JPH0195452A - Ion source device - Google Patents

Ion source device

Info

Publication number
JPH0195452A
JPH0195452A JP25121487A JP25121487A JPH0195452A JP H0195452 A JPH0195452 A JP H0195452A JP 25121487 A JP25121487 A JP 25121487A JP 25121487 A JP25121487 A JP 25121487A JP H0195452 A JPH0195452 A JP H0195452A
Authority
JP
Japan
Prior art keywords
ion
electrodes
opening
semi
bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25121487A
Other languages
Japanese (ja)
Inventor
Masayasu Furuya
降矢 正保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP25121487A priority Critical patent/JPH0195452A/en
Publication of JPH0195452A publication Critical patent/JPH0195452A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an ion source device of a high ion beam utilization rate by constituting ion guide-out electrodes with a multiplicity of bar-like electrodes running parallel to each other, thereby reducing rate of collision diffusion to charge conversion of an ion beam. CONSTITUTION:Ion guide-out electrodes are constituted with a multiplicity of bar-like electrodes running parallel to each other. Making the direction of the gaps between the bar-like electrodes 5 same with that of the longitudinal direction of a slit, neutral molecules discharged out of an opening 1 may pass through these gaps easily to the back side of the bar-like electrodes 5. This increases the conductance of the neutral molecule flow remarkably, reduces pressures around said opening, remarkably decreases the rate of collision diffusion to charge conversion of an ion beam, and improves ion beam utilization rate. Further, while electric field concentrates on the surface of the bar-like electrodes 5 of the ion guide-out electrodes, the electric field is broardened in the vicinity of the opening of a semi-closed vessel, producing little difference in the ion guide-out effect, with a similar electric field distribution to that of the case in which a plate-like ion guide-out electrode is used.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体製造工程で使用されているイオン注
入装置等、プラズマの中からイオンを引き出してこの引
き出されたイオンを利用するイオンビーム装置の中のイ
オン源装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an ion beam device that extracts ions from plasma and utilizes the extracted ions, such as an ion implanter used in semiconductor manufacturing processes. Regarding the ion source device in.

〔従来の技術〕[Conventional technology]

第5図に従来例によるイオン源装置の斜視図を示す、開
口部lが設けられて半密閉空間を形成する半密閉容器2
にガス導入口3からガスあるいは金属蒸気を導入し、低
気圧アークの生成に用いられるような適当な手段でプラ
ズマ化する。さらに開口部lに対向させて板状のイオン
引出し電極50を配置し、両者間に10数kVから数1
0kVの直流高電圧を印加してプラズマの中からイオン
ビーム4を引き出す、このイオンビームは、半導体ウェ
ハへの不純物導入や金属表面改質等に利用される。なお
、イオン源装置は真空容器内に収納され、この真空容器
は油拡散ポンプ等で真空排気されている。
FIG. 5 shows a perspective view of a conventional ion source device, a semi-closed container 2 provided with an opening l to form a semi-closed space.
A gas or metal vapor is introduced through the gas inlet 3 and turned into plasma by suitable means such as those used to generate a low-pressure arc. Furthermore, a plate-shaped ion extraction electrode 50 is arranged to face the opening l, and between the two, a voltage of about 10 kV to about 1
An ion beam 4 is extracted from the plasma by applying a DC high voltage of 0 kV. This ion beam is used for introducing impurities into semiconductor wafers, modifying metal surfaces, and the like. Note that the ion source device is housed in a vacuum container, and this vacuum container is evacuated using an oil diffusion pump or the like.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように構成されたイオン源装置における問題点は次
の通りである。すなわち、ガス導入口3からガスを供給
すると、数10%のガスは中性分子のまま開口部1から
放出される。放出されたガスは開口部まわりの流れやす
さの程度によってきまる圧力を開口部まわりに形成する
。イオン源装置としては、圧力は、プラズマ部分では1
0−”Torrに保持され、ハウジング外部ではできる
かぎり低いことが好ましい、前者は安定なプラズマ形成
のためであり、後者は中性分子へのイオンビームの衝突
散乱ならびに荷電変換: A”(高速)十A(低速)−A(高速)+A寅低速) 
゛を防止するためである。ここでA”(高速)はイオン
引出しW極と半密閉容器との間の静電界により加速され
た高速のイオン、A(低速)は単に開口部から放出され
た低速の中性分子、A(高速)は高速イオンが低速の中
性分子と衝突して電荷を失いイオンとしての機能を喪失
した高速の中性分子、A”(低速)は低速の中性分子が
高速イオンとの衝突により荷電された低速のイオンであ
る。
Problems with the ion source device configured as described above are as follows. That is, when gas is supplied from the gas inlet 3, several tens of percent of the gas is released from the opening 1 as neutral molecules. The released gas creates a pressure around the opening that is determined by the degree of ease of flow around the opening. As an ion source device, the pressure is 1 in the plasma part.
0-"Torr, preferably as low as possible outside the housing, the former for stable plasma formation, the latter for collision scattering of the ion beam onto neutral molecules and charge conversion: A" (high speed) 10A (low speed) - A (high speed) + A (low speed)
This is to prevent this. Here, A'' (high speed) is a high-speed ion accelerated by the electrostatic field between the ion extraction W pole and the semi-closed container, A (low speed) is a low-speed neutral molecule simply released from the opening, and A ( A" (high velocity) is a fast neutral molecule that loses its charge and loses its function as an ion when a fast ion collides with a slow neutral molecule, and A" (low velocity) is a fast neutral molecule that becomes charged due to a collision with a fast ion. It is a slow-moving ion.

