JPH0198868A - Controller for refrigeration cycle - Google Patents

Controller for refrigeration cycle

Info

Publication number
JPH0198868A
JPH0198868A JP25793287A JP25793287A JPH0198868A JP H0198868 A JPH0198868 A JP H0198868A JP 25793287 A JP25793287 A JP 25793287A JP 25793287 A JP25793287 A JP 25793287A JP H0198868 A JPH0198868 A JP H0198868A
Authority
JP
Japan
Prior art keywords
refrigerant
clutch
compressor
expansion valve
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25793287A
Other languages
Japanese (ja)
Inventor
Akio Matsuoka
彰夫 松岡
Masashi Takagi
正支 高木
Yuji Honda
本田 祐次
Tatsuya Oike
達也 大池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP25793287A priority Critical patent/JPH0198868A/en
Publication of JPH0198868A publication Critical patent/JPH0198868A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To reduce a shock as caused by the starting of a compressor by shifting the travel of an electric type expansion valve to a closure upon the start of a compressor to decrease the flow rate of a refrigerant of a refrigeration cycle for lowering a compression workload of the compressor. CONSTITUTION: A refrigerant temperature sensor 19 detects the temperature TE of a refrigerant on the inlet side of an evaporator and a sensor 20 detects the temperature TR of the refrigerant on the outlet side of the evaporator. A CPU 25 controls the travel of an electric type expansion valve 7 so that the temperature difference of the refrigerant between an inlet and an outlet of the evaporator 12 as given by the temperatures TE and TR of the refrigerant, namely, the degree of superheat coincides with a target temperature difference. Under such a condition, when a heat load decreases, a control is performed to reduce the travel of the valve 7 corresponding to a load. The CPU 25 outputs a control signal to an electromagnetic clutch 2 through an output circuit 24 to perform an ON-OFF control of the clutch 2. When the clutch 2 is linked, the travel of the expansion valve 7 is fully closed and no refrigerant flows to a refrigeration cycle to put the compressor 1 out of work. This enables relaxing of a shock as caused when the clutch 2 is linked (at the start of the compressor 1).

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は冷凍サイクルの制m装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) This invention relates to a control device for a refrigeration cycle.

(従来の技術) 従来、自動車用空調装置において、冷凍サイクルの一部
を成す圧縮機はクラッチを介してエンジンと接続され、
圧縮機はエンジンにて駆動されるようになっている。ざ
らに、同自動車用空調装置には、冷凍サイクルにおける
蒸発器のフロストを防止するために、蒸発器内の冷媒の
蒸発温度を検知し所定の温度以下になると前記クラッチ
を切り(断状態にし)圧縮機の駆動を停止するとともに
所定の温度以上になるとクラッチをつなぎ(接状態にし
)圧縮機の駆動を再開するようになっていた。
(Prior Art) Conventionally, in an automobile air conditioner, a compressor forming part of a refrigeration cycle is connected to an engine via a clutch.
The compressor is driven by an engine. Generally speaking, in order to prevent the evaporator from frosting in the refrigeration cycle, the automotive air conditioner detects the evaporation temperature of the refrigerant in the evaporator and disengages the clutch when the temperature falls below a predetermined temperature. The drive of the compressor was stopped, and when the temperature exceeded a predetermined temperature, the clutch was connected (connected) and the drive of the compressor was restarted.

(発明が解決しようとする問題点) しかし、このクラッチのオン・オフ(断接劾作)が頻繁
に行なわれるためにクラッチのオン動作(種動作)時に
運転者に圧縮機の起動によるショックを与えるという問
題があった。
(Problem to be solved by the invention) However, because this clutch is frequently turned on and off (connection/disconnection operation), the driver is shocked by the start of the compressor when the clutch is turned on (primary operation). There was a problem of giving.

尚、関連する技術として本願出願人が先に出願した特開
昭62−66064号公報があげられる。
Incidentally, as a related technique, there is cited Japanese Patent Application Laid-open No. 62-66064, which was previously filed by the applicant of the present invention.

(発明の目的) この発明の目的は上記問題点を解消し、クラッチの種動
作に伴う圧縮機の起動によるショックを低減できる冷凍
サイクルの制御装置を提供することにおる。
(Object of the Invention) An object of the present invention is to provide a refrigeration cycle control device that solves the above-mentioned problems and can reduce the shock caused by the start-up of the compressor accompanying the clutch operation.

