JPH0198135A - Optical pickup device - Google Patents

Optical pickup device

Info

Publication number
JPH0198135A
JPH0198135A JP63234147A JP23414788A JPH0198135A JP H0198135 A JPH0198135 A JP H0198135A JP 63234147 A JP63234147 A JP 63234147A JP 23414788 A JP23414788 A JP 23414788A JP H0198135 A JPH0198135 A JP H0198135A
Authority
JP
Japan
Prior art keywords
semiconductor laser
chip
radiation surface
pickup device
optical pickup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63234147A
Other languages
Japanese (ja)
Inventor
Kazuo Ito
和夫 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63234147A priority Critical patent/JPH0198135A/en
Publication of JPH0198135A publication Critical patent/JPH0198135A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Head (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To prevent undesirable reflection at a radiation surface of a semiconductor laser chip by providing an anti-reflection coating on the radiation surface of the laser chip except a radiative point. CONSTITUTION:The anti-reflection coating 10 is provided on the part of the radiation surface N excluding the radiative point O of the semiconductor laser chip 8 and an end surface 9a of a chip fitting base 9. By this constitution, when return beams P'2(0) and P'0(+1) are made incident upon the radiation surface N of the chip 8, the beams are absorbed in majority by the coating 10, so that the amt. of their returning to a light path X is extremely minimized. Consequently, a return beam P'0(0) is reflected by the radiation surface N and diffracted by a diffraction grating 2, and the its beam in the direction of P'2 is only interfered with the beam P'2, thus reducing drastically the fluctuation of an output signal of a photosensor.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、光ディスク(情報が光学的に読出し可能に記
録されているディスク)に対して利用される光学式ピッ
クアップ装置に関するものであり、特に光学式ピックア
ップ装置を構成する半導体レーザに間する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to an optical pickup device used for an optical disc (a disc on which information is recorded in an optically readable manner). In particular, it applies to semiconductor lasers constituting optical pickup devices.

(ロ)従来の技術 光学式ピックアップ装置として、第6図に示す構造を有
するものが知られている(例えば、実開昭58−753
42号参照と図に於いて、半導体レーザ(上)より出た
レーザ光は回折格子(2)によって回折され、三つのビ
ームPo(主ビーム)、Pl、P2〈補助ビーム)とな
って、ビームスプリッタ(透過光と反射光の比が同一の
もの、或いは比が相違するもの)(3)、対物しンズ(
4)を経てディスク′(D)に入射する。ディスク(D
)にて反射されたビームは反射光P’O%P’l、p 
/ tとなって、元の光路を逆に戻り(補助ビームP1
.P2はディスクに対して垂直ではなく若干角度をもっ
て入射するがこの角度は極めて小さい為、反射光P’t
、p l tは実質的に元の光路を戻ると考えて良い)
、対物レンズ(4)を経てビームスプリッタ(3)に至
る。ビームスプリッタ(3)にて反射きれたビーム(P
’o% P’s、P′ 堂)は、凹レンズ(5)、シリ
ンドリカルレンズ(6)を経てフォトセンサ(工)に至
る。フォトセンサ(、L)は反射主ビームP′oを受け
るセンサ(7c〉、反射補助ビームP’sを受けるセン
サ(7a)及び反射補助ビームp l  2を受けるセ
ンサ(7b)より構成されている。
(b) Conventional technology As an optical pickup device, one having the structure shown in FIG. 6 is known (for example,
Refer to No. 42 and in the figure, the laser light emitted from the semiconductor laser (top) is diffracted by the diffraction grating (2) and becomes three beams Po (main beam), Pl, and P2 (auxiliary beam). Splitter (one with the same or different ratio of transmitted light and reflected light) (3), objective lens (
4) and enters the disk' (D). Disc (D
) is reflected light P'O%P'l,p
/ t, and returns to the original optical path in the opposite direction (auxiliary beam P1
.. P2 is not perpendicular to the disk but is incident at a slight angle, but since this angle is extremely small, the reflected light P't
, p l t can be considered to essentially return to the original optical path)
, and reaches the beam splitter (3) via the objective lens (4). The beam (P) that has been completely reflected by the beam splitter (3)
'o% P's, P'do) reaches the photosensor (process) via a concave lens (5) and a cylindrical lens (6). The photosensor (, L) is composed of a sensor (7c) that receives the reflected main beam P'o, a sensor (7a) that receives the reflected auxiliary beam P's, and a sensor (7b) that receives the reflected auxiliary beam p l 2. .