このような、イオンビームの衝突散乱や荷電変換が起こ
ると、装置としてのイオンの利用効率が低下する0例え
ば、10−’Torrの雰囲気中を10鶴進む場合、衝
突散乱は10数%、荷電変換は数%にもなり、この分イ
オンの利用効率が低下する。
When such collisional scattering and charge conversion of the ion beam occur, the efficiency of using ions as a device decreases. The conversion is as high as several percent, and the ion utilization efficiency decreases accordingly.

このような、衝突散乱や荷電変換の大きさに影響のある
開口部まわりのガスの流れやすさすなわちコンダクタン
スは、イオン源装置の構成を第7図のようにモデル化す
ることにより、より容易に理解することができる。ここ
で、符号11が示す直線より上部はプラズマが生成され
る半密閉空間を意味し、下部は前記半密閉空間を形成す
る半密閉容器2 (第5図)を収容する真空容器すなわ
ちハウジング12の、図示されない真空排気系に連なる
空間を示す、また、doはスリット状に形成された開口
部の幅であり、これと対向して板状のイオン引出し電極
13が配されている。
The ease of gas flow, or conductance, around the opening, which affects the magnitude of collision scattering and charge conversion, can be more easily determined by modeling the configuration of the ion source device as shown in Figure 7. I can understand. Here, the upper part of the straight line indicated by the reference numeral 11 means a semi-enclosed space in which plasma is generated, and the lower part means a vacuum container, that is, a housing 12 that accommodates the semi-enclosed container 2 (FIG. 5) forming the semi-enclosed space. , indicates a space connected to an evacuation system (not shown), and do is the width of an opening formed in a slit shape, and a plate-shaped ion extraction electrode 13 is disposed opposite to this.

圧力がP、に保たれた半密閉空間から幅doの開口部を
介して放出された中性分子は、イオン引出し電極13に
遮られて自由に拡散することができず、その流れのコン
ダクタンスは、寸法do、 MおよびLによって異なる
が、大略、第6回に示すような、自由に拡散可能な場合
の3分の1にすぎなくなってしまう、すなわち、構造物
としての板状のイオン引出し電極13が存在するため、
各部の圧力が高くなってしまう、結果として前述の衝突
散乱、荷電変換が発生し、イオンビームの利用効率が下
がって悪影響を与える。なお、散乱は粒子光学系の設計
上も好ましくない。
Neutral molecules released from a semi-closed space where the pressure is kept at P through an opening with a width do are blocked by the ion extraction electrode 13 and cannot freely diffuse, and the conductance of the flow is Although it varies depending on the dimensions do, M and L, it is roughly only one-third of the case where it can be freely diffused as shown in Part 6, that is, a plate-shaped ion extraction electrode as a structure. Since there are 13,
The pressure at each part increases, and as a result, the aforementioned collision scattering and charge conversion occur, which reduces the efficiency of ion beam utilization and has an adverse effect. Incidentally, scattering is also unfavorable in terms of the design of the particle optical system.