(問題点を解決するための手段) この発明は上記目的を達成すべく、エンジンとクラッチ
を介して接続され、エンジンにて駆動される圧縮機と、
前記圧縮機にて圧縮されたガス冷媒を凝縮する凝縮器と
、前記凝縮器にて凝縮された液冷媒を減圧膨張するとと
もに弁開度を電気的に制御する電気式膨張弁と、前記電
気式膨張弁を通過した冷媒を蒸発させる蒸発器とを備え
た冷凍サイクルにおいて、 前記クラッチを断接劾作させるクラッチ制御手段と、前
記クラッチ制御手段によりクラッチを種動作し前記圧縮
機を起動させる時には前記電気式膨張弁の開度を閉状態
にすべく同電気式膨張弁を制御する膨張弁制御手段とを
備えた冷凍サイクルの制御装置をその要旨とするもので
ある。
(Means for Solving the Problems) In order to achieve the above object, the present invention includes a compressor connected to an engine via a clutch and driven by the engine;
a condenser that condenses the gas refrigerant compressed by the compressor; an electric expansion valve that depressurizes and expands the liquid refrigerant condensed in the condenser and electrically controls the valve opening; In the refrigeration cycle, the refrigeration cycle includes an evaporator that evaporates refrigerant that has passed through an expansion valve, and a clutch control unit that connects and disconnects the clutch, and a clutch control unit that operates the clutch to start the compressor. The gist of the present invention is a refrigeration cycle control device including an expansion valve control means for controlling the electric expansion valve to close the opening of the electric expansion valve.

(作用) 膨張弁制御手段はクラッチ制御手段にてクラッチを種動
作し圧縮機を起動させる時には電気式膨張弁の開度を閉
状態にすべく同電気式膨張弁を制御する。
(Operation) The expansion valve control means controls the electric expansion valve so that the opening degree of the electric expansion valve is closed when the clutch control means operates the clutch and starts the compressor.

その結果、圧縮機を起動させる時に電気式膨張弁の開度
が閉状態になるので、冷凍サイクルの冷媒流量が減少さ
れ圧縮機の圧縮仕事量が低減され圧縮機起動時のショッ
クが少ない。
As a result, the opening degree of the electric expansion valve is closed when the compressor is started, so the refrigerant flow rate in the refrigeration cycle is reduced, the compression work of the compressor is reduced, and there is less shock when the compressor is started.

(実施例) 以下、この発明を具体化した一実施例を図面に従って説
明、する。
(Example) An example embodying the present invention will be described below with reference to the drawings.

第1図に示すように、冷凍サイクル中に配置される圧縮
機1は電磁クラッチ2を介してエンジン3からの駆動力
が伝達され、同圧縮機1が駆動されて同冷凍サイクル中
に冷媒を供給する。
As shown in FIG. 1, a compressor 1 disposed in the refrigeration cycle receives driving force from an engine 3 via an electromagnetic clutch 2, and the compressor 1 is driven to supply refrigerant during the refrigeration cycle. supply

凝縮器4にはエンジンクーリングファン5が備えられ、
前記圧縮機1から送られてきた高温高圧ガス状の冷媒を
冷却風によって液化する。凝縮器4で得られた液冷媒は
レシーバ6を通って電気式の膨張弁7に送られる。この
膨張弁7は弁開度が電気的に制御される機構を有した膨
張弁である。
The condenser 4 is equipped with an engine cooling fan 5,
The high-temperature, high-pressure gaseous refrigerant sent from the compressor 1 is liquefied by cooling air. The liquid refrigerant obtained in the condenser 4 is sent to an electric expansion valve 7 through a receiver 6. This expansion valve 7 is an expansion valve having a mechanism in which the valve opening degree is electrically controlled.

詳しくは、第2図に示すように、冷媒の流路8の細径部
8aにスプリング9で閉状態に弾支される弁部材10を
電磁コイル11の電磁力で移動させ、冷媒流路8が開閉
される。そして、この電磁コイル11への入力電圧のデ
ユーティ比を変えることにより冷媒流路8の開閉比が変
化して冷媒流山が調整される。つまり、電磁コイル11
への入力電圧のデユーティ比を変えることにより膨張弁
7の弁開度を実質的に調整できるようになっている。
Specifically, as shown in FIG. 2, a valve member 10 elastically supported in the closed state by a spring 9 on the narrow diameter portion 8a of the refrigerant flow path 8 is moved by the electromagnetic force of the electromagnetic coil 11, and the refrigerant flow path 8 is closed. is opened and closed. By changing the duty ratio of the input voltage to the electromagnetic coil 11, the opening/closing ratio of the refrigerant flow path 8 is changed, and the refrigerant flow mountain is adjusted. In other words, the electromagnetic coil 11
By changing the duty ratio of the input voltage to the expansion valve 7, the opening degree of the expansion valve 7 can be substantially adjusted.