そして、センサ(7c)より情報信号及びフォーカスエ
ラー信号が得られ、また、センサ(7a)(7b)の出
力差としてラジアルエラー信号が得られることは、既に
知られている。
It is already known that an information signal and a focus error signal can be obtained from the sensor (7c), and that a radial error signal can be obtained as the output difference between the sensors (7a) and (7b).

さて、第7図は、従来のピックアップ装置に於けるラジ
アルエラー信号(RE)の変化を示している。ラジアル
エラー信号(RE)の直流成分は、ディスクの1回転に
対応して変動し、この変動は面振れの大きいディスク程
大きくなる。ディスクに記録されている曲を検索する等
の特殊なディスク再生を行う場合、ラジアルエラー7号
の直流成分(RE−DC)の変動許容範囲は、直流成分
の変動振幅をA、ラジアルエラー信号の振幅をREp−
pとすれば、A/REp−p≦0.2を満足する必要が
ある。従来のピックアップ装置は、必ずしも上記条件を
満足するものではなかった。
Now, FIG. 7 shows changes in the radial error signal (RE) in a conventional pickup device. The DC component of the radial error signal (RE) fluctuates in response to one rotation of the disk, and this fluctuation becomes larger as the surface runout of the disk increases. When performing special disc playback such as searching for songs recorded on a disc, the permissible variation range of the DC component (RE-DC) of radial error No. 7 is as follows: The amplitude is REp-
If p, it is necessary to satisfy A/REp-p≦0.2. Conventional pickup devices do not necessarily satisfy the above conditions.

上述したラジアルエラー信号の直流成分の変動の原因は
、ピックアップ装置より出力されるビームの光軸のディ
スクに対する垂直度が、特にディスクのタンジェンシャ
ル方向に於いて、ディスクの面振れに応じて1回転周期
にて変動し、この垂直度の変動に応じて、信号再生に必
要なビームと不要なビーム(迷光)との間に於いて生し
る光の干渉度合が変化することにあると考えられる。以
下、この点について、第8図を参照して更に詳述する。
The reason for the fluctuation in the DC component of the radial error signal mentioned above is that the perpendicularity of the optical axis of the beam output from the pickup device to the disk changes by one rotation depending on the surface runout of the disk, especially in the tangential direction of the disk. This is thought to be because the degree of interference of light that occurs between the beam necessary for signal reproduction and the unnecessary beam (stray light) changes depending on the fluctuation of the verticality. . This point will be explained in more detail below with reference to FIG.

