JPH0199017A - Equalizing device for gaussian distribution light beam in optical system - Google Patents

Equalizing device for gaussian distribution light beam in optical system

Info

Publication number
JPH0199017A
JPH0199017A JP25694287A JP25694287A JPH0199017A JP H0199017 A JPH0199017 A JP H0199017A JP 25694287 A JP25694287 A JP 25694287A JP 25694287 A JP25694287 A JP 25694287A JP H0199017 A JPH0199017 A JP H0199017A
Authority
JP
Japan
Prior art keywords
light
lens
convex lens
intensity distribution
light intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25694287A
Other languages
Japanese (ja)
Inventor
Hideyuki Tanaka
秀幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP25694287A priority Critical patent/JPH0199017A/en
Publication of JPH0199017A publication Critical patent/JPH0199017A/en
Pending legal-status Critical Current

Links

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

PURPOSE:To convert to a light beam having uniform light intensity distribution by forming a convex lens of lenses in a system by selecting a material whose transmittivity is lower than that of an ordinary lens material in a wavelength area of a light beam emitted from a light source, and allowing it to execute a light intensity distribution correction, as well. CONSTITUTION:A convex lens 40 for changing a light beam 3a radiated from a semiconductor laser 2 being a light source to parallel rays 3b is formed by a material whose transmittivity in a wavelength area of the light source is lower enough than that of an ordinary lens material, for instance, a material having transmittivity being equal to that of an ND filter, as a lens for executing a light intensity distribution correction, as well. A light intensity distribution of a light beam which is transmitted through the convex lens 40 is corrected by the product of the radiation intensity of a semiconductor laser light which is made incident on each position on the lens surface and the transmittivity of the convex lens, and with respect to an intensity difference between the maximum value and the minimum value of a cross sectional area distribution of a Gaussian beam before it is subjected to a correction by the convex lens 40, the intensity difference in the cross sectional area distribution which has passed through the convex lens 40 drops, and in the process that the radiated Gaussian beam passes through the convex lens 40, the light intensity distribution can be equalized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、レーザ光電スイッチ等を対象とした光学系
において、光源より放射するガウスビームの光強度分布
を補正して均一な光強度分布を持った光線に変換する装
置に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention corrects the light intensity distribution of a Gaussian beam emitted from a light source to create a uniform light intensity distribution in an optical system for a laser photoelectric switch, etc. Concerning a device that converts light into light.

〔従来の技術〕[Conventional technology]

まずこの発明の実施対象となる光学系の一例として、第
6図に頭記したレーザ光電スイッチの構成を示す。図に
おいて1は光源としての半導体レーザ2.および半導体
レーザより放射する光線3aを平行光線3bに変えて出
射するレンズ系4を組み込んだ投光部、5は内部に図示
されてないホトダイオードを内蔵し、前記投光部1と対
向する面に受光スリット6を開口した受光部である。か
かる光電スイッチは、投光部1と受光部6との間の光路
に置かれた被検出物体7が平行光線3bを遮る時の遮光
量を受光部6での受光量変化より検出して被検出物体7
の寸法dを判定するものである。
First, as an example of an optical system to which the present invention is applied, the configuration of the laser photoelectric switch shown in FIG. 6 is shown. In the figure, 1 is a semiconductor laser 2 as a light source. and a light projecting section incorporating a lens system 4 that converts a light beam 3a emitted from a semiconductor laser into a parallel light beam 3b and emits it; 5 has a photodiode (not shown) built therein; This is a light receiving section with a light receiving slit 6 opened. Such a photoelectric switch detects the amount of light blocked when a detected object 7 placed on the optical path between the light emitter 1 and the light receiver 6 blocks the parallel light beam 3b from the change in the amount of light received by the light receiver 6, and detects the amount of light being detected. Detected object 7
The dimension d of is determined.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで前記した光電スイッチにおいて、該被検出物体
7の位置の如何に関係なく常に被検出物体の寸法を高い
精度で検出するためには、投光部1から受光部5に向け
て投光される平行光線3の光軸と垂直な断面での光強度
分布が均一であることが必要である。
By the way, in the photoelectric switch described above, in order to always detect the dimensions of the detected object 7 with high accuracy regardless of the position of the detected object 7, light is emitted from the light projecting section 1 toward the light receiving section 5. It is necessary that the light intensity distribution in a cross section perpendicular to the optical axis of the parallel light rays 3 is uniform.