電気式膨張弁7にて液冷媒は低温低圧の霧状になって、
次の蒸発器12に流れ込む。蒸発器12は空気通路13
内に配設され、その近くにブロアモータ14が備えられ
ている。このブロアモータ14の駆動によって車室内又
は車室外の空気が蒸発器12を通過する。このとき、蒸
発器12に流れ込んだ霧状の冷媒は車室内又は車室外の
空気から熱を奪って蒸発し、ざらに加熱されガス状の冷
媒となり、圧縮機1に吸込まれる。
At the electric expansion valve 7, the liquid refrigerant becomes a low-temperature, low-pressure mist.
It flows into the next evaporator 12. The evaporator 12 is an air passage 13
A blower motor 14 is provided nearby. By driving the blower motor 14, air inside or outside the vehicle passes through the evaporator 12. At this time, the mist refrigerant that has flowed into the evaporator 12 absorbs heat from the air inside or outside the vehicle, evaporates, is roughly heated, becomes a gaseous refrigerant, and is sucked into the compressor 1.

この蒸発器12での冷媒の蒸発潜熱により冷却された冷
風は、ヒータユニット15を介して車室内へ吹出される
。ヒータユニット15にはエンジン冷却水を熱源とする
ヒータコア16、このヒータコア16を通過して加熱さ
れる温風とヒータコア16のバイパス路17を通過する
冷風の風量割合を調節して車室内への吹出空気温度を調
節する温度制御ダンパ18等が内蔵されている。
The cold air cooled by the latent heat of evaporation of the refrigerant in the evaporator 12 is blown into the vehicle interior via the heater unit 15. The heater unit 15 includes a heater core 16 that uses engine cooling water as a heat source, and adjusts the proportion of warm air heated by passing through the heater core 16 and cold air passing through a bypass passage 17 of the heater core 16 to blow into the vehicle interior. A temperature control damper 18 and the like for adjusting air temperature is built-in.

前記蒸発器12の冷媒の入口側には第1の冷媒温センサ
19が設けられ、同センサ19は蒸発器入口側冷媒温度
TEを検出する。又、蒸発器12の冷媒の出口側には第
2の冷媒温センサ20が設けられ、同センサ20は蒸発
器出口側冷媒温度TRを検出する。
A first refrigerant temperature sensor 19 is provided on the refrigerant inlet side of the evaporator 12, and the sensor 19 detects the refrigerant temperature TE on the evaporator inlet side. Further, a second refrigerant temperature sensor 20 is provided on the refrigerant outlet side of the evaporator 12, and the second refrigerant temperature sensor 20 detects the refrigerant temperature TR on the evaporator exit side.

クラッチ制御手段及び膨張弁制御手段としての制御回路
21は前記第1及び第2の冷媒温センサ19,20から
検出信号を入力する入力回路22と、この入力回路22
からの入力信号に基づいて所定の演算処理を行なうマイ
クロコンピュータ23と、このマイクロコンピュータ2
3の出力信号に基づいて前記電磁クラッチ2及び電気式
膨張弁7への通電を制御する出力回路24とを有してい
る。入力回路22はアナログ信号をデジタル信号に変換
するA/D変換器等を内蔵しており、又、出力回路24
は負荷を駆動するリレー回路等を内蔵している。
A control circuit 21 serving as a clutch control means and an expansion valve control means includes an input circuit 22 that inputs detection signals from the first and second refrigerant temperature sensors 19 and 20, and this input circuit 22.
a microcomputer 23 that performs predetermined arithmetic processing based on input signals from the microcomputer 2;
The output circuit 24 controls energization of the electromagnetic clutch 2 and the electric expansion valve 7 based on the output signal No. 3. The input circuit 22 has a built-in A/D converter etc. that converts analog signals into digital signals, and the output circuit 24
has a built-in relay circuit etc. that drives the load.