第8図に於いて、(8)は半導体レーザチップを示して
おり、このチップ(8)はチップ取付台(サブマウント
)(9)にロウ付は又は導電性接着剤にて固定されてい
る。チップ(8ンの放射点(0)より放射ぐれたレーザ
ービーム(Po)は、回折格子(2)により、そのまま
直進する(回折を受けない)主ビーム(Po)と、回折
により生じる補助ビームP1、P2(±1次の回折光)
に分かれて、ディスクに向う、ディスクにて反射された
ビーム(P’o、pl 1、P′ 2)は、その一部が
〔第6図に於いて、示すビームスプリッタ(3)を透過
した分が〕回折格子(2)に戻る。これ等のビームは回
折格子(2)を経て、レーザチップ(8)側に向う、こ
れ等のビームのうち、Xの光路をたどるビームCP’o
(+1>、P ’  t (0))はレーザデ’yブ(
8)の放射面(N)(この面は鏡面となっている)のQ
点にて反射され、元の光路(X)を戻る〔光路(X)は
反射面(&!i晶へき開面)(N)に対して垂直ではな
く若干の角度を持っているが、この角度は極めて小さい
為、反射光は元の光路を戻ると考えて良い〕、この反射
戻り光(迷光)がビー1−CP’s>と干渉を起し、斯
かる干渉を受けたビーム(P’窃)がフォトセンサ(7
b)に向う為、このフォトセンサ(7b)の出力信号(
sb>の直流成分に変動を生じる(第9図参照)、第9
図に於いて、横軸θは、対物レンズの光軸がディスク面
に対する垂直線に対してタンジェンシャル方向に於いて
なす゛角度を示しており、出力信号(Sb)の1波長が
約1.3度となっている。
In Figure 8, (8) shows a semiconductor laser chip, and this chip (8) is fixed to a chip mount (submount) (9) with solder or conductive adhesive. . The laser beam (Po) radiated from the radiation point (0) of the chip (8) is separated by the diffraction grating (2) into a main beam (Po) that goes straight (does not undergo diffraction) and an auxiliary beam P1 generated by diffraction. , P2 (±1st order diffracted light)
The beams (P'o, pl 1, P' 2) reflected by the disk head toward the disk, and a part of the beams (P'o, pl 1, P' 2) pass through the beam splitter (3) shown in Figure 6. ] returns to the diffraction grating (2). These beams pass through the diffraction grating (2) and head toward the laser chip (8). Among these beams, the beam CP'o follows the optical path of X.
(+1>, P' t (0)) is the laser de'y block (
8) Q of the radiation surface (N) (this surface is a mirror surface)
It is reflected at the point and returns to the original optical path (X) [The optical path (X) is not perpendicular to the reflecting surface (&!i crystal cleavage plane) (N) but has a slight angle; is extremely small, so it can be considered that the reflected light returns along its original optical path.] This reflected return light (stray light) interferes with the beam (P') that received this interference. The photosensor (7)
b), the output signal of this photosensor (7b) (
sb> causes fluctuations in the DC component (see Figure 9), 9th
In the figure, the horizontal axis θ indicates the angle that the optical axis of the objective lens makes in the tangential direction with respect to the perpendicular line to the disk surface, and one wavelength of the output signal (Sb) is about 1. It has become 3 times.

ここで、回折後のビームの光量について考えると、0次
回折光(回折を受けない光)と±1次回折光の光量比は
1 : 1/3〜178となる為、2回以上回折を受け
た光は、その光量レベルが小さく、干渉を考慮する必要
がない、第8図に於いて、ビームP’o(+1>は、デ
ィスクからの反射光P′oの+1次回折光であり、1回
の回折を受けたのみであるから、干渉に影響を及ぼす、
ビームP′2(0)は、レーザ光(Po)が回折格子(
2)を第6図に於いて下から上に通過するとき生じた第
1次回折光(P2)のディスク(こよる反射光(P’2
)の0次光〔即ち、回折格子(2)を上から下に通過す
るときに、回折を受けずに直進した光〕であるから、同
じく1回の回折を受けたのみであり、干渉に影響を及ぼ
す。
Considering the light intensity of the beam after diffraction, the light intensity ratio between the 0th-order diffracted light (light that does not undergo diffraction) and the ±1st-order diffracted light is 1:1/3 to 178, so the beam has been diffracted more than once. The light intensity level is small and there is no need to consider interference. In Figure 8, the beam P'o (+1> is the +1st-order diffracted light of the reflected light P'o from the disk, and once Since it only undergoes diffraction, it affects interference.
Beam P′2(0) is a laser beam (Po) that is formed by a diffraction grating (
2) from the bottom to the top in Figure 6.
) [i.e., the light that went straight without undergoing diffraction when passing through the diffraction grating (2) from top to bottom], so it also underwent only one diffraction and was not affected by interference. affect.

尚、光路Yに向うビームCP’o(−1)(ビームP’
oの一1次光)、P’5(0)(ビームP’100次光
)〕は、共に1回の回折を受けたビームであるが、第8
図に示す如′くレーザチップ(8)に入射することがな
いので、ビーム(P’!>に干渉が生じることがない、
それ故、ビーム(P’ 1)を受けるフォトセンサ(7
a)の出力信号(Sa)の直流成分の変動は第9図に示
す通り、小さくなっている。
Note that the beam CP'o (-1) (beam P'
P'5(0) (beam P'100th order light)] are both beams that have undergone one diffraction, but the 8th
As shown in the figure, since it does not enter the laser chip (8), there is no interference with the beam (P'!>).
Therefore, the photosensor (7) receiving the beam (P' 1)
As shown in FIG. 9, the fluctuation in the DC component of the output signal (Sa) in a) is small.