この発明の目的は、イオンビームの衝突散乱と荷電変換
の割合を下げ、イオンビーム利用効率の高いイオン源装
置を提供することである。
An object of the present invention is to provide an ion source device that reduces the rate of collision scattering and charge conversion of ion beams and has high ion beam utilization efficiency.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、この発明によれば、開口部
が設けられて半密閉空間を形成し内部で対象ガスがプラ
ズマ化される半密閉容器と、前記半密閉容器の開口部と
対向して配され半密閉容器との間に静電界を形成して前
記開口部からプラズマ中のイオンを引き出すイオン引出
し電極5とを備え°   たイオン源装置において、前
記イオン引出し電極を互いに平行に走る複数の棒状電極
を用いて構成するものとする。
In order to achieve the above object, the present invention provides a semi-closed container that is provided with an opening to form a semi-closed space and in which a target gas is turned into plasma; In an ion source device comprising an ion extraction electrode 5 disposed in a semi-closed container to form an electrostatic field between the ion extraction electrode 5 and a semi-closed container to extract ions in the plasma from the opening, a plurality of ion extraction electrodes running parallel to each other extend through the ion extraction electrode. It shall be constructed using rod-shaped electrodes.

〔作用〕[Effect]

このように、イオン引出し電極を互いに平行に走る複数
の棒状電極を用いて構成し、たとえば半密閉容器の開口
部がスリット状に形成されている場合には、i状電極相
互間のすき間の方向をスリットの長手方向と一敗させる
ことにより、開口部から放出された中性分子はこのすき
間を這うて容易に棒状電極の背後側へ通り抜けることが
できるから、中性分子の流れのコンダクタンスが著しく
大きくなり、開口部まわりの圧力が低下して中性分子に
よるイオンビームの衝突散乱と荷電変換とが著しくその
割合を滅し、イオンビームの利用効率が向上する。しか
もこのように構成されたイオン引出し電極と半密閉容器
との間に形成される静電界は、イオン引出し電極の棒状
電極表面では電界が集中するが、半密閉容器の開口部近
傍では電界が広がって板状のイオン引出し電極を用いた
場合と同様の電界分布となり、イオンの引出し作用には
ほとんど差を生じない。
In this way, when the ion extraction electrode is constructed using a plurality of rod-shaped electrodes running parallel to each other, and the opening of a semi-closed container is formed in the shape of a slit, the direction of the gap between the i-shaped electrodes can be changed. By aligning the slit with the longitudinal direction of the slit, the neutral molecules released from the opening can easily crawl through this gap and pass behind the rod-shaped electrode, so the conductance of the flow of neutral molecules is significantly increased. As the opening becomes larger, the pressure around the opening decreases, and the ratio of collision scattering and charge conversion of the ion beam by neutral molecules is significantly reduced, improving the efficiency of using the ion beam. Moreover, the electrostatic field formed between the ion extraction electrode and the semi-closed container configured in this way is concentrated on the rod-shaped electrode surface of the ion extraction electrode, but spreads near the opening of the semi-closed container. The electric field distribution is the same as when a plate-shaped ion extraction electrode is used, and there is almost no difference in the ion extraction effect.

