JPH0196215A - Production of transition metal ion-coordinated polymer complex - Google Patents

Production of transition metal ion-coordinated polymer complex

Info

Publication number
JPH0196215A
JPH0196215A JP25388387A JP25388387A JPH0196215A JP H0196215 A JPH0196215 A JP H0196215A JP 25388387 A JP25388387 A JP 25388387A JP 25388387 A JP25388387 A JP 25388387A JP H0196215 A JPH0196215 A JP H0196215A
Authority
JP
Japan
Prior art keywords
transition metal
polycondensate
polymer complex
metal ion
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25388387A
Other languages
Japanese (ja)
Inventor
Akinori Kita
昭憲 北
Kazuhiro Kamishiro
神代 和浩
Kazuhiko Seki
和彦 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
N O K SOGO GIJUTSU KENKYUSHO KK
Original Assignee
N O K SOGO GIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N O K SOGO GIJUTSU KENKYUSHO KK filed Critical N O K SOGO GIJUTSU KENKYUSHO KK
Priority to JP25388387A priority Critical patent/JPH0196215A/en
Publication of JPH0196215A publication Critical patent/JPH0196215A/en
Pending legal-status Critical Current

Links

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

PURPOSE:To obtain the titled polymer complex capable of forming ferromagnetic films, by coordination of a transition metal ion to a specific polycondensate followed by application of heating process. CONSTITUTION:The objective polymer complex can be obtained by coordination, to (A) a polycondensate constituted of recurring unit of formula (n=2-12), of (B) a transition metal ion (e.g. iron ion) at <=40 deg.C followed by application of heating process at 45-120 deg.C in pure water, air or nitrogen gas. Coordination at relatively low temperatures of the transition metal ion to the polycondensate will suppress the decomposition of said polycondensate and retain the form of the resultant filmy products, also the application of the heating process will produce organic ferromagnetic films.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、遷移金属イオン配位高分子錯体の製造法に関
する。更に詳しくは、強磁性体膜を形成し得る遷移金属
イオン配位高分子錯体の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a transition metal ion coordination polymer complex. More specifically, the present invention relates to a method for producing a transition metal ion coordination polymer complex capable of forming a ferromagnetic film.

〔従来の技術〕[Conventional technology]

J、 Am、 Chem、 Soe、第79巻第273
8頁(1957)には。
J, Am, Chem, Soe, Vol. 79, No. 273
On page 8 (1957).

α、ω−ジアミノアルカンと2,6−ピリジンジカルボ
キシアルデヒドとを重縮合反応させることにより、次の
一般式で表わされ−る繰返し単位を有する重縮合物が得
られることが記載されている。
It is stated that a polycondensation product having a repeating unit represented by the following general formula can be obtained by polycondensation reaction of α,ω-diaminoalkane and 2,6-pyridinedicarboxaldehyde. .

この重縮合反応は、例えば1,6−ジアミノヘキサンを
用い、そのエタノール溶液の還流液中に2,6−ピリジ
ンジカルボキシアルデヒドのエタノール溶液を滴下する
ことによって行われ、20秒以内に反応生成物が析出す
るので、これを0刑し、熱エタノールで洗浄して重縮合
物を取得している。
This polycondensation reaction is carried out, for example, by using 1,6-diaminohexane and dropping an ethanol solution of 2,6-pyridinedicarboxaldehyde into the reflux of the ethanol solution, and the reaction product is formed within 20 seconds. is precipitated, so this is boiled down and washed with hot ethanol to obtain a polycondensate.

この反応あるいはその滴下方法を逆にした反応では、い
ずれも反応生成物たる重縮合物が熱エタノールにも不溶
なため析出し、重縮合反応の生長反応を停止させてしま
う。このため、重合度が高くならず、赤外線吸収スペク
トルによる末端基定量法によれば、平均重合度が約25
程度の重縮合物しか得られず、このような重縮合物は製
膜しても強度が低く、膜形状を保持することができない
In this reaction or a reaction in which the dropping method is reversed, the polycondensate as a reaction product is insoluble even in hot ethanol and precipitates, stopping the growth reaction of the polycondensation reaction. Therefore, the degree of polymerization does not increase, and according to the terminal group determination method using infrared absorption spectrum, the average degree of polymerization is about 25.
Even if such a polycondensate is formed into a film, its strength is low and the film shape cannot be maintained.

1.6−ジアミツヘキサンと2,6−ピリジンジカルボ
キシアルデヒドとの重縮合物は、前記式(n=6)の繰
返し単位に示される如く1重金属とキレートを形成する
ことのできる配位子を主鎖に含み、重金属の捕集あるい
は排除に有用な高分子である。これを実際に工業的に利
用するためには、膜状あるいは繊維状などに成形する必
要があり、また高分子的特性である成形性、加工性など
を確保する上からも、この重縮合物の重合度を高めるこ
とが強く望まれている。
The polycondensate of 1,6-diamithexane and 2,6-pyridinedicarboxaldehyde contains a ligand capable of forming a chelate with one heavy metal as shown in the repeating unit of the above formula (n=6). It is a polymer useful for collecting or eliminating heavy metals. In order to actually use it industrially, it is necessary to form it into a membrane or fiber form, and in order to ensure the moldability and processability, which are the characteristics of polymers, this polycondensate It is strongly desired to increase the degree of polymerization of

本出願人は、かかる課題の解決方法を求めて種々検討を
重ねた結果、1,6−ジアミツヘキサン、2゜6−ピリ
ジンジカルボキシアルデヒドおよびこれらの重縮合物に
共通する溶媒を選択して用いることにより、上記課題が
効果的に解決されることを先に見出した(特願昭62−
    号)。即ち、この解決方法では、重縮合物の製
造は、α、ω−ジアミノアルカンの塩素化炭化水素溶媒
溶液中に、2,6−ピリジンジカルボキシアルデヒドの
塩素化炭化水素溶媒溶液を滴下し、重縮合反応させるこ
とにより行われている。
As a result of various studies in search of a solution to this problem, the applicant selected a solvent common to 1,6-diamithexane, 2゜6-pyridinedicarboxaldehyde, and their polycondensates. We have previously discovered that the above problems can be effectively solved by using
issue). That is, in this solution, the polycondensate is produced by dropping a solution of 2,6-pyridinedicarboxaldehyde in a chlorinated hydrocarbon solvent into a solution of α,ω-diaminoalkane in a chlorinated hydrocarbon solvent. It is carried out by a condensation reaction.

塩素化炭化水素溶媒としては、クロロホルム、1.1,
2.2−テトラクロルエタンなどが用いられる。
As the chlorinated hydrocarbon solvent, chloroform, 1.1,
2.2-tetrachloroethane or the like is used.

これらの溶媒の使用は1重合度が高くならない最大の原
因である反応混合物中からの重縮合物の析出を有効に防
止させる。
Use of these solvents effectively prevents precipitation of polycondensates from the reaction mixture, which is the main reason why the degree of monopolymerization does not increase.

重縮合反応は、いずれも濃度が約0.5〜1.5モルの
α、ω−ジアミノアルカン溶液中に当量の2,6−ピリ
ジンジカルボキシアルデヒド溶液を滴下し、室温乃至溶
媒の還流温度で約1〜Z時間反応させることによって行
われる。一般に、この種のジアミンとジアルデヒドとの
重縮合反応は酸が触媒となって進行することが知られて
おり、逆に生成重縮金物の脱離水による加水分解反応も
酸として作用する可能性がある。
In the polycondensation reaction, an equivalent amount of 2,6-pyridinedicarboxaldehyde solution is added dropwise to an α,ω-diaminoalkane solution having a concentration of about 0.5 to 1.5 mol, and the reaction is carried out at room temperature to the reflux temperature of the solvent. This is done by reacting for about 1 to Z hours. In general, it is known that this type of polycondensation reaction between diamines and dialdehydes proceeds with an acid as a catalyst, and conversely, there is a possibility that the hydrolysis reaction of the produced polycondensate due to the released water also acts as an acid. There is.

この方法においては、塩基性で水との親和性の高いジア
ミン溶液にジアルデヒド溶液を滴下し、ジアミン過剰の
雰囲気中で重縮合物の生長反応を円滑に進行させ、生成
重縮金物への水の付加反応を抑制することにより、重縮
合物の反応混合物からの非析出効果と相まって、より一
層の高分子化を達成させる。
In this method, a dialdehyde solution is dropped into a diamine solution that is basic and has a high affinity for water, and the growth reaction of the polycondensate proceeds smoothly in an atmosphere containing excess diamine. By suppressing the addition reaction of the polycondensate, combined with the effect of preventing precipitation of the polycondensate from the reaction mixture, further polymerization can be achieved.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この方法により、膜強度の高い膜を製膜し得る高重合度
の重縮合物が得られる。この重縮合物は、鉄イオンなど
の遷移金属イオンを配位することによって磁性を保持せ
しめるようにすることができ、無機磁性体とは全く異な
る性質を有する。軽くて薄い有機磁性膜や分散性良好な
磁性流体として用いることができる。
By this method, a polycondensate with a high degree of polymerization that can be used to form a film with high film strength can be obtained. This polycondensate can be made to retain magnetism by coordinating transition metal ions such as iron ions, and has properties completely different from those of inorganic magnetic materials. It can be used as a light and thin organic magnetic film or as a magnetic fluid with good dispersibility.

しかるに、遷移金属イオンの配位を従来法に従って行な
うと、反応溶液の液性が酸性でありかつ重縮合物自体加
水分解を受は易いという性質を有しているため分解して
しまい、膜形状を保持し得ないという問題がみられる。
However, if the coordination of transition metal ions is carried out according to the conventional method, the reaction solution is acidic and the polycondensate itself is susceptible to hydrolysis, so it decomposes and the membrane shape deteriorates. The problem is that it is not possible to maintain the

即ち、前記J、 Am、 Chew、 Soc、記載の
方法に従えば、硫酸第1鉄・7水和物1.8gを純水2
5m Q中に溶かした水溶液を沸騰させた中に重縮合物
0.65gを加えると、深赤色の粉体が得られ、この粉
体を回収し、洗浄するという方法がとられ、重縮合物の
膜状体にこの方法を適用すると、遷移金属イオンを含む
水溶液はその大多数が酸性であり、しかも遷移金属イオ
ン含有水溶液を煮沸条件下で用いないと強磁性を示す高
分子錯体が得られないので煮沸条件下で用いると、本来
加水分解を受は易い重縮合物は容易に分解され、膜形状
を保つことができないようになる。
That is, according to the method described in J. Am. Chew, Soc, 1.8 g of ferrous sulfate heptahydrate is added to
When 0.65 g of the polycondensate is added to a boiling aqueous solution dissolved in 5m Q, a deep red powder is obtained, and this powder is collected and washed. When this method is applied to a film-like material, the majority of aqueous solutions containing transition metal ions are acidic, and a polymer complex that exhibits ferromagnetism cannot be obtained unless the aqueous solution containing transition metal ions is used under boiling conditions. Therefore, if used under boiling conditions, the polycondensate, which is inherently susceptible to hydrolysis, will be easily decomposed and the membrane will not be able to maintain its shape.