前記マイクロコンピュータ23は中央処理装置(以下、
CPUという)24、読み出し専用のメモリ(ROM>
26、読み出し及び書き替え可能なメモリ(RAM>2
7、クロック回路28等を備えており、これらCPU2
5.ROM26、RAM27及びクロック回路28はパ
スラインを介して互いに接続されている。ROM26に
は制御プログラムが内蔵され、CPU25はこの制御プ
ログラムに基づいて各種演算処理を実行する。RAM2
7は入力回路22からの各デジタル信号を受けて一時的
に記憶し、これら各信号をCPU25に選択的に付与す
る。クロック回路28は水晶発振器と協働して所定周波
数を有するクロック信号を出力しこれに基づいてCPU
25の所定の制御プログラムの実行を許容する。
The microcomputer 23 is a central processing unit (hereinafter referred to as
CPU) 24, read-only memory (ROM>
26. Readable and rewritable memory (RAM>2
7, is equipped with a clock circuit 28, etc., and these CPU2
5. The ROM 26, RAM 27, and clock circuit 28 are connected to each other via a pass line. The ROM 26 has a built-in control program, and the CPU 25 executes various calculation processes based on this control program. RAM2
7 receives and temporarily stores each digital signal from the input circuit 22, and selectively provides each of these signals to the CPU 25. The clock circuit 28 works with a crystal oscillator to output a clock signal having a predetermined frequency, and based on this, the CPU
25 predetermined control programs are allowed to be executed.

CPU25は前記第1及び第2の冷媒温センサ19.2
0から信号を入力して、蒸発器入口側冷媒温度TE及び
蒸発器出口側冷媒温度TRを検知する。又、CPU25
は出力回路24を介して電気式膨張弁7の電磁コイル1
1に駆動信号を出力し、その弁開度(デユーティ比>D
Tを調整するようになっている。
The CPU 25 is connected to the first and second refrigerant temperature sensors 19.2.
A signal is input from 0 to detect the evaporator inlet side refrigerant temperature TE and the evaporator outlet side refrigerant temperature TR. Also, CPU25
is the electromagnetic coil 1 of the electric expansion valve 7 via the output circuit 24.
A drive signal is output to 1, and its valve opening degree (duty ratio > D
It is designed to adjust T.

CPU25は冷媒温センサ19.20で検出された冷媒
温度TE、TRによって与えられる蒸発器12の入口と
出口の間の冷媒温度差(=TR−TE>、即ち過熱度が
目標とする温度差(スーパーヒート)SHOに一致する
ように電気式膨張弁7の弁開度DTを制御し、この状態
において熱負荷が減少すると負荷に対応させて弁開度D
Tを絞るように制御される。
The CPU 25 calculates the refrigerant temperature difference between the inlet and the outlet of the evaporator 12 given by the refrigerant temperatures TE and TR detected by the refrigerant temperature sensors 19 and 20 (=TR-TE>, that is, the temperature difference at which the degree of superheating is targeted) ( The valve opening degree DT of the electric expansion valve 7 is controlled to match the super heat) SHO, and when the heat load decreases in this state, the valve opening degree D is adjusted according to the load.
It is controlled to narrow down the T.

本実施例では、この弁の開度制御はPID制御が採用さ
れている。即ち、入力としての目標のスーパーヒートS
HOと実際の過熱度5t−1との偏差enに対し出力と
しての弁開度DTnを次式にて演算している。
In this embodiment, PID control is used to control the opening degree of this valve. That is, the target superheat S as input
The valve opening degree DTn as an output is calculated using the following equation with respect to the deviation en between HO and the actual superheat degree 5t-1.

DT、= ・・・(1) ただし、DT、1は前回の弁開度、Kp、Td。DT,= ...(1) However, DT, 1 is the previous valve opening, Kp, Td.

Tiは制御定数、en−1’ en−2は前回と前々回
の目標のスーパーヒートと実際の過熱度の偏差、eはサ
ンプリングタイムである。
Ti is a control constant, en-1' and en-2 are deviations between the target superheat and the actual superheat degree from the previous time and the time before the previous time, and e is the sampling time.

又、CPU25は出力回路24を介して前記電磁クラッ
チ2に制御信号を出力し、同クラッチ2をオンオフ(断
接)制御するようになっている。
Further, the CPU 25 outputs a control signal to the electromagnetic clutch 2 via the output circuit 24 to control the clutch 2 on and off (connection/disconnection).