しかして第7図に示す半導体レーザ2とレンズ系4とし
て凸レンズを組合せた前記光電スイッチの投光部におい
て、まず半導体レーザ2から放射する光線3aは、第8
図のように光ビーム中心で光強度が最も高く、放射角度
が増すに連れて光強度が低下するガウス分布をによって
近似される分布を呈したガウスビームである。したがっ
て第7図に示す平行光線3bの領域では光軸と垂直な断
面での光強度分布も第8図の放射強度分布に対応する不
均一な強度分布を呈することになる。このために第6図
の光電スイッチで被検出物体7の寸法を計測判定する場
合に、同じ寸法の被検出物体7が光路の中心部を置かれ
た場合と端部に置かれた場合とでは受光部5での受光量
、したがって被検出物体7で遮られる遮光量に差が生じ
、この差がそのまま計測誤差となる。
Therefore, in the light emitting section of the photoelectric switch shown in FIG. 7, which combines the semiconductor laser 2 and a convex lens as the lens system 4, the light beam 3a emitted from the semiconductor laser 2 is first
As shown in the figure, this is a Gaussian beam with a distribution approximated by a Gaussian distribution in which the light intensity is highest at the center of the beam and decreases as the radiation angle increases. Therefore, in the region of parallel light rays 3b shown in FIG. 7, the light intensity distribution in a cross section perpendicular to the optical axis also exhibits a non-uniform intensity distribution corresponding to the radiation intensity distribution shown in FIG. For this reason, when measuring and determining the dimensions of the object 7 to be detected using the photoelectric switch shown in FIG. A difference occurs in the amount of light received by the light receiving section 5, and therefore the amount of light blocked by the object to be detected 7, and this difference directly becomes a measurement error.

上記例の他にレーザプリンタ等、半導体レーザは種々な
用途の光学系に組み込んで使われているが、その光学系
によっては前記のように均一な光強度分布の光線を必要
とする場合が数多い。
In addition to the examples above, semiconductor lasers are used by being incorporated into optical systems for various purposes, such as laser printers, but depending on the optical system, there are many cases where a light beam with a uniform light intensity distribution is required as described above. .

一方、レーザプリンタ等でレーザから出射されるガウス
ビームを均一な光強度分布の光線に変える手段として、
レーザビームをコリメータ等で平行光線とした後の光路
途中に特殊は反射鏡、プリズム等を配備し、光強度の低
いビーム外周域の光線の向き変えてビーム中心域に重ね
合わせたり。
On the other hand, as a means of converting a Gaussian beam emitted from a laser into a light beam with a uniform light intensity distribution in a laser printer, etc.
After the laser beam is made into parallel light beams using a collimator, etc., special reflecting mirrors, prisms, etc. are placed in the middle of the optical path to change the direction of the light beams in the outer region of the beam, where the light intensity is low, so that they are superimposed on the center region of the beam.

あるいは特殊形状の非球面レンズを組合せて光強度の高
いビーム中心域の光線を周域に分散させる等して光強度
分布の均一化を図る方式が報告されている。しかしなが
らかかる方式では複雑な光学部品を必要とし、かつこれ
ら部品を光路内に介装することから光学系が大形化する
他、その位置調整が厄介である等の難点がある。
Alternatively, a method has been reported in which the light intensity distribution is made uniform by combining specially shaped aspherical lenses to disperse the light rays in the central region of the beam, where the light intensity is high, to the peripheral region. However, such a system requires complicated optical parts, and since these parts are interposed in the optical path, the optical system becomes large and its position adjustment is troublesome.

