG. 1 is a circuit diagram showing one embodiment of a sequential shunt device according to the present invention, FIG. 2 is a circuit diagram showing another embodiment of the present invention, and FIG. 3 is a circuit diagram showing a conventional sequential shunt device. The circuit diagram showing the configuration, and FIGS. 4 and 5 are characteristic diagrams showing the output voltage-current characteristics of the solar battery cell, respectively. 11... Generator, 12... Load, 13.14...
・Sequential shunt device, Ll ~ Ln... superconducting coil, 31 ~ Sn = switch, DAI ~ DAn,
DBI~DBn, DC...blocking diode,
SS...Sequential shunt drive circuit, SAI~
SAn, 5All ~ 5Aln, 5A21 ~ 5A2n
・=Solar battery cell. Applicant's agent Patent attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】[Claims] 複数個の太陽電池セルを並列接続してなる太陽電池に対
して各太陽電池セルの電極間にそれぞれ開閉器を配置し
、これらの開閉器を通じて必要な数のセルを短絡するこ
とによって太陽電池の発生電力を所要電力に抑えて余剰
電力の制御を行なうシーケンシャルシャント装置におい
て、前記開閉器にそれぞれ直列に接続される複数個の超
電導コイルを具備するシーケンシャルシャント装置。
For solar cells formed by connecting multiple solar cells in parallel, a switch is placed between the electrodes of each solar cell, and the required number of cells are short-circuited through these switches. A sequential shunt device for controlling surplus power by suppressing generated power to a required power level, the sequential shunt device comprising a plurality of superconducting coils each connected in series to the switch.
JP62256246A 1987-10-13 1987-10-13 Sequential shunt apparatus Pending JPH0199443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62256246A JPH0199443A (en) 1987-10-13 1987-10-13 Sequential shunt apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62256246A JPH0199443A (en) 1987-10-13 1987-10-13 Sequential shunt apparatus

Publications (1)

Publication Number Publication Date
JPH0199443A true JPH0199443A (en) 1989-04-18

Family

ID=17289968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62256246A Pending JPH0199443A (en) 1987-10-13 1987-10-13 Sequential shunt apparatus

Country Status (1)

Country Link
JP (1) JPH0199443A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03195336A (en) * 1989-07-25 1991-08-26 Superconductivity Inc Superconductive voltage stabilizer
JP2011019365A (en) * 2009-07-10 2011-01-27 Mitsubishi Electric Corp Power control device and power control method
JP2012513186A (en) * 2008-12-18 2012-06-07 セントレ ナショナル デ ラ レセルシュ シャンティフィク Photovoltaic management system and photovoltaic power generator for photovoltaic cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03195336A (en) * 1989-07-25 1991-08-26 Superconductivity Inc Superconductive voltage stabilizer
JP2012513186A (en) * 2008-12-18 2012-06-07 セントレ ナショナル デ ラ レセルシュ シャンティフィク Photovoltaic management system and photovoltaic power generator for photovoltaic cell
US9280166B2 (en) 2008-12-18 2016-03-08 Total Marketing Services Electronic management system for photovoltaic cells
JP2011019365A (en) * 2009-07-10 2011-01-27 Mitsubishi Electric Corp Power control device and power control method

Similar Documents

Publication Publication Date Title
US6294904B1 (en) Multiple frequency switching power supply and methods to operate a switching power supply
US6317343B1 (en) Capacitor power supply with switches to decrease variations in output voltage
US7982434B2 (en) Apparatus and method for controlling a power supply
US3896368A (en) Voltage regulating device
US4970451A (en) Device for utilizing low voltage electric current sources
CN113141039B (en) Energy storage system
EP4054065B1 (en) Voltage conversion circuit and power supply system
Kumar et al. Interleaved boost converter for renewable energy application with energy storage system
Jolhe et al. Design of protection and control scheme for hybrid nanogrid
US11264806B2 (en) Operation voltage control circuit device for solar cells connected in series or other power supplies
JPH0199443A (en) Sequential shunt apparatus
Wang et al. A DC microgrid integrated dynamic voltage restorer with model predictive control
EP0564726A1 (en) A different converting type charging circuit
Gadelovits et al. Single‐source multibattery solar charger: case study and implementation issues
Thogaru et al. Regulation of DC microgrid voltage using optimized droop index control-based high gain converters in the presence of static and dynamic loads
Mishra et al. Boost topology based multi-output converters
Li et al. Design of a multi-port converter using dual-frequency PWM control for satellite applications
Sanjeev et al. A new architecture for DC microgrids using supercapacitor
RU2677629C1 (en) Energy-conversion equipment for power supply systems for aerospace devices
JP2001051733A (en) Operation method for electric apparatus supplying sunlight generated energy
Lueangamornsiri et al. Solar battery charger using a multi-stage converter
CN111800012A (en) Operating point control circuit device for a plurality of power supply units connected in series
JPS6328160A (en) Feeder circuit
RU201749U1 (en) A device for simulating a sectioned solar battery
JPH1146451A (en) Solar battery power unit