本発明者らは、かかる課題の解決を目的として種々検討
を重ねた結果、重縮合物に比較的低温で遷移金属イオン
を配位させた後、これを加熱することにより、その形状
を損なうことなく、強磁性体として有用な高分子錯体膜
状物が得られることを見出した。
As a result of various studies aimed at solving this problem, the present inventors have discovered that by coordinating transition metal ions to a polycondensate at a relatively low temperature and then heating it, the shape of the polycondensate is impaired. It has been found that a film-like polymer complex useful as a ferromagnetic material can be obtained.

〔問題点を解決するための手段〕[Means for solving problems]

従って、本発明は遷移金属イオン配位高分子錯体の製造
法に係り、それの製造は、一般式で表わされる繰返し単
位を有する重縮合物に約40℃以下で遷移金属イオンを
配位させた後、これを約45〜120℃の温度に加熱す
ることにより行われる。
Therefore, the present invention relates to a method for producing a transition metal ion coordination polymer complex, which is produced by coordinating a transition metal ion to a polycondensate having a repeating unit represented by the general formula at a temperature of about 40°C or less. This is then heated to a temperature of about 45-120°C.

上記一般式で表わされる繰返し単位を有する重縮合物は
、前記の如き方法で得られ、それは水銀プール上への溶
液キャスト法などによって製膜される。
A polycondensate having a repeating unit represented by the above general formula is obtained by the method described above, and is formed into a film by a solution casting method onto a mercury pool.

重縮合物への遷移金属イオンの配位は、硫酸第1鉄・7
水和物、硫酸コバルト(n)・7水和物、過塩素酸第2
鉄・6水和物などを純水中に約0.1〜10重量%濃度
に溶解させた水溶液中に、約40℃以下の温度、一般に
は室温条件下で約10〜30分間程度浸漬することによ
って行われる。この配位を煮沸条件下で行なうと、短時
間の内に分解が起り、また室温条件下では約1時間以上
、40℃では約30分間以上浸漬すると分解し始めるよ
うになる。
The coordination of transition metal ions to the polycondensate is ferrous sulfate 7
Hydrate, cobalt (n) sulfate heptahydrate, perchloric acid 2
Immerse in an aqueous solution of iron hexahydrate, etc. dissolved in pure water at a concentration of approximately 0.1 to 10% by weight for approximately 10 to 30 minutes at a temperature of approximately 40°C or less, generally at room temperature. It is done by When this coordination is carried out under boiling conditions, decomposition occurs within a short period of time, and decomposition begins when immersed for more than about 1 hour at room temperature and for more than about 30 minutes at 40°C.

このようにして比較的低温で配位させたら、次に約45
〜120℃に加熱する。加熱は、純水中または空気中、
窒素ガス中などで行なうことができる。
After coordination at a relatively low temperature in this way, about 45
Heat to ~120°C. Heating is done in pure water or in air.
This can be done in nitrogen gas or the like.

約45℃以下での加熱では、加熱処理による強磁性化効
果が発現せず、一方約120℃以上に加熱すると、重縮
合物の融点が120℃であるので、融解と同時に分解す
るようになる。
If heated at temperatures below about 45°C, the ferromagnetic effect due to heat treatment will not occur, while if heated above about 120°C, the melting point of the polycondensate is 120°C, so it will decompose at the same time as it melts. .

〔発明の効果〕〔Effect of the invention〕

本発明方法によれば1重縮合物に遷移金属イオンを配位
させる際の温度を比較的低温とすることにより重縮合物
の分解を抑制し、それが膜状物の場合にはその形状を保
持させることができ、得られた遷移金属イオン配位高分
子錯体に加熱処理を施すことによって、強磁性を示す有
機磁性体膜を得ることができる。
According to the method of the present invention, the decomposition of the polycondensate is suppressed by keeping the temperature at which transition metal ions are coordinated to a relatively low temperature, and when the polycondensate is in the form of a film, its shape is By subjecting the obtained transition metal ion coordination polymer complex to a heat treatment, an organic magnetic film exhibiting ferromagnetism can be obtained.