この発明は上記の点にかんがみ成されたものであり、そ
の目的は特別な光学部品を追加設置することなく、光学
系を構成する一部のレンズについてそのレンズ特性を僅
かに変えることによりガウス分布を呈した光線を均一な
光強度分布の光線に変換できるようにした簡易な装置を
提供することにある。
This invention was made in view of the above points, and its purpose is to create a Gaussian distribution by slightly changing the lens characteristics of some of the lenses that make up the optical system, without installing any additional special optical components. An object of the present invention is to provide a simple device capable of converting a light beam exhibiting a uniform light intensity distribution into a light beam having a uniform light intensity distribution.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために、この発明によれば、ガウ
ス分布を呈した光線を放射する光源、およびその光軸上
に配した凸レンズを含む光学系において、系内のレンズ
のうち少なくとも一枚の凸レンズを光強度分布補正を兼
ねたレンズとして、該凸レンズを前記光源から発する光
線の波長域で通常のレンズ材料よりも透過率の低いレン
ズ材料を選択して構成するものとする。
In order to solve the above problems, according to the present invention, in an optical system including a light source that emits light rays exhibiting a Gaussian distribution and a convex lens arranged on the optical axis of the light source, at least one of the lenses in the system The convex lens is a lens that also serves as a light intensity distribution correction lens, and the convex lens is constructed by selecting a lens material that has lower transmittance than a normal lens material in the wavelength range of the light beam emitted from the light source.

〔作用〕[Effect]

上記の構成で、光強度分布補正を兼ねた凸レンズは、通
常のレンズ材料の透過率が99.7〜99.9%である
のに対してこれより十分低い30〜85%程度の透過率
を持ったレンズ材料で作られている。−方、凸レンズは
レンズ中央部の厚さが厚く1周縁に行くほど薄くなる構
造である。しかも光線がレンズを透過する過程で生じる
光強度の減衰割合はレンズの厚さ寸法が厚い程大きく、
したがって上記凸レンズを透過する光ビームのうちレン
ズ中央部を透過する光線に対しては光強度の減衰量が大
きく、周縁部を透過する光線の減衰量は小さくなる。
With the above configuration, the convex lens that also serves as light intensity distribution correction has a transmittance of about 30 to 85%, which is much lower than the transmittance of normal lens materials, which is 99.7 to 99.9%. It is made from the same lens material. On the other hand, a convex lens has a structure in which the thickness is thick at the center of the lens and becomes thinner toward the periphery. Moreover, the rate of attenuation of light intensity that occurs during the process of light rays passing through a lens increases as the thickness of the lens increases.
Therefore, among the light beams that pass through the convex lens, the attenuation of the light intensity is large for the light that passes through the center of the lens, and the attenuation of the light that passes through the peripheral portion is small.

このことから、透過率が殆ど100%に近い通常のレン
ズ材料で作られた凸レンズではそのレンズ中央部と周縁
部との間で厚みの大小差に起因する光線の減衰量差は極
めて小さく殆ど無視できる程度であるが、前記のように
透過率の低いレンズ材料で作られた凸レンズに光軸を合
わせてガウスビームを入射させることにより、ビーム中
心域の光線は凸レンズ内で大きく減衰されるのに対し、
ビーム周域の光線の減衰割合は小さく、この結果として
凸レンズより出射する光ビームの光軸と垂直断面での光
強度分布は均一化されるようになる。
From this, in a convex lens made of a normal lens material with a transmittance close to 100%, the difference in the amount of attenuation of light rays due to the difference in thickness between the center and the periphery of the lens is extremely small and can be ignored. However, by aligning the optical axis and making the Gaussian beam incident on a convex lens made of a lens material with low transmittance as described above, the light rays in the central region of the beam are greatly attenuated within the convex lens. On the other hand,
The attenuation rate of the light beam in the beam circumference is small, and as a result, the light intensity distribution of the light beam emitted from the convex lens in a cross section perpendicular to the optical axis becomes uniform.

〔実施例〕〔Example〕

第1図ないし第3図はそれぞれ本発明の異なる実施例を
示すものである。まず第1図は第7図に示した光学系に
対応する実施例であり、ここで光源としての半導体レー
ザ2より放射される光線3aを平行光線3bに変える凸
レンズ40は光強度分布補正用を兼ねるレンズとして、
光源の波長域での透過率が通常のレンズ材料よりも十分
低いレンズ材料1例えばNDフィルタと同等な透過率を
持った材料で作られたものである。
1 to 3 each show a different embodiment of the present invention. First, FIG. 1 shows an embodiment corresponding to the optical system shown in FIG. 7, in which a convex lens 40 that changes a light beam 3a emitted from a semiconductor laser 2 as a light source into a parallel light beam 3b is used for light intensity distribution correction. As a lens that also serves as
Lens material 1 whose transmittance in the wavelength range of the light source is sufficiently lower than that of ordinary lens materials; for example, it is made of a material having a transmittance equivalent to that of an ND filter.