以上の説明により、光路(X)のビームP′2(0)及
びP’o(+1)がレーザチップ(8)の放射面(N)
により反射した反射光が、ラジアルエラー信号〔)オド
センサ<7a)(7b)の出力信号(Sa)(Sb)の
差〕の直流成分の変動の原因となっていることが分る。
According to the above explanation, beams P'2 (0) and P'o (+1) of the optical path (X) are connected to the emission surface (N) of the laser chip (8).
It can be seen that the reflected light caused by the fluctuation in the DC component of the radial error signal [the difference between the output signals (Sa) and (Sb) of the odometers 7a and 7b].

(ハ)発明が解決しようとする課題 簡単な構成にてレーザテップの放射面に於ける反射を防
止せんとするものである。
(c) Problems to be Solved by the Invention It is an object of the invention to prevent reflection at the radiation surface of a laser tip with a simple configuration.

(ニ)課題を解決するための手段 第6図に示す光学式ピックアップ装置に於いて、半導体
レーザチップの放射面にたいして、放射点を除いて反射
防止膜を設けたものである。
(d) Means for Solving the Problems In the optical pickup device shown in FIG. 6, an antireflection film is provided on the radiation surface of the semiconductor laser chip except for the radiation point.

(ホ)作用 放射面に設けられた反射防と膜により、放射面に於ける
不所望な反射が抑制されてラジアルエラー信号の直流成
分の変動が抑圧される。
(e) The anti-reflection film provided on the active radiation surface suppresses undesired reflections on the radiation surface and suppresses fluctuations in the DC component of the radial error signal.

(へ)実施例 第1図は本発明に係る半導体レーザ(1)を構成する半
導体レーザチップ(8)及びチップ取付台(9)の部分
を示すものであり、チップ(8)〔その厚みLは略10
0−程度〕の放射面(N)の放射点(0)を除く部分及
びチップ取付台(9)の端面(9a)に反射防止膜(1
0)が設けられている0反射防止膜(lO)としては、
例えば黒色シリコン樹脂を塗布する。各種接着剤、ラッ
カー、タール、墨等を塗布する若しくは無機物或いは金
属蒸着膜にて低反射又は乱反射膜(これ等も本発明にい
る反射防止膜である)を形成しても良い。
(f) Example FIG. 1 shows a semiconductor laser chip (8) and a chip mounting base (9) that constitute a semiconductor laser (1) according to the present invention. is approximately 10
An anti-reflection film (1
The anti-reflection film (lO) provided with 0) is as follows:
For example, apply black silicone resin. A low reflection or diffuse reflection film (these are also antireflection films in the present invention) may be formed by applying various adhesives, lacquer, tar, ink, etc., or by using an inorganic material or metal vapor deposition film.

反射防止膜(10)は、少なくとも第1図に於いて示す
0点近傍に施せば良い訳であるが、光学系の変更等によ
りQ点がづれることもあるので、放射点O近傍をマスキ
ングして、この放射点0近傍を除く放射面(N)の全面
及びチップ取付台(9ンの端面(この端面も反射面とな
り得る)(9a)に対して蒸着等により反射防止膜を形
成しても良い。
The anti-reflection film (10) should be applied at least near the 0 point shown in Figure 1, but since the Q point may shift due to changes in the optical system, it is necessary to mask the area near the radiant point O. Then, an anti-reflection film is formed by vapor deposition on the entire surface of the radiation surface (N) except near the radiation point 0 and on the end surface (9a) of the chip mounting base (9a) (this end surface can also be a reflective surface). It's okay.

上述した構成に依れば、第1図に於いて示す戻り光P’
2(0)、P’o(+1)がレーザチップ(8)の放射
面(N)に入射した場合、反射防止膜(10〉により大
部分は吸収され一部は反射されても乱反射きれ、光路(
X)を戻る量は栖めて少なくなる。従って、戻り光P’
o(0)が放射面(N)にて反射され、回折格子(2)
にて回折された後P′2方向に向う光(P’o(0)の
放射面による反射光の1次回折光〕が、P′2との干渉
を起すのみであり、フォトセンサ(7b)の出力信号(
Sb)の変動は第2図に示す如く大幅に低減されること
になる。
According to the above-described configuration, the return light P' shown in FIG.
2 (0), P'o (+1) is incident on the radiation surface (N) of the laser chip (8), most of it is absorbed by the anti-reflection film (10), and even though some is reflected, it is not diffusely reflected. Optical path (
The amount of return of X) will be reduced. Therefore, the return light P'
o(0) is reflected at the radiation surface (N), and the diffraction grating (2)
The light (first-order diffracted light of the light reflected by the radiation surface of P'o(0)) that heads in the P'2 direction after being diffracted by P'2 only causes interference with P'2, and the photo sensor (7b) The output signal of (
The fluctuation of Sb) is significantly reduced as shown in FIG.