即ち、前記冷媒温センサ19で検出された蒸発器入口側
冷媒温度TEが所定の温装置O以下か、又、所定の温度
TEHを以上かを判断し、冷媒温重置O以下のときには
クラッチ2をオフする(切る)とともに所定の温度−r
E+;以上のときにはクラッチ2をオンする(つなぐ)
ようになっている。
That is, it is determined whether the evaporator inlet side refrigerant temperature TE detected by the refrigerant temperature sensor 19 is below a predetermined temperature device O or above a predetermined temperature TEH, and when the refrigerant temperature is below O, the clutch 2 is activated. is turned off (cut) and the predetermined temperature -r
E+: Turn on clutch 2 (connect) when it is above
It looks like this.

次に、このように構成した冷凍サイクルの制御装置の作
用を説明する。
Next, the operation of the refrigeration cycle control device configured as described above will be explained.

CPU25は図示しないエアコンスイッチがオン操作さ
れたと判断すると、第3図に示す処理を開始する。まず
、CPU25は初期条件を設定する(ステップ1)。こ
れは、目標のスーパーヒート5HO=5℃、蒸発器入口
冷媒温度の第1の設定装置o=−1℃、蒸発器入口冷媒
温度の第2の設定値TEHi−4℃、PID制御の制御
定数Kp=0.005、T+=40、Td=1、en−
1=O’ en−2=Oと設定するものである。
When the CPU 25 determines that the air conditioner switch (not shown) has been turned on, it starts the process shown in FIG. 3. First, the CPU 25 sets initial conditions (step 1). This is the target superheat 5HO = 5°C, the first setting device o for the evaporator inlet refrigerant temperature = -1°C, the second setting value TEHi -4°C for the evaporator inlet refrigerant temperature, and the control constant for PID control. Kp=0.005, T+=40, Td=1, en-
1=O' en-2=O.

エアコンスイッチ投入時においては上述したステップ1
による所定の設定動作の後、又、俊記するフロスト防止
のための蒸発器入口側冷媒温度TEが所定温度TEHi
に達するとく後記ステップ20)、次のステップに進む
When turning on the air conditioner, step 1 described above
After the predetermined setting operation by
When reaching step 20), proceed to the next step.

CPU25は膨張弁7の弁開度DTrl =O(全開)
を設定した後(ステップ2〉、クラッチ2をオン(つな
ぐ)とともにタイマ動作を開始し予め定めた時間e(例
えば、5秒)待機する(ステップ3,4)。CPU25
は所定の微小時間ごとに第4図に示す割込みルーチンを
実行しており、即ち、第3図に示すメインルーチンでの
その時々の弁開度DTnを読み出し、膨張弁7をその弁
開度DTnにすべく駆動制御している(ステップ21)
。従って、メインルーチンにおけるステップ2〜4にお
いては、圧縮機1の起勅俊時間θ経過するまでは弁開度
は全閉にされる。この状態を第5図のPlにて示す。尚
、弁開度を全閉(DTn =O)にしている時間eは過
熱度SHが目標のスーパー上−8380以上になる時間
であって、その時間eは予め求められている。
The CPU 25 determines the valve opening degree DTrl of the expansion valve 7 =O (fully open)
After setting (step 2), the clutch 2 is turned on (connected), the timer operation is started, and the timer operation is waited for a predetermined time e (for example, 5 seconds) (steps 3 and 4).CPU 25
executes the interrupt routine shown in FIG. 4 at predetermined minute intervals, that is, reads the valve opening degree DTn at each time in the main routine shown in FIG. (Step 21)
. Therefore, in steps 2 to 4 of the main routine, the valve opening degree is kept fully closed until the starting time θ of the compressor 1 has elapsed. This state is shown by Pl in FIG. The time e during which the valve opening is fully closed (DTn = O) is the time during which the degree of superheating SH becomes equal to or higher than the target superheat level -8380, and the time e is determined in advance.

その後、CPU25は膨張弁7の弁開度を前記設定した
起動時の弁開度DTn =O(全閉〉に対し一定の割合
(ΔDT>を加算する(ステップ5)。その復、CPU
25は蒸発器入口冷媒温度TE。
After that, the CPU 25 adds a certain ratio (ΔDT> to the valve opening degree of the expansion valve 7 at the time of startup set above DTn = O (fully closed) (step 5).
25 is the evaporator inlet refrigerant temperature TE.