ここで凸レンズ40の有効径10mm、焦点距離12.
5mmとして、半導体レーザ2の波長に対する透過率が
レンズ厚さ1mm当たり70%であるレンズ材料を選択
してレンズを作製したとすると、凸レンズ40の光線入
射位置に対する相対透過率の分布は第4図で表すように
なる。ここで第4図に示した凸レンズ40の透過率分布
と第8図に示した半導体レーザか放射されるレーザビー
ムの光強度分布とを同じスケール上に表して比較すると
第5図のようになる。図中の曲線のは半導体レーザの放
射強度、■は凸レンズの透過率であり、この図から明ら
かなように0曲線における光強度の高いビーム中心域に
0曲線における透過率の低い領域が対応し、逆に0曲線
における放射強度の低いビーム周縁域には0曲線におけ
る透過率の高い領域が対応するようになる。ここで凸レ
ンズ40を透過した光ビームの光強度分布(第1図にお
ける断面X−Xでの断面強度分布)はレンズ面上の各位
置に入射する半導体レーザ光の放射強度と凸レンズの透
過率との積で補正され、第5図における■線のようにな
る。すなわち凸レンズ40による補正を受けない前では
ガウスビームの断面強度分布の最大値と最小値との間の
強度差ΔEが26%であるのに対し、凸レンズ40を透
過した後では断面強度分布における強度差ΔEは2%以
下に低下し、これにより半導体レーザ2より放射された
ガウスビームは光強度分布補正用を兼ねた凸レンズ40
を透過する過程で光強度分布を10倍以上に均一化され
ることが判る。
Here, the effective diameter of the convex lens 40 is 10 mm, and the focal length is 12.
5mm, and if a lens is manufactured by selecting a lens material whose transmittance for the wavelength of the semiconductor laser 2 is 70% per 1mm of lens thickness, the distribution of relative transmittance with respect to the light incident position of the convex lens 40 is shown in FIG. It comes to be expressed as If the transmittance distribution of the convex lens 40 shown in FIG. 4 is compared with the light intensity distribution of the laser beam emitted from the semiconductor laser shown in FIG. 8 on the same scale, the result will be as shown in FIG. . The curve in the figure is the radiation intensity of the semiconductor laser, and ■ is the transmittance of the convex lens.As is clear from this figure, the region of low transmittance in the zero curve corresponds to the beam center region with high light intensity in the zero curve. , conversely, a region of high transmittance on the zero curve corresponds to a beam peripheral region of low radiation intensity on the zero curve. Here, the light intensity distribution of the light beam transmitted through the convex lens 40 (the cross-sectional intensity distribution along the cross section It is corrected by the product of , and becomes like the black line in FIG. That is, before correction by the convex lens 40, the intensity difference ΔE between the maximum value and the minimum value of the cross-sectional intensity distribution of the Gaussian beam is 26%, whereas after passing through the convex lens 40, the intensity in the cross-sectional intensity distribution is 26%. The difference ΔE decreases to 2% or less, and as a result, the Gaussian beam emitted from the semiconductor laser 2 passes through the convex lens 40 which also serves as a light intensity distribution correction.
It can be seen that the light intensity distribution is made more uniform by a factor of 10 or more during the process of transmitting the light.

なお、ここで凸レンズ40に付いてレンズ材料の単位厚
さ当たりの透過率を30〜80%の範囲でより適切に選
択し、併せてレンズ面の形状を光学系での許容収差の範
囲でできるだけガウス分布に近い曲面とすることにより
、より光強度分布の補正精度をより一層高めることが可
能である。
Here, the transmittance per unit thickness of the lens material for the convex lens 40 should be more appropriately selected in the range of 30 to 80%, and the shape of the lens surface should be selected as much as possible within the allowable aberrations of the optical system. By forming a curved surface close to a Gaussian distribution, it is possible to further improve the accuracy of correcting the light intensity distribution.