〔実施例〕〔Example〕

第1図に本発明の第1の実施例によるイオン源装置の構
成を示す、直方体状に形成された半密閉容器2の1つの
面に形成された開口部1に対向する位置に1対の棒状電
極5を配置し、固定金具6を用いて棒状電極5を一体化
することによりイオン引出し電極を形成している0通常
、半密閉容器とイオン引出し電極との間隔は数〜10数
鶴であるから、棒状電極の直径を数Uに選べば、対向す
る部分の電界は板状の電極の場合に比べ、棒状電極近傍
では高くなるが、開口部近傍ではあまり変わらない、従
って板状電極と同様のイオン引出しが可能である。
FIG. 1 shows the configuration of an ion source device according to a first embodiment of the present invention. The ion extraction electrode is formed by arranging the rod-shaped electrodes 5 and integrating the rod-shaped electrodes 5 using the fixing fittings 6. Normally, the interval between the semi-closed container and the ion extraction electrode is several to ten. Therefore, if the diameter of the rod-shaped electrode is selected to be several U, the electric field of the opposing portion will be higher near the rod-shaped electrode than in the case of a plate-shaped electrode, but it will not change much near the opening. Similar ion extraction is possible.

第2図は第1図の実施例に対する変形例を示す。FIG. 2 shows a modification of the embodiment shown in FIG.

第1図においては固定金具6を用いて棒状電極を一体化
し、この固定金具6を、イオン源装置を収容する真空容
器すなわちハウジングに固定する構成としているが、第
2図に示す変形例では、棒状電極の端部をそれぞれL字
状に折り曲げて固定部を形成し、この固定部を直接ハウ
ジングに固定するようにして、イオン引出し電極構造の
簡略化を図ったものである。
In FIG. 1, the rod-shaped electrode is integrated using a fixture 6, and this fixture 6 is fixed to a vacuum container or housing that houses the ion source device, but in the modified example shown in FIG. The end portions of the rod-shaped electrodes are each bent into an L-shape to form a fixing portion, and the fixing portions are directly fixed to the housing, thereby simplifying the ion extraction electrode structure.

第3図は本発明の第2の実施例によるイオン源装置の構
成を示す、この実施例はイオン引出し電極側の電界をも
板状電極に近づけようとする場合の棒状電極の配置例を
示すものであり、第1図における1対の棒状電極の両外
側にさらにシールド電極としての棒状電極7を配したも
のである。この場合には、中央1対の棒状電極の直径を
さらに小さくすることも可能であり、電極の寸法が小さ
ければ小さいほど、電極への中性分子の衝突確率が減り
コンダクタンスが大森くなる。従って圧力が小さくなる
ので衝突散乱、荷電変換の割合が減り、イオンビーム利
用効率の高いイオン源装置にすることができる。
FIG. 3 shows the configuration of an ion source device according to a second embodiment of the present invention. This embodiment shows an example of arrangement of rod-shaped electrodes when the electric field on the ion extraction electrode side is also intended to be brought close to the plate-shaped electrode. In addition, rod-shaped electrodes 7 as shield electrodes are arranged on both sides of the pair of rod-shaped electrodes shown in FIG. In this case, it is possible to further reduce the diameter of the central pair of rod-shaped electrodes, and the smaller the electrode dimensions, the lower the probability of collision of neutral molecules with the electrodes, and the greater the conductance. Therefore, since the pressure is reduced, the ratio of collision scattering and charge conversion is reduced, making it possible to provide an ion source device with high ion beam utilization efficiency.