蒸発出口冷媒温度TRを取込むとともに(ステップ6)
、その両温度差SH(=TR−TE>を算出することに
より過熱度SHを求める(ステップ7)。そして、CP
U25は求めた過熱度SHと前記設定した目標のスーパ
ーヒートSHOとを比較しくステップ8)、当初は過熱
度SHが目標のスーパーヒートS H0以上なので、1
秒待機した侵(ステップ9)前記ステップ5〜9を繰返
す。
Incorporating the evaporation outlet refrigerant temperature TR (step 6)
, the degree of superheating SH is determined by calculating the temperature difference SH (=TR-TE>) (step 7).Then, CP
U25 compares the obtained superheat degree SH with the set target super heat SHO (step 8). Initially, the superheat degree SH is higher than the target super heat SHO, so 1
Wait for seconds (Step 9) Repeat steps 5 to 9.

即ち、膨張弁7の開度を一定の割合(ΔDT>で徐々に
増大させる。この弁開度DTの増大を前記第4図に示す
割込みルーチンの実行にて膨張弁7が開いていく。その
状態では第5図中、P2で示す弁開度増大動作が行なわ
れる。
That is, the opening degree of the expansion valve 7 is gradually increased by a constant rate (ΔDT>).The expansion valve 7 is opened by executing the interrupt routine shown in FIG. 4 to increase this valve opening degree DT. In this state, the valve opening increasing operation shown at P2 in FIG. 5 is performed.

その後、CPU25は前記ステップ8において、過熱度
SHが目標のスーパーヒートSHO以下になると(SH
<5HO) 、第1の冷媒温センサ19による蒸発器入
口側冷媒温度TEと第2の冷媒温センサ20による蒸発
器出口側冷媒温度TRとを読取るとともに(ステップ1
0)、その蒸発器入口側冷媒温度TEと設定した蒸発器
入口冷媒温度の第1の設定位置Oとを比較する(ステッ
プ11)。
Thereafter, in step 8, the CPU 25 determines that when the degree of superheat SH becomes equal to or less than the target superheat SHO (SH
<5HO), while reading the evaporator inlet side refrigerant temperature TE measured by the first refrigerant temperature sensor 19 and the evaporator outlet side refrigerant temperature TR measured by the second refrigerant temperature sensor 20 (Step 1
0), the evaporator inlet side refrigerant temperature TE is compared with the first set position O of the evaporator inlet refrigerant temperature (step 11).

そして、蒸発器入口側冷媒温度TEが設定した蒸発器入
口冷媒温度の第1の設定位置10以上(TE≧TE L
o >ならば、CPU25は過熱度SH(=TR−TE
>を算出しくステップ12)その過熱度SHから目標の
オーバーヒートSHOを減算し両値の偏差en  (=
SH−3HO)を求める(ステップ13)。そして、C
PU25は上式(1)により弁開度DTnを求め(ステ
ップ14)、変数(DTn 、e、、eo−i )を変
えるとともに(ステップ15)、2秒待機しくステップ
16)前記ステップ10〜16を繰返す。
Then, the evaporator inlet side refrigerant temperature TE is set at the first setting position 10 or more of the evaporator inlet refrigerant temperature (TE≧TE L
o >, the CPU 25 sets the superheat degree SH (=TR-TE
Step 12) Subtract the target overheat SHO from the superheat degree SH and find the deviation en (=
SH-3HO) is determined (step 13). And C
The PU 25 calculates the valve opening degree DTn using the above equation (1) (step 14), changes the variables (DTn, e, eo-i) (step 15), waits for 2 seconds (step 16), and performs steps 10 to 16 described above. Repeat.

このように求めた弁開度DTnが前記第4図に示す割込
みルーチンの実行にて膨張弁7の開度駆動が行なわれる
。その状態では第5図中、P3で示すスーパーヒート制
御が行なわれる。
The valve opening degree DTn obtained in this manner is used to drive the opening degree of the expansion valve 7 by executing the interrupt routine shown in FIG. In this state, superheat control indicated by P3 in FIG. 5 is performed.

又、CPU25は前記ステップ11において、蒸発器入
口側冷媒温度TEが蒸発器入口冷媒温度の第1の設定位
置O以下(TE<置Lo>になると、蒸発器12のフロ
スト防止のために次の処理を行なう。CPU25は膨張
弁7の開度DTn =0 (全閉)を設定しくステップ
17〉、クラッチ2をオフ(切る)にする(ステップ1
8)。
Further, in step 11, when the evaporator inlet side refrigerant temperature TE reaches the first set position O of the evaporator inlet refrigerant temperature (TE<position Lo>), the CPU 25 performs the following steps to prevent the evaporator 12 from frosting. The CPU 25 sets the opening degree DTn of the expansion valve 7 to 0 (fully closed) (Step 17) and turns off the clutch 2 (Step 1).
8).

そして、CPU25は蒸発器入口冷媒温度REを測定す
るとともに(ステップ19)その温度REが第2の設定
値TEHi以上(TE≧TEHi )になると(ステッ
プ20)、前記ステップ2に戻る。
Then, the CPU 25 measures the evaporator inlet refrigerant temperature RE (step 19), and when the temperature RE becomes equal to or higher than the second set value TEHi (TE≧TEHi) (step 20), the process returns to step 2.

このように本実施例においては、クラッチ2をつなぐと
きには膨張弁7の開度を全閉としたので、冷凍サイクル
において冷媒が流れず圧縮機1は仕事をしない状態とな
っているので、クラッチ2をつないだとき(圧縮機1の
起動のとき)のショックを緩和することができる。
As described above, in this embodiment, when the clutch 2 is connected, the expansion valve 7 is fully closed, so the refrigerant does not flow in the refrigeration cycle and the compressor 1 does not perform any work, so the clutch 2 The shock that occurs when the compressor 1 is connected (when the compressor 1 is started) can be alleviated.

尚、この発明は上記実施例に限定されるものでなく、例
えば上記実施例ではクラッチ2をつなぐときは膨張弁7
の開度を仝閉にしたがコンプレッサオイルを冷媒ととも
に圧縮機に戻すための最小限の弁開度としてもよく、要
は圧縮機の起動の際にそのショックを緩和させるための
弁開度であればよい。
Note that this invention is not limited to the above embodiment; for example, in the above embodiment, when the clutch 2 is connected, the expansion valve 7 is
Although the valve opening was set to close, it may be the minimum valve opening to return the compressor oil to the compressor together with the refrigerant.In short, it is the valve opening to alleviate the shock when the compressor starts up. Good to have.

又、上記実施例では弁開度はクラッチ接続後所定時間e
経過後5t−1が目標値になるまで増大させたが、クラ
ッチ2を切った際の弁開度まで戻しその後スーパーヒー
ト制御を行なうようにしてもよい。
Further, in the above embodiment, the valve opening degree is determined for a predetermined time e after the clutch is connected.
Although the valve opening was increased until 5t-1 reached the target value after the elapse of time, the valve opening may be returned to the valve opening when the clutch 2 was disengaged, and then the superheat control may be performed.

さらに、上記実施例では過熱度を蒸発器の出入口の冷媒
温度差で検出したが、この他にも蒸発器の出口の冷媒圧
力と温度により過熱度を検出してもよい。
Further, in the above embodiment, the degree of superheating is detected by the difference in temperature of the refrigerant at the outlet and outlet of the evaporator, but the degree of superheating may be detected by the pressure and temperature of the refrigerant at the outlet of the evaporator.

ざらには、上記各実施例ではフロスト防止のためにクラ
ッチ2を断接劾作する場合について説明したが、他にも
例えば加速状態のときにクラッチを切るようにした冷凍
サイクルにおいてはその接動作の時に本発明を実施する
ようにしてもよい。
Roughly speaking, in each of the above embodiments, the case where the clutch 2 is engaged/disengaged to prevent frosting has been explained, but in other cases, for example, in a refrigeration cycle where the clutch is disengaged during an acceleration state, the engagement/disengagement operation may be used. The present invention may be implemented at the time of.

発明の効果 以上詳述したようにこの発明によれば、クラッチの接動
作に伴う圧縮機の起動によるショックを緩和することが
できる優れた効果を発揮する。
Effects of the Invention As described in detail above, the present invention exhibits an excellent effect of alleviating the shock caused by the start-up of the compressor accompanying the clutch engagement operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明を具体化した冷凍サイクルのυNB装
置を示す図、第2図は電気式膨張弁の断面1〜図、第5
図は過熱度と膨張弁の開度を示すタイムヂャート図であ
る。 1は圧縮機、2は電磁クラッチ、3はエンジン、4は凝
縮器、7は電気式膨張弁、12は蒸発器、21はクラッ
チ制御手段及び膨張弁制御手段としての制御回路。
Fig. 1 is a diagram showing a υNB device of a refrigeration cycle embodying the present invention, Fig. 2 is a cross section 1 to 5 of an electric expansion valve, and Fig.
The figure is a time chart showing the degree of superheating and the opening degree of the expansion valve. 1 is a compressor, 2 is an electromagnetic clutch, 3 is an engine, 4 is a condenser, 7 is an electric expansion valve, 12 is an evaporator, and 21 is a control circuit as clutch control means and expansion valve control means.