第2図は複数枚のレンズ40.4L 42から成るレン
ズ系4を通じて光源から放射される光線3aを平行光線
3bに変える光学系に対する実施例であり、前記レンズ
系のうち少なくとも一枚の凸レンズ40が光強度分布補
正用を兼ねたレンズとして先の実施例で述べたと同様に
通常のレンズ材料よりも低い透過率を持ったレンズ材料
で作られている。さらに第3図の実施例では、投光器1
から出射される平行光線の光路中に複数枚のレンズ40
.41を組合せたレンズ系4が介装されている光学系に
対し、レンズ系のうちの一枚の凸レンズ40を前記実施
例と同様に光強度分布補正用を兼ねたレンズとして構成
したものであり、これら各実施例でも第1図の実施例と
同様な効果を奏することができる。
FIG. 2 shows an embodiment of an optical system that converts a light ray 3a emitted from a light source into a parallel light ray 3b through a lens system 4 consisting of a plurality of lenses 40.4L 42, in which at least one convex lens 40 of the lens system As described in the previous embodiment, the lens also serves as a lens for correcting light intensity distribution, and is made of a lens material having a lower transmittance than a normal lens material. Furthermore, in the embodiment of FIG.
A plurality of lenses 40 are included in the optical path of the parallel rays emitted from the
.. 41, one convex lens 40 of the lens system is configured as a lens that also serves as a lens for correcting light intensity distribution, as in the previous embodiment. , each of these embodiments can achieve the same effects as the embodiment shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上述べたようにこの発明によれば、ガウス分布を呈し
た光線を放射する光源、およびその光軸上に配した凸レ
ンズを含む光学系において、系内のレンズのうち少なく
とも一枚の凸レンズを光強度分布補正を兼ねたレンズと
して、該凸レンズを前記光源から発する光線の波長域で
通常のレンズ材料よりも透過率の低いレンズ材料を選択
して構成したことにより、光源から放射するガウス分布
を呈した光線を当該凸レンズにより光軸と垂直な断面で
の光強度分布が均一になるように補正することができる
。しかも先記した従来の光強度分布の均一化補正方式と
比べて特別な追加部品、および追加部品設置のための厄
介な調整を必要とすることなく、光学系の構成要素であ
る一部の凸レンズに付いて該レンズを透過率の低いレン
ズ材料で製作するのみで、その凸レンズの本来の機能を
保持しつつ光源から放射されるガウス分布光線を均一な
光強度分布に補正することができる。
As described above, according to the present invention, in an optical system including a light source that emits light rays exhibiting a Gaussian distribution and a convex lens arranged on its optical axis, at least one convex lens among the lenses in the system is used to emit light. As a lens that also serves as an intensity distribution correction lens, the convex lens is constructed by selecting a lens material that has a lower transmittance than a normal lens material in the wavelength range of the light rays emitted from the light source, thereby exhibiting a Gaussian distribution emitted from the light source. The light beam can be corrected by the convex lens so that the light intensity distribution in a cross section perpendicular to the optical axis becomes uniform. Moreover, compared to the conventional light intensity distribution uniformization correction method described above, there is no need for special additional parts or troublesome adjustments to install the additional parts, and it is possible to eliminate the need for some convex lenses, which are the constituent elements of the optical system. By simply manufacturing the lens from a lens material with low transmittance, the Gaussian distribution light rays emitted from the light source can be corrected to a uniform light intensity distribution while maintaining the original function of the convex lens.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図はそれぞれ本発明の異なる実施
例の光学系の系統図、第4図は光強度分布補正用を兼ね
た凸レンズの透過率分布図、第5図は光強度分布を均一
化する説明図、第6図は本発明の実施対象例としてのレ
ーザ光電スイッチの構成図、第7図は第6図における投
光部の模式図、第8図は光源としての半導体レーザの放
射強度分布図である。各図において、 1:投光部、2:光源としての半導体レーザ、3a:光
源の放射するガウス分布光線、3b=平行光線、4:レ
ンズ系、40:光強度分布補正用の凸しンズ。 ■ 第1図 第2図
1, 2, and 3 are system diagrams of optical systems according to different embodiments of the present invention, FIG. 4 is a transmittance distribution diagram of a convex lens that also serves as a light intensity distribution correction, and FIG. An explanatory diagram for making the intensity distribution uniform. FIG. 6 is a configuration diagram of a laser photoelectric switch as an example of the implementation target of the present invention. FIG. 7 is a schematic diagram of the light projecting section in FIG. 6. FIG. FIG. 3 is a radiation intensity distribution diagram of a semiconductor laser. In each figure, 1: light projector, 2: semiconductor laser as a light source, 3a: Gaussian distributed light rays emitted by the light source, 3b = parallel rays, 4: lens system, 40: convex lens for correcting light intensity distribution. ■ Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] ガウス分布を呈した光線を放射する光源、およびその光
軸上に配した凸レンズを含む光学系において、系内のレ
ンズのうち少なくとも一枚の凸レンズを光強度分布補正
を兼ねたレンズとして、該凸レンズが前記光源から発す
る光線の波長域で通常のレンズ材料よりも透過率の低い
レンズ材料を選択して構成されていることを特徴とする
光学系におけるガウス分布光線の均一化装置。
In an optical system including a light source that emits light rays exhibiting a Gaussian distribution and a convex lens arranged on its optical axis, at least one convex lens among the lenses in the system is used as a lens that also serves as a lens for correcting light intensity distribution, and the convex lens A device for homogenizing Gaussian distributed light in an optical system, characterized in that the lens is constructed by selecting a lens material having a lower transmittance than a normal lens material in the wavelength range of the light emitted from the light source.
JP25694287A 1987-10-12 1987-10-12 Equalizing device for gaussian distribution light beam in optical system Pending JPH0199017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25694287A JPH0199017A (en) 1987-10-12 1987-10-12 Equalizing device for gaussian distribution light beam in optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25694287A JPH0199017A (en) 1987-10-12 1987-10-12 Equalizing device for gaussian distribution light beam in optical system