第4図は本発明の第3の実施例によるイオン源装置の構
成を示す、この構成によればイオン引出し電極は方形の
金属板の端部を棒状に丸めて電極部15aを形成すると
ともにこの電極部につづく平面部を流れの整流部15b
とした電極15を対にして開口部1に対向して配置して
なるものであり、中性分子の流れに対する作用ならびに
開口部まわりの静電界の形成に対する作用は前記第1.
第2の実施例における棒状電極と同じである。従ってこ
こではこの電極部15aと整流部15bとにより構成さ
れる電極15も幾何学的には棒状ではないが棒状電極と
呼ぶこととする。
FIG. 4 shows the configuration of an ion source device according to a third embodiment of the present invention. According to this configuration, the ion extraction electrode is formed by rolling the end of a rectangular metal plate into a rod shape to form an electrode portion 15a. The flat part following the electrode part is a flow rectifying part 15b.
The electrodes 15 are arranged in pairs to face the opening 1, and the effect on the flow of neutral molecules and the formation of an electrostatic field around the opening are the same as those described in the first embodiment.
This is the same as the rod-shaped electrode in the second embodiment. Therefore, here, the electrode 15 constituted by the electrode portion 15a and the rectifying portion 15b is also referred to as a rod-shaped electrode, although it is not geometrically rod-shaped.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、本発明によれば、開口部が設けら
れて半密閉空間を形成し内部で対象ガスがプラズマ化さ
れる半密閉容器と、前記半密閉容器の開口部と対向して
配され半密閉容器との間に静電界を形成して前記開口部
からプラズマ中のイオンを引き出すイオン引出し電極と
を備えたイオン源装置において、前記イオン引出し電極
を互いに平行に走る複数の棒状電極を用いて構成し、イ
オン引出しに与かる開口部近傍の電界をほとんど変える
ことなくイオン引出し電極のプラズマ室(半密閉容器)
に対向する寸法を小さくしたので、開口部から放出され
る中性分子の流れに対する開口部まわりのコンダクタン
スが大きくなり、プラズマ室とイオン引出し電極との間
の空間に放出された中性分子によるガス圧力が低減され
、イオンビームの中性分子による衝突散乱や荷電変換の
割合の小さい、従ってイオンビームの利用効率の高いイ
オンビーム装置が可能になる。
As described above, according to the present invention, there is provided a semi-enclosed container having an opening to form a semi-enclosed space in which a target gas is turned into plasma, and a container facing the opening of the semi-enclosed container. An ion source device comprising: an ion extraction electrode arranged to form an electrostatic field with a semi-closed container to extract ions in the plasma from the opening, a plurality of rod-shaped electrodes running parallel to each other on the ion extraction electrode; The plasma chamber (semi-closed container) of the ion extraction electrode is configured using
By reducing the dimension facing the opening, the conductance around the opening increases for the flow of neutral molecules released from the opening, and the gas generated by the neutral molecules released into the space between the plasma chamber and the ion extraction electrode increases. The pressure is reduced, and an ion beam device in which the rate of collisional scattering and charge conversion by neutral molecules of the ion beam is small, and therefore the ion beam is used efficiently, can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例によるイオン源装置の構
成を示す斜視図、第2図は第1図に示す第1の実施例の
変形例によるイオン源装置の構成を示す斜視図、第3図
は本発明の第2の実施例によるイオン源装置の構成を示
す斜視図、第4図は本発明の第3の実施例によるイオン
源装置の構成原理図、第5図は従来例によるイオン源装
置の構成を示す斜視図、第6図はイオン引出し電極がな
いとしたときの半密閉容器開口部から放出される中性分
子の流れに対するコンダクタンスを説明する模型図、第
7図はイオン引出し電極を板状電極としたときの半密閉
容器開口部から放出される中性分子の流れに対するコン
ダクタンスを説明する模型図である。 18開口部、2:半密閉容器、4:イオンビーム、5,
7,8,15:棒状電極、50:イオン引出し電極。 、)。 代JI人4ト理士 山 口  巌    、7第1図 
     第2図 第3図      第4図 第5図        第6図 第7図
FIG. 1 is a perspective view showing the configuration of an ion source device according to a first embodiment of the present invention, and FIG. 2 is a perspective view showing the configuration of an ion source device according to a modification of the first embodiment shown in FIG. , FIG. 3 is a perspective view showing the configuration of an ion source device according to a second embodiment of the present invention, FIG. 4 is a diagram showing the configuration principle of an ion source device according to a third embodiment of the present invention, and FIG. 5 is a conventional diagram. FIG. 6 is a perspective view showing the configuration of an ion source device according to an example; FIG. 6 is a model diagram illustrating the conductance with respect to the flow of neutral molecules released from the opening of the semi-closed container when there is no ion extraction electrode; FIG. 7 FIG. 2 is a model diagram illustrating the conductance with respect to the flow of neutral molecules released from the opening of the semi-closed container when the ion extraction electrode is a plate-shaped electrode. 18 opening, 2: semi-closed container, 4: ion beam, 5,
7, 8, 15: rod-shaped electrode, 50: ion extraction electrode. ,). Iwao Yamaguchi, 7th figure 1
Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 1)開口部が設けられて半密閉空間を形成し内部で対象
ガスがプラズマ化される半密閉容器と、前記半密閉容器
の開口部と対向して配され半密閉容器との間に静電界を
形成して前記開口部からプラズマ中のイオンを引き出す
イオン引出し電極とを備えたイオン源装置において、前
記イオン引出し電極を互いに平行に走る複数の棒状電極
を用いて構成したことを特徴とするイオン源装置。
1) An electrostatic field is created between a semi-enclosed container with an opening to form a semi-enclosed space in which the target gas is turned into plasma, and a semi-enclosed container placed opposite the opening of the semi-enclosed container. An ion source device comprising: an ion extraction electrode that forms an ion extraction electrode and extracts ions in plasma from the opening, wherein the ion extraction electrode is configured using a plurality of rod-shaped electrodes running parallel to each other. source device.
JP25121487A 1987-10-05 1987-10-05 Ion source device Pending JPH0195452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25121487A JPH0195452A (en) 1987-10-05 1987-10-05 Ion source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25121487A JPH0195452A (en) 1987-10-05 1987-10-05 Ion source device