〔実施例〕〔Example〕

次に、実施例について本発明を説明する。 Next, the present invention will be explained with reference to examples.

実施例1 1.3モル濃度の1,6−ジアミツヘキサンのクロロホ
ルム溶液14.Omgの還流液中に、同濃度の2,6−
ピリジンジカルボキシアルデヒドのクロロホルム溶液1
4.Omgを窒素雰囲気中で滴下し、約1時間反応させ
た。反応終了後、均一な溶液を形成している反応液を熱
メタノール中に滴下し、生成重縮金物を沈殿させた。
Example 1 1.3 molar solution of 1,6-diamithexane in chloroform 14. The same concentration of 2,6-
Chloroform solution of pyridine dicarboxaldehyde 1
4. Omg was added dropwise in a nitrogen atmosphere, and the mixture was allowed to react for about 1 hour. After the reaction was completed, the reaction solution forming a homogeneous solution was dropped into hot methanol to precipitate the produced polycondensate.

この生成重縮金物は、赤外線吸収スペクトルでアルデヒ
ド基の存在が確認されなかったことから。
This is because the presence of aldehyde groups was not confirmed in the infrared absorption spectrum of the produced polycondensed metal.

重縮合物鎖中のアゾメチン部と末端アルデヒド基の伸縮
振動のピーク強度比から求められる平均重合度は200
以上と考えられる。これのクロロホルム溶液を用い、水
銀プール上への溶液キャスト法によって得られた膜は、
引張強度約1.4Kg/mm2、引張弾性率約18Kg
/mm’であった。
The average degree of polymerization determined from the peak intensity ratio of stretching vibrations between the azomethine moiety and the terminal aldehyde group in the polycondensate chain is 200.
This is considered to be the above. A film obtained by solution casting on a mercury pool using a chloroform solution of this
Tensile strength approximately 1.4Kg/mm2, tensile modulus approximately 18Kg
/mm'.

このようにして得られた重縮合物の膜状物0.1gを、
硫酸第1鉄・7水和物0.14gを純水20m Qに溶
解させた水溶液中に浸漬し、窒素ガスを吹き込みながら
、室温下で10分間反応させた。膜状物は、浸漬した瞬
間から着色し始め、10分後には濃青紫色を呈するよう
になる。その時点で純水で洗浄し、反応を停止させた。
0.1 g of the polycondensate film obtained in this way,
It was immersed in an aqueous solution in which 0.14 g of ferrous sulfate heptahydrate was dissolved in 20 mQ of pure water, and reacted for 10 minutes at room temperature while blowing nitrogen gas. The film-like material begins to be colored from the moment it is immersed, and becomes dark blue-purple after 10 minutes. At that point, the reaction was stopped by washing with pure water.

このような条件下で遷移金属イオンを配位させると、膜
状物はその形状が保持される。この配位された高分子錯
体は磁性を示さず、ESRスペクトルから常磁性体であ
ることが確認された。次に、これを純水中で窒素ガスを
通じながら10分間煮沸したが、この途中での変色はみ
られなかった。その後、よく風乾した。
When the transition metal ions are coordinated under such conditions, the membrane retains its shape. This coordinated polymer complex did not exhibit magnetism, and it was confirmed from the ESR spectrum that it was a paramagnetic material. Next, this was boiled for 10 minutes in pure water while passing nitrogen gas, but no discoloration was observed during the boiling. After that, it was air-dried thoroughly.

この配位高分子錯体について、振動試料型磁力計を用い
て磁化測定を行なうと、強磁性体特有のヒステリシス曲
線を示した(第1図参照)にの曲線から、それぞれ次の
ような磁気特性値が求められた。
When we measured the magnetization of this coordination polymer complex using a vibrating sample magnetometer, it showed a hysteresis curve characteristic of ferromagnetic materials (see Figure 1), which revealed the following magnetic properties. value was found.