Publications (1)

Publication Number Publication Date
JPH0199017A true JPH0199017A (en) 1989-04-17

Family

ID=17299499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25694287A Pending JPH0199017A (en) 1987-10-12 1987-10-12 Equalizing device for gaussian distribution light beam in optical system

Country Status (1)

Country Link
JP (1) JPH0199017A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11560987B2 (en) 2019-11-20 2023-01-24 Nichia Corporation Light source device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128748A (en) * 1978-03-29 1979-10-05 Landis & Gyr Ag Device for forming laser light rays

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128748A (en) * 1978-03-29 1979-10-05 Landis & Gyr Ag Device for forming laser light rays

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11560987B2 (en) 2019-11-20 2023-01-24 Nichia Corporation Light source device

Similar Documents

Publication Publication Date Title
US6912077B2 (en) Optical system
JP2019523410A (en) Optical system for detecting the scanning range
US4473298A (en) Method for measuring a halftone dot area rate or a halftone picture density
CN115657174A (en) Device for weakening stray light
CN216434623U (en) Optical lens equipment and adjustable uniform light source system
JPS58122502A (en) Variable area beam splitter
EP3663031A1 (en) Laser processing apparatus
JPH0199017A (en) Equalizing device for gaussian distribution light beam in optical system
CA1284046C (en) Wobble correction by two reflections on a facet without bow
JPH09159951A (en) Optical scanner
US6130701A (en) Scanner apparatus and image recording apparatus provided with array-like light source
JP2971005B2 (en) Optical scanning device
KR102072623B1 (en) Optical beam forming unit, distance measuring device and laser illuminator
JPH01312403A (en) Photoelectric switch
JPH07168122A (en) Light projecting optical system and light receiving optical system
CN109298605A (en) Aberration correction system, litho machine and aberration correcting method
JPS6127683B2 (en)
JPH063611A (en) Scanning optical device
US4513434A (en) X-Ray reflective optical elements
JPS5940621A (en) Scanning optical system
KR101974001B1 (en) Method for detection of optical signal by using beam shaping of microlenslet and Optical detection system
JP5939822B2 (en) Optical scanning apparatus and image forming apparatus
WO2022196360A1 (en) Light-receiving element and measurement device
US20240125645A1 (en) System and method for profiling a laser beam over a galvanometer scan field
KR102200281B1 (en) Optical system and method thereof