(ト〉  発明の効果 以上述べた本発明に依れば、レーザチップの放射面に於
ける不所望な反1,1を防止することができ、ラジアル
エラー信号の直流成分の変動を抑えることができる。第
3図ないし第5図により、本発明を実施する前の通常の
ピックアップ装置の特性(X印で各サンプルの値を表示
ンと本発明を実施後のピックアップ装置の特性(○印で
各サンプルの値を表示)を比較する。第3図に於いては
、縦軸はラジアルエラー信号のうねりを示すものであり
、次式で定義される。
(G) Effects of the Invention According to the present invention described above, it is possible to prevent undesired anti-1,1 on the radiation surface of the laser chip, and to suppress fluctuations in the DC component of the radial error signal. 3 to 5, the characteristics of the normal pickup device before implementing the present invention (X marks indicate the values of each sample) and the characteristics of the pickup device after implementing the present invention (○ marks) In FIG. 3, the vertical axis indicates the undulation of the radial error signal, which is defined by the following equation.

うねり−204! og  RE−DC変化量/ RE
 p −pRE−DC変化量はRE−DCの最大値と最
小値の差を示す、測定はディスク外周に於いて±400
−〇面振れを生じるディスクを使用したものであり、う
ねりが抑えられていることが分る。
Swell-204! og RE-DC change amount/RE
The amount of p-pRE-DC change indicates the difference between the maximum and minimum values of RE-DC, and the measurement is ±400 at the outer circumference of the disk.
−〇It uses a disk that causes surface runout, and it can be seen that waviness is suppressed.

第4図は、対物レンズをラジアル方向に±0.4「移動
許せたときの、RE−DCの変化量のREp−pに対す
る比(%)を示しており、この変動が小さい程、特殊再
生に対して有利であることを示す、第5図は、基準状態
(ピックアップ装置のラジアルサーボ系を開放した状態
)に於いてラジアルエラー信号が有している直流分の値
のREp−pに対する比(%)(中点のづれ量を示す〉
を示しており、本発明に係るピックアップ装置は中点づ
れが小さいことを示している。
Figure 4 shows the ratio (%) of the amount of change in RE-DC to REp-p when the objective lens is allowed to move ±0.4'' in the radial direction. FIG. 5 shows the ratio of the DC component value of the radial error signal to REp-p in the standard state (the state in which the radial servo system of the pickup device is open). (%) (indicates the amount of deviation of the midpoint)
This shows that the pickup device according to the present invention has a small center point deviation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る光学式ピックアップ装置に利用さ
れる半導体レーザを示す図、第2図ないし第5図はその
特性図であり、第2図はフォトセンサの出力信号の変化
を示す図、第313Klはラジアルエラー信号のうねり
量を示す図、第4図はラジアルコントロール時に於ける
RE−DCの変化量を示す図、第5図は中点づれを示す
図、第6図は従来のピックアップ装置を示す図、第7図
は従来装置のラジアルエラー信号を示す図、第8図は干
渉が起る原理の説明に供する図、第9図は従来装置のフ
ォトセンサの出力信号の変化を示す図である。 (1)は半導体レーザ、(8)はレーザチップ、(9)
はチップ取付台、(0)は放射点、(N)は放射面。
FIG. 1 is a diagram showing a semiconductor laser used in an optical pickup device according to the present invention, FIGS. 2 to 5 are characteristic diagrams thereof, and FIG. 2 is a diagram showing changes in the output signal of a photosensor. , 313Kl is a diagram showing the amount of waviness of the radial error signal, FIG. 4 is a diagram showing the amount of change in RE-DC during radial control, FIG. 5 is a diagram showing the center point shift, and FIG. 6 is a diagram showing the conventional 7 is a diagram showing the radial error signal of the conventional device, FIG. 8 is a diagram explaining the principle of interference, and FIG. 9 is a diagram showing the change in the output signal of the photosensor of the conventional device. FIG. (1) is a semiconductor laser, (8) is a laser chip, (9)
is the chip mounting base, (0) is the radiation point, and (N) is the radiation surface.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体レーザより放射されたビームを記録媒体に
照射し、この記録媒体よりの発射光をフォトセンサに導
き、このフォトセンサより信号を得る構成とした光学式
ピックアップ装置であって、前記半導体レーザを構成す
る半導体レーザチップの放射面に対して放射点を除いて
発射防止膜が設けられていることを特徴とする光学式ピ
ックアップ装置。
(1) An optical pickup device configured to irradiate a recording medium with a beam emitted from a semiconductor laser, guide the emitted light from the recording medium to a photosensor, and obtain a signal from the photosensor, the device comprising: An optical pickup device characterized in that a radiation prevention film is provided on the radiation surface of a semiconductor laser chip constituting a laser except for the radiation point.
(2)半導体レーザが半導体レーザチップとこの半導体
レーザチップが取付けられるチップ取付台を有しており
、反射防止膜が前記半導体レーザの放射面と略同一の平
面を構成する前記チツプ取付台の端面に対しても設けら
れていることを特徴とする特許請求の範囲第1項記載の
光学式ピックアップ装置。
(2) The semiconductor laser has a semiconductor laser chip and a chip mount to which the semiconductor laser chip is attached, and the antireflection film forms an end surface of the chip mount that is substantially flush with the radiation surface of the semiconductor laser. The optical pickup device according to claim 1, wherein the optical pickup device is also provided for.
JP63234147A 1988-09-19 1988-09-19 Optical pickup device Pending JPH0198135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63234147A JPH0198135A (en) 1988-09-19 1988-09-19 Optical pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63234147A JPH0198135A (en) 1988-09-19 1988-09-19 Optical pickup device