Claims (1)

【特許請求の範囲】[Claims] 1. エンジンとクラッチを介して接続され、エンジン
にて駆動される圧縮機と、 前記圧縮機にて圧縮されたガス冷媒を凝縮する凝縮器と
、 前記凝縮器にて凝縮された液冷媒を減圧膨張するととも
に弁開度を電気的に制御する電気式膨張弁と、 前記電気式膨張弁を通過した冷媒を蒸発させる蒸発器と を備えた冷凍サイクルにおいて、 前記クラッチを断接劾作させるクラッチ制御手段と、 前記クラッチ制御手段によりクラッチを接動作し前記圧
縮機を起動させる時には前記電気式膨張弁の開度を閉状
態にすべく同電気式膨張弁を制御する膨張弁制御手段と を備えたことを特徴とする冷凍サイクルの制御装置。
1. a compressor connected to the engine via a clutch and driven by the engine; a condenser that condenses the gas refrigerant compressed by the compressor; and a depressurized and expanded liquid refrigerant condensed by the condenser. In the refrigeration cycle, the refrigeration cycle includes an electric expansion valve that electrically controls a valve opening degree, and an evaporator that evaporates refrigerant that has passed through the electric expansion valve, and a clutch control means that connects and disconnects the clutch. and an expansion valve control means for controlling the electric expansion valve so that the opening degree of the electric expansion valve is closed when the clutch is engaged by the clutch control means to start the compressor. A unique refrigeration cycle control device.
JP25793287A 1987-10-12 1987-10-12 Controller for refrigeration cycle Pending JPH0198868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25793287A JPH0198868A (en) 1987-10-12 1987-10-12 Controller for refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25793287A JPH0198868A (en) 1987-10-12 1987-10-12 Controller for refrigeration cycle

Publications (1)

Publication Number Publication Date
JPH0198868A true JPH0198868A (en) 1989-04-17

Family

ID=17313200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25793287A Pending JPH0198868A (en) 1987-10-12 1987-10-12 Controller for refrigeration cycle

Country Status (1)

Country Link
JP (1) JPH0198868A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11735992B2 (en) 2014-08-18 2023-08-22 Eddy Current Limited Partnership Tuning of a kinematic relationship between members

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11735992B2 (en) 2014-08-18 2023-08-22 Eddy Current Limited Partnership Tuning of a kinematic relationship between members

Similar Documents

Publication Publication Date Title
US4829777A (en) Refrigeration system
JP4273613B2 (en) Air conditioner
US4646535A (en) Temperature and pressure monitored refrigeration system
CA1196412A (en) Transport refrigeration system control
US4325224A (en) Method and apparatus for transport refrigeration system control
JP4558060B2 (en) Refrigeration cycle equipment
JP4003320B2 (en) Refrigeration cycle equipment
JPH09178274A (en) Refrigerating system
KR100364686B1 (en) Vehicular air conditioner
JPH0198858A (en) Controller for refrigeration cycle
KR940010974B1 (en) Air conditioning apparatus with selectively carries out refrigerant collection operate
JPH0198868A (en) Controller for refrigeration cycle
JP4819385B2 (en) Control device for cooling system
JPH1142933A (en) Air conditioner
JP5384124B2 (en) Refrigeration system, control device and control method thereof
WO2018139336A1 (en) Vehicle air conditioning device
JPH0198869A (en) Controller for refrigeration cycle
JPH0359358A (en) Air conditioner
JPH0452446A (en) Air-conditioner
JPH10318612A (en) Control method for air conditioner
KR101858492B1 (en) Control method of vehicle air conditioner
JP2005249261A (en) Freezer
JP2002254922A (en) Air conditioner for vehicle
JPS59149815A (en) Car refrigerating cycle controller
JPS62131167A (en) Refrigeration cycle device