Publications (1)

Publication Number Publication Date
JPH0195452A true JPH0195452A (en) 1989-04-13

Family

ID=17219397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25121487A Pending JPH0195452A (en) 1987-10-05 1987-10-05 Ion source device

Country Status (1)

Country Link
JP (1) JPH0195452A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011003458A (en) * 2009-06-19 2011-01-06 Tokyo Electron Ltd Charged particle separationapparatus and charged particle irradiation apparatus
US9022588B2 (en) 2009-11-10 2015-05-05 Mitsuba Corporation Mirror surface angle adjusting device
KR20190077308A (en) * 2016-11-11 2019-07-03 닛신 이온기기 가부시기가이샤 Ion source

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011003458A (en) * 2009-06-19 2011-01-06 Tokyo Electron Ltd Charged particle separationapparatus and charged particle irradiation apparatus
US9022588B2 (en) 2009-11-10 2015-05-05 Mitsuba Corporation Mirror surface angle adjusting device
KR20190077308A (en) * 2016-11-11 2019-07-03 닛신 이온기기 가부시기가이샤 Ion source
JP2019537816A (en) * 2016-11-11 2019-12-26 日新イオン機器株式会社 Ion source

Similar Documents

Publication Publication Date Title
US6803590B2 (en) Ion beam mass separation filter, mass separation method thereof and ion source using the same
US8658969B2 (en) Mass spectrometer
US8067747B2 (en) Parallel plate electrode arrangement apparatus and method
US7582861B2 (en) Mass spectrometer
JPH0812856B2 (en) Plasma processing method and apparatus
KR100611826B1 (en) Plasma vacuum pumping cell
US4749910A (en) Electron beam-excited ion beam source
JPS61290629A (en) Electron beam excitation ion source
JPH0195452A (en) Ion source device
US3890535A (en) Ion sources
US7247993B2 (en) Ion accelerator arrangement
JP4172561B2 (en) Gas analyzer
JPH06310297A (en) Generating method and device of low energy neutral particle beam
JPH0535537B2 (en)
JP3236928B2 (en) Dry etching equipment
JPH04319243A (en) Ion-implantation apparatus
JPS6127053A (en) Electron beam source
EP0095879B1 (en) Apparatus and method for working surfaces with a low energy high intensity ion beam
JP3338099B2 (en) Ion implanter
JPS6342707B2 (en)
JPS6217931A (en) Ion source
EP0499239A2 (en) Ion pump and vacuum pumping unit using the same
JPH02265150A (en) Sheet plasma ion and electron source by uramoto method
JPS617542A (en) Microwave ion source
JP2001133570A (en) Inertia electrostatic containment nuclear fusion apparatus