飽和磁化 Ms=0.4 emu/g 残留磁化 Mr=0.05emu/g 保磁力Hc=600e 比較例1 煮沸した硫酸第1鉄・7水和物の水溶液(0,14g/
20n+Q)に窒素ガスを通じながら、実施例1で用い
られた重縮合物膜0.1gを浸漬したところ、膜状物は
2分経過後から分解し始め、10分後には殆んど分解し
て粉末状物質しか得られなかった。なお、この粉末状物
質も、磁性を示していた。
Saturation magnetization Ms=0.4 emu/g Residual magnetization Mr=0.05 emu/g Coercive force Hc=600e Comparative example 1 Boiled aqueous solution of ferrous sulfate heptahydrate (0.14 g/g
When 0.1 g of the polycondensate film used in Example 1 was immersed in 20n+Q) while passing nitrogen gas, the film started to decompose after 2 minutes, and almost completely decomposed after 10 minutes. Only a powdery substance was obtained. Note that this powdery substance also exhibited magnetism.

実施例2 実施例1において、室温下での浸漬時間を20分間およ
び30分間に延長したが、膜状物はその形状を保持して
おり、煮沸処理された配位高分子錯体の磁気特性値にも
大きな違いはみられなかった。
Example 2 In Example 1, the immersion time at room temperature was extended to 20 minutes and 30 minutes, but the film-like material retained its shape, and the magnetic property values of the boiled coordination polymer complex were There was no significant difference in either.

なお、室温浸漬時間を1時間に延長すると、膜状物が分
解し始めることが認められた。
In addition, it was observed that when the room temperature immersion time was extended to 1 hour, the film-like material began to decompose.

実施例3 実施例1〜2において、浸漬温度を40℃に変更した。Example 3 In Examples 1 and 2, the immersion temperature was changed to 40°C.

浸漬時間10分または20分では、膜状物はその形状を
保持していたが、30分にしてみると膜状物は分解し始
めた。
When the soaking time was 10 or 20 minutes, the film retained its shape, but after 30 minutes, the film began to decompose.

実施例4 実施例1において、1,6−ジアミツヘキサンの代りに
同モル濃度の1,12−ジアミノドデカンを用いて形成
された重縮合物の膜状物0.1gが用いられた。
Example 4 In Example 1, 0.1 g of a polycondensate film formed using 1,12-diaminododecane at the same molar concentration instead of 1,6-diamithexane was used.

得られた配位高分子錯体膜は、強磁性を示した。The obtained coordination polymer complex film exhibited ferromagnetism.

飽和磁化 Ms=0.3 emu/g 残留磁化 計=0.03emu/g 保磁力Hc=450s 実施例5 実施例1において、加熱処理を煮沸純水中ではなく、1
00℃のオーブン中で10分間行なった。このようにし
て加熱処理された配位高分子錯体の磁気特性値は、実施
例1のそれと大きな違いはみられなかった。
Saturation magnetization Ms = 0.3 emu/g Residual magnetization Total = 0.03 emu/g Coercive force Hc = 450 s Example 5 In Example 1, the heat treatment was performed in boiling pure water instead of in boiling pure water.
The test was carried out in an oven at 00°C for 10 minutes. The magnetic property values of the coordination polymer complex heat-treated in this manner were not significantly different from those of Example 1.

実施例6 実施例1で用いられた重縮合物の膜状物0.1gを、硫
酸コバルト(n)・7水和物0.14gを純水20m 
Qに溶解させた水溶液中に浸漬し、窒素ガスを吹き込み
ながら、室温下で20分間反応させた。膜状物は。
Example 6 0.1 g of the polycondensate film used in Example 1 was added to 0.14 g of cobalt (n) sulfate heptahydrate in 20 m of pure water.
The sample was immersed in an aqueous solution containing Q and reacted at room temperature for 20 minutes while blowing nitrogen gas. The membrane-like substance.

浸漬後徐々に着色し始め、20分後には赤色を呈するよ
うになる。その後、純水で洗浄し、よく風乾した。
After immersion, the color gradually begins to change and becomes red after 20 minutes. Thereafter, it was washed with pure water and thoroughly air-dried.

得られたコバルトイオン配位高分子錯体は磁石に付着し
、鉄イオン配位高分子錯体と同様に強磁性体であった。
The obtained cobalt ion coordination polymer complex adhered to the magnet and was ferromagnetic like the iron ion coordination polymer complex.

実施例7 実施例1で用いられた重縮合物の膜状物0.1gを、過
塩素酸第2鉄・6水和物0.43gを純水20m Aに
溶解させた水溶液中に浸漬し、窒素ガスを吹き込みなが
ら、室温下で10分間反応させた。
Example 7 0.1 g of the polycondensate film used in Example 1 was immersed in an aqueous solution in which 0.43 g of ferric perchlorate hexahydrate was dissolved in 20 mA of pure water. The reaction was carried out at room temperature for 10 minutes while blowing nitrogen gas.

得られた配位高分子錯体膜は、強磁性を示した。The obtained coordination polymer complex film exhibited ferromagnetism.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1の鉄イオン配位高分子錯体膜の磁化
曲線である。また、第2〜3図は、それぞれ実施例1の
鉄イオン配位高分子錯体膜の加熱処理前後におけるEs
Rスペクトルである。 第1図 第2図 g=4.31   g=2.o。 Q = 2.05 手続補装置(白銀 昭和62年12月28日
FIG. 1 is a magnetization curve of the iron ion coordination polymer complex film of Example 1. In addition, Figures 2 and 3 show the Ess of the iron ion coordination polymer complex film of Example 1 before and after heat treatment, respectively.
This is the R spectrum. Figure 1 Figure 2 g=4.31 g=2. o. Q = 2.05 Supplementary Procedure Device (December 28, 1988, Shirogane)

Claims (1)

【特許請求の範囲】 1、一般式 ▲数式、化学式、表等があります▼(ただし、n=2〜
12) で表わされる繰返し単位を有する重縮合物に、約40℃
以下で遷移金属イオンを配位させた後、これを約45〜
120℃の温度に加熱することを特徴とする遷移金属イ
オン配位高分子錯体の製造法。 2、重縮合物が膜状体である特許請求の範囲第1項記載
の遷移金属イオン配位高分子錯体の製造法。 3、遷移金属イオンが鉄イオンである特許請求の範囲第
1項記載の遷移金属イオン配位高分子錯体の製造法。 4、加熱処理が純水中で行われる特許請求の範囲第1項
記載の遷移金属イオン配位高分子錯体の製造法。 5、加熱処理が空気中または窒素ガス中で行われる特許
請求の範囲第1項記載の遷移金属イオン配位高分子錯体
の製造法。
[Claims] 1. General formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (However, n = 2 ~
12) A polycondensate having a repeating unit represented by
After coordinating the transition metal ions below, this
A method for producing a transition metal ion coordination polymer complex, which comprises heating to a temperature of 120°C. 2. The method for producing a transition metal ion coordination polymer complex according to claim 1, wherein the polycondensate is in the form of a film. 3. The method for producing a transition metal ion coordination polymer complex according to claim 1, wherein the transition metal ion is an iron ion. 4. The method for producing a transition metal ion coordination polymer complex according to claim 1, wherein the heat treatment is performed in pure water. 5. The method for producing a transition metal ion coordination polymer complex according to claim 1, wherein the heat treatment is performed in air or nitrogen gas.
JP25388387A 1987-10-09 1987-10-09 Production of transition metal ion-coordinated polymer complex Pending JPH0196215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25388387A JPH0196215A (en) 1987-10-09 1987-10-09 Production of transition metal ion-coordinated polymer complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25388387A JPH0196215A (en) 1987-10-09 1987-10-09 Production of transition metal ion-coordinated polymer complex

Publications (1)

Publication Number Publication Date
JPH0196215A true JPH0196215A (en) 1989-04-14

Family

ID=17257449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25388387A Pending JPH0196215A (en) 1987-10-09 1987-10-09 Production of transition metal ion-coordinated polymer complex

Country Status (1)

Country Link
JP (1) JPH0196215A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113698561A (en) * 2021-09-01 2021-11-26 中国科学院宁波材料技术与工程研究所 Main chain degradation type metal ion complexing poly Schiff base antifouling resin, preparation method and application

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113698561A (en) * 2021-09-01 2021-11-26 中国科学院宁波材料技术与工程研究所 Main chain degradation type metal ion complexing poly Schiff base antifouling resin, preparation method and application
CN113698561B (en) * 2021-09-01 2024-04-09 中国科学院宁波材料技术与工程研究所 Main chain degradation type metal ion complexing poly Schiff base antifouling resin, preparation method and application

Similar Documents

Publication Publication Date Title
Castro et al. Production of magnetic nanoparticles in imine polymer matrixes
Lloret et al. Metamagnetic properties of a family of ferromagnetic alternating spin chains: bis (dimethylglyoximato)(carboxylato) manganese (III) copper (II)
JP5688807B2 (en) Polymer-coated ferrite fine particles and production method
Zhang et al. An excellent example illustrating the fluorescence sensing property of cobalt–organic frameworks
Dhanaraj et al. Synthesis and characterization of metal (II) complexes of poly (3-nitrobenzylidene-1-naphthylamine-co-succinic anhydride)
Qin et al. Two Series of Homodinuclear Lanthanide Complexes: Greatly Enhancing Energy Barriers through Tuning Terminal Solvent Ligands in Dy2 Single‐Molecule Magnets
Bergmeister et al. Synthetic strategies in the formation of iron-modified polyimide films
Daliran et al. Defects and Disorder in Covalent Organic Frameworks for Advanced Applications
CN113105512A (en) Novel cobalt (III) -sulfur cluster-based coordination polymer with monomolecular magnet property
JPH0196215A (en) Production of transition metal ion-coordinated polymer complex
Kaliyappan et al. New polymeric Schiff base and its metal complexes
JPH01118515A (en) Magnetic iron-schiff base polymer and its preparation
Ni-iya et al. Synthesis, Stereochemistry, and Spin Transition of Heterometal Dinuclear Fe (II)–Cr (III) Complex Bridged by 3, 5-Bis (pyridin-2-yl)-pyrazolate
Nowicka et al. Syntheses and Magnetic Properties of 1, 4, 8, 11-Tetraazacyclotetradecanenickel (II) Tetra-, Hexa-, and Octa-cyanometalates.
Castro et al. Nickel oxide magnetic nanocomposites in an imine polymer matrix
JPH0196216A (en) Novel polycondensate and production thereof
JPH0196217A (en) Novel polymer complex and production thereof
Sankar et al. Synthesis, characterization, thermal and chelation properties of new polymeric hydrazone based on 2, 4-dihydroxy benzaldehyde
Ozkan et al. Formation features of hybrid magnetic materials based on polyphenoxazine and magnetite nanoparticles
Yuan et al. Construction of a new magnetic coordination polymer through an unusual Fe-mediated in situ redox reaction
JPH0270003A (en) Method for treating ferromagnetic iron powder
Mohamed et al. Novel wholly aromatic polyamidehydrazide: 3. Preparation and characterization of semiconductors from poly [4-(terephthaloylamino) salicylic acid hydrazide]-metal chelates
Balahura et al. Reduction of pentaamminecobalt (III) complexes of aromatic nitriles by chromium (II)
FI107805B (en) Magnetic copolymer and process for its preparation and its use
CN109355704B (en) Gas-sensitive LaCoO3Method for preparing epitaxial film