Publications (1)

Publication Number Publication Date
JPH0198135A true JPH0198135A (en) 1989-04-17

Family

ID=16966381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63234147A Pending JPH0198135A (en) 1988-09-19 1988-09-19 Optical pickup device

Country Status (1)

Country Link
JP (1) JPH0198135A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011138996A (en) * 2009-12-30 2011-07-14 Chiba Univ Beam filter, laser chip and external resonator laser equipped with the beam filter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124031A (en) * 1984-07-13 1986-02-01 Sony Corp Tracking error detector of optical head

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124031A (en) * 1984-07-13 1986-02-01 Sony Corp Tracking error detector of optical head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011138996A (en) * 2009-12-30 2011-07-14 Chiba Univ Beam filter, laser chip and external resonator laser equipped with the beam filter

Similar Documents

Publication Publication Date Title
EP0084871B1 (en) Method and apparatus for reducing semiconductor laser optical noise
US4873429A (en) Optical pick-up head without pick-up of stray light
US5428588A (en) Optical head
JP3224844B2 (en) Optical disk drive
KR950001875B1 (en) Semiconductor laser apparatus
US5181193A (en) Optical pickup device for a recording and/or reproducing apparatus
US5309423A (en) Magneto-optical reproducing device with optical system having two reflective elements and providing phase difference cancellation
US6266313B1 (en) Optical pickup for recording or reproducing system
US5563870A (en) Optical write/read head with laser power control
EP0766236B1 (en) Optical head device with optically variable aperture
US5790501A (en) Information reproducing device
JP2000021001A (en) Optical pickup device
JPH0198135A (en) Optical pickup device
JPH01315036A (en) Optical pickup device
JPS61162838A (en) Driving device for light source of optical disk recording and reproducing device
EP0367465B1 (en) Optical pickup devices
US6324155B1 (en) Optical information recording medium with flat reflecting film and reading system for reading information recorded thereon
JP3071013B2 (en) Optical pickup device
EP0747894A2 (en) Optical head device with large tolerance to tilting
US5426630A (en) Optical pickup system
JP2002319699A (en) Optical device
JPS6218080A (en) Semiconductor laser chip
JPH05303016A (en) Optical pickup
JP3010801B2 (en) Information recording / reproducing device
JP2628972B2 (en) Optical recording device