JPH0195416A - Formation of superconducting thin film - Google Patents

Formation of superconducting thin film

Info

Publication number
JPH0195416A
JPH0195416A JP62253189A JP25318987A JPH0195416A JP H0195416 A JPH0195416 A JP H0195416A JP 62253189 A JP62253189 A JP 62253189A JP 25318987 A JP25318987 A JP 25318987A JP H0195416 A JPH0195416 A JP H0195416A
Authority
JP
Japan
Prior art keywords
thin film
producing
superconducting thin
superconductor
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62253189A
Other languages
Japanese (ja)
Inventor
Saburo Tanaka
三郎 田中
Nobuhiko Fujita
藤田 順彦
Hideo Itozaki
糸崎 秀夫
Shuji Yatsu
矢津 修示
Tetsuji Jodai
哲司 上代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62253189A priority Critical patent/JPH0195416A/en
Publication of JPH0195416A publication Critical patent/JPH0195416A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To enable stably obtaining the high-performance superconducting thin film of complex acid fluoride by subjecting a complex oxide thin film generated via physical vapor deposition to the plasma oxidation treatment wherein the film is exposed to the mixed gases of oxygen and fluorine. CONSTITUTION:A thin film is generated via physical vapor deposition, containing at least one element alpha selected from IIa group of the periodic table, at least one element beta from group IIIa and at least one element gamma from groups Ib to IIIb, IVa and VIII. This film is subjected to the plasma oxidation treatment wherein the film is exposed to the mixed gas plasma of oxygen and fluorine. The plasma oxidation must be conducted under the pressure of 0.1 to 5Torr, and a ratio of F2 to (F2+O2) must be 0.05 to 10atom.%. In particular, the ratio is preferably 0.05 to 1atom.%. According to the aforesaid method, it is possible to obtain the thin film of a complex acid fluoride superconducting material stably having good superconducting characteristics, and uniform composition and structure.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は超電導薄膜の作製方法に関する。より詳細には
、高い超電導臨界温度および臨界電流を有し、優れた超
電導特性を持つ超電導薄膜の作製方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing superconducting thin films. More specifically, the present invention relates to a method for producing a superconducting thin film having high superconducting critical temperature and critical current, and having excellent superconducting properties.

従来の技術 電子の相転移であるといわれる超電導現象は、特定の条
件下で導体の電気抵抗が零の状態となり完全な反磁性を
示す現象である。
BACKGROUND OF THE INVENTION Superconductivity, which is said to be a phase transition of electrons, is a phenomenon in which the electrical resistance of a conductor becomes zero under certain conditions and exhibits complete diamagnetic properties.

エレクトロニクスの分野では各種の超電導素子が知られ
ている。代表的なものとしては、超電導材料どうしを弱
く接合した場合に、印加電流によって量子効果が巨視的
に現れるジョセフソン効果を利用した素子が挙げられる
Various types of superconducting elements are known in the field of electronics. A typical example is an element that utilizes the Josephson effect, in which a quantum effect appears macroscopically due to an applied current when superconducting materials are weakly bonded together.

トンネル接合型ジョセフソン素子は、超電導材料のエネ
ルギーギャップが小さいことから、極めて高速な低電力
消費のスイッチング素子として期待されている。また、
電磁波や磁場に対するジョセフソン効果が正確な量子現
象として現れることから、ジョセフソン素子を磁場、マ
イクロ波、放射線等の超高感度センサとして利用するこ
とも期待されている。さらに、電子回路の集積度が高く
なるにつれて単位面積当たりの消費電力が冷却能力の限
界に達する。そこで超高速計算機には超電導素子の開発
が要望されている。
Tunnel junction type Josephson devices are expected to be extremely high-speed switching devices with low power consumption because the energy gap of superconducting materials is small. Also,
Since the Josephson effect on electromagnetic waves and magnetic fields appears as a precise quantum phenomenon, it is expected that Josephson devices will be used as ultrasensitive sensors for magnetic fields, microwaves, radiation, etc. Furthermore, as the degree of integration of electronic circuits increases, power consumption per unit area reaches the limit of cooling capacity. Therefore, there is a need for the development of superconducting elements for ultra-high-speed computers.

一方、様々な努力にもかかわらず、超電導材料の超電導
臨界温度Tcは長期間に亘ってNb、Geの23Kを越
えることができなかったが、昨年未来、(La、 Ba
〕2cuoaまたは(La、 Sr〕2cuoa等の酸
化物の焼結材が高いTcをもつ超電導材料として発見さ
れ、非低温超電導を実現する可能性が大きく高まってい
る。これらの物質では、30乃至50にという従来に比
べて飛躍的に高いT。が観測され、70に以上のTcも
観測されている。
On the other hand, despite various efforts, the superconducting critical temperature Tc of superconducting materials could not exceed 23K for Nb and Ge for a long period of time, but last year, in the future, (La, Ba
Sintered materials of oxides such as [La, Sr]2cuoa or (La, Sr)2cuoa have been discovered as superconducting materials with high Tc, greatly increasing the possibility of realizing non-low temperature superconductivity. Tc, which is dramatically higher than the conventional one, has been observed, and Tc of 70 or higher has also been observed.

また、YBCOと称されるY1BazCusOv−xで
表される複合酸化物は、100に級の超電導体であるこ
とが発表されている。これら複合酸化物超電導体の超電
導特性には、結晶中の酸素欠陥が大きな役割を果たして
いる。すなわち、結晶中の酸素欠陥が適正でないと、T
cは低く、また、オンセット温度と抵抗が完全に0とな
る温度との差も大きくなる。
Furthermore, it has been announced that a composite oxide represented by Y1BazCusOv-x, called YBCO, is a 100-grade superconductor. Oxygen defects in the crystal play a major role in the superconducting properties of these composite oxide superconductors. In other words, if the oxygen defects in the crystal are not appropriate, T
c is low, and the difference between the onset temperature and the temperature at which the resistance becomes completely zero is also large.

また、上記の複合酸化物の酸素の一部をフッ素で置き換
えた複合酸フッ化物は、さらに高いTcを示すことが明
らかになりつつある。
Furthermore, it is becoming clear that a composite acid fluoride in which part of the oxygen in the above composite oxide is replaced with fluorine exhibits an even higher Tc.

発明が解決しようとする問題点 従来、上記複合酸フッ化物超電導体薄膜を作製する際に
は、焼結等で生成した酸フッ化物を蒸着源として物理蒸
着を行っていた。
Problems to be Solved by the Invention Conventionally, when producing the above composite oxyfluoride superconductor thin film, physical vapor deposition was performed using oxyfluoride produced by sintering or the like as a deposition source.

しかしながら、上記の複合酸フッ化物焼結体を作製する
のは、かなり困難であり、また、複合酸フッ化物焼結体
を蒸着源としても、得られる薄膜に含まれるフッ素の量
は、十分ではなかった。
However, it is quite difficult to produce the above composite acid fluoride sintered body, and even if the composite acid fluoride sintered body is used as a deposition source, the amount of fluorine contained in the resulting thin film is insufficient. There wasn't.

そこで、本発明の目的は、上記従来技術Φ問題点を解決
し、高い臨界温度Tcを始めとする優れた超電導緒特性
を安定的に有し、均一な組成および組織の複合酸フッ化
物超電導材料の薄膜を作製する方法を提供することにあ
る。
Therefore, an object of the present invention is to solve the problems of the prior art Φ described above, to create a composite oxyfluoride superconducting material that stably has excellent superconducting properties including a high critical temperature Tc, and has a uniform composition and structure. An object of the present invention is to provide a method for producing a thin film of.

問題点を解決するための手段 本発明に従うと、周期律表■a族元素から選択された少
なくとも1種の元素α、周期律表IIIa族元素から選
択された少なくとも1種の元素βおよび周期律表I b
、I[b、I[Ib、IVa、■a族元素から選択され
た少なくとも1種の元素Tを含有する複合酸フッ化物超
電導体薄膜を作製する方法において、物理蒸着により上
記元素α、βおよびγを含有する薄膜を生成し、該薄膜
を酸素およびフッ素の混合ガスプラズマに曝すプラズマ
酸化処理を行って複合酸フッ化物超電導体薄膜を作製す
ることを特徴とする超電導薄膜の作製方法が提供される
Means for Solving the Problems According to the present invention, at least one element α selected from elements of group ■a of the periodic table, at least one element β selected from elements of group IIIa of the periodic table, and at least one element β selected from elements of group IIIa of the periodic table; Table Ib
, I[b, I[Ib, IVa, ■ In a method for producing a composite oxyfluoride superconductor thin film containing at least one element T selected from group a elements, the above elements α, β and A method for producing a superconducting thin film is provided, which comprises producing a thin film containing γ and performing a plasma oxidation treatment of exposing the thin film to a mixed gas plasma of oxygen and fluorine to produce a composite oxyfluoride superconductor thin film. Ru.

本発明の方法で作製される複合酸フッ化物超電導薄膜は
、下記一般式: %式%] (但し、αは周期律表1a族に含まれる元素であり、β
は周期律表11a族に含まれる元素であり、rは周期律
表Ib、IIb、llIb、IVaおよび■a族から選
択される少なくとも一つの元素であり、X5ysZはそ
れぞれ0.1≦X≦0.9.0.4≦y≦3.0.1≦
2≦5を満たす数である) で示される複合酸フッ化物で構成されることが好ましい
。これらの複合酸フッ化物はペロブスカイト型または擬
似ペロブスカイト型酸フッ化物を主体としたものと考え
られる。
The composite oxyfluoride superconducting thin film produced by the method of the present invention has the following general formula:
is an element included in group 11a of the periodic table, r is at least one element selected from groups Ib, IIb, llIb, IVa, and ■a of the periodic table, and X5ysZ is each 0.1≦X≦0 .9.0.4≦y≦3.0.1≦
It is preferable to be composed of a complex acid fluoride represented by the following formula (a number satisfying 2≦5). These composite acid fluorides are thought to be mainly composed of perovskite-type or pseudo-perovskite-type acid fluorides.

上記周期律表Ija族元素αとしては、Ba5Sr。The Ija group element α of the periodic table is Ba5Sr.

Ca、 Mg5Be等が好ましく、例えば、Ba5Sr
を挙げることができ、この元素αの10〜80%をMg
5Ca。
Ca, Mg5Be, etc. are preferable, for example, Ba5Sr
can be mentioned, and 10 to 80% of this element α is Mg
5Ca.

Srから選択された1種または2種の元素で置換するこ
ともできる。また上記周期律表]lea族元素βはとし
ては、Y、 La5ScSCe、 Gd、 )io、 
Er、 、Tm。
It can also be replaced with one or two elements selected from Sr. In addition, [the periodic table] Lea group elements β are Y, La5ScSCe, Gd, )io,
Er, , Tm.

Yb、 Lu等が好ましく、例えばY、Laとすること
ができ、この元素βのうち、10〜80%をScまたは
La以外のランタノイド元素から選択された1種または
2種の元素で置換することもできる。前記元素Tは一般
にCuであるが、その一部を周期律表Ib。
Yb, Lu, etc. are preferable, and for example, Y and La can be used, and 10 to 80% of this element β can be replaced with one or two elements selected from lanthanide elements other than Sc or La. You can also do it. The element T is generally Cu, and some of it is listed in Periodic Table Ib.

IIb、llIb、IVaおよび■a族から選択される
他の元素、例えば、Ti5V等で置換することもできる
It is also possible to substitute other elements selected from groups IIb, llIb, IVa and Ⅰa, such as Ti5V.

本発明の態様に従うと、上記の複合酸フッ化物超電導薄
膜を形成する基板としては、MgO単結晶、SrTiO
3単結晶またはZr0h単結晶が好ましく、特に、Mg
O単結晶または5rTi03単結晶基板の成膜面を、(
001)面または(011)面とすることが好ましい。
According to an aspect of the present invention, the substrate on which the composite oxyfluoride superconducting thin film is formed is MgO single crystal, SrTiO
3 single crystal or ZrOh single crystal is preferred, especially Mg
The film formation surface of the O single crystal or 5rTi03 single crystal substrate is
It is preferable to use a (001) plane or a (011) plane.

作用 本発明の超電導薄膜の作製方法は、スパッタリング、M
BE、イオンプレーティング、真空蒸着等の物理蒸着で
作製した複合酸化物薄膜を、酸素およびフッ素の混合ガ
スプラズマに曝すプラズマ酸化処理を行い、複合酸フッ
化物超電導薄膜を得るところにその主要な特徴がある。
Function The method for producing the superconducting thin film of the present invention includes sputtering, M
Its main feature is that a composite oxide thin film produced by physical vapor deposition such as BE, ion plating, or vacuum evaporation is subjected to plasma oxidation treatment by exposing it to a mixed gas plasma of oxygen and fluorine to obtain a composite oxyfluoride superconducting thin film. There is.

すなわち、YBCOと称されるY1BazCu30t−
xで代表される複合酸化物超電導体の酸素の一部をフッ
素で置換した複合酸フッ化物は、上記の複合酸化物超電
導体よりさらに優れた超電導特性を有する。しかしなが
ら、従来の方法では、上記の複合酸フッ化物超電導薄膜
を組成を厳密に制御しながら作製することが困難であっ
た。そのため、従来得られた複合酸フッ化物超電導薄膜
は、薄膜ごとにその特性が大幅に異なり、安定しなかっ
た。
That is, Y1BazCu30t- called YBCO
A composite oxyfluoride obtained by substituting a portion of oxygen in a composite oxide superconductor represented by x with fluorine has superconducting properties even better than the above-mentioned composite oxide superconductor. However, with conventional methods, it has been difficult to fabricate the above composite oxyfluoride superconducting thin film while strictly controlling the composition. Therefore, the properties of the conventionally obtained composite oxyfluoride superconducting thin films differed greatly depending on the thin film and were not stable.

これは、蒸着源となる複合酸フッ化物の作製が困難であ
ること、また、蒸着源の複合酸フッ化物が作製できても
、酸化物とフッ化物の蒸着特性が大幅に異なるため、薄
膜中のフッ素量を制御することができなかった。また、
蒸着雰囲気をフッ素含有雰囲気とすることも、装置が高
価になること等から不利である。
This is because it is difficult to prepare a composite acid fluoride as an evaporation source, and even if a composite oxyfluoride can be made as an evaporation source, the deposition characteristics of oxides and fluorides are significantly different. It was not possible to control the amount of fluorine. Also,
Setting the vapor deposition atmosphere to be a fluorine-containing atmosphere is also disadvantageous because the equipment becomes expensive.

従って、本発明の方法では、予め物理蒸着で複合酸化物
薄膜を作製し、該薄膜を酸素、フッ素混合ガスプラズマ
でプラズマ酸化処理することにより、複合酸化物結晶中
の酸素の一部をフッ素で置き換えた複合酸フッ化物を生
成するとともに、結晶の酸素欠陥を調整する。
Therefore, in the method of the present invention, a composite oxide thin film is prepared in advance by physical vapor deposition, and a part of the oxygen in the composite oxide crystal is converted into fluorine by plasma oxidation treatment of the thin film with oxygen and fluorine mixed gas plasma. A substituted complex acid fluoride is generated, and oxygen defects in the crystal are adjusted.

本発明の複合酸フッ化物超電導薄膜を形成する複合酸フ
ッ化物としては、Y1Ba2Cu3 [0,F :] 
]7−X%La1BazCu3o、 F ) ?−X%
 La1BazCus (0,F :] ]7−xまた
はHo1BaaCu3〔O、F〕?−X (ただしXは
0くx<lを満たす数である。)が好ましい。
The composite acid fluoride forming the composite acid fluoride superconducting thin film of the present invention includes Y1Ba2Cu3 [0,F:]
]7-X%La1BazCu3o, F)? -X%
La1BazCus(0,F:]]7-x or Ho1BaaCu3[O,F]?-X (where X is a number satisfying 0 and x<l) is preferable.

本発明の物理蒸着は、スパッタリング特にマグネトロン
スパッタリングが好ましい。これは、蒸着雰囲気、スパ
ッタリング電力、ターゲットの種類、ターゲットと基板
の位置等のパラメータの選折幅が広いため、各種の特性
を有する薄膜を作製することができるからである。
In the physical vapor deposition of the present invention, sputtering, particularly magnetron sputtering, is preferable. This is because there is a wide selection range of parameters such as evaporation atmosphere, sputtering power, type of target, and position of the target and substrate, so thin films with various characteristics can be produced.

また、本発明のプラズマ酸化は、圧力0.1〜5Tor
rでF2/(F2”0□)の比が、0.05〜10原子
%であること、特に0.05〜1原子%であることが好
ましい。この理由は、圧力が0. ITorr未満およ
び5Torrを越えるとプラズマの強さが十分ではなく
、また、F2/(F2+O□)の比が、0.05原子%
未満では薄膜中のフッ素が十分とならず、10原子%を
越えると逆に薄膜中のフッ素が過剰となり、いずれの場
合も薄膜の超電導特性は悪化するからである。
In addition, the plasma oxidation of the present invention is performed at a pressure of 0.1 to 5 Torr.
It is preferable that the ratio of F2/(F2''0□) at r is 0.05 to 10 at%, especially 0.05 to 1 at%. If it exceeds 5 Torr, the plasma strength is not sufficient, and the ratio of F2/(F2+O□) is 0.05 atomic%.
If it is less than 10 atomic %, the fluorine in the thin film will not be sufficient, and if it exceeds 10 atomic %, the fluorine in the thin film will be excessive, and in either case, the superconducting properties of the thin film will deteriorate.

さらに、上記Fa/(F2+O□)の比が0.05〜1
原子%の範囲では緒特性の優れた超電導薄膜が得られ易
いため、0.05〜1原子%の範囲が特に好ましい。
Furthermore, the ratio of Fa/(F2+O□) is 0.05 to 1
Since a superconducting thin film with excellent properties can easily be obtained in the atomic % range, the range of 0.05 to 1 atomic % is particularly preferable.

本発明の態様に従うと、上記の複合酸フッ化物超電導薄
膜を形成する基板としては、MgO単結晶、5rTiC
h単結晶またはZrO□単結晶基板が好ましい。
According to an aspect of the present invention, the substrate on which the composite oxyfluoride superconducting thin film is formed is MgO single crystal, 5rTiC
h single crystal or ZrO□ single crystal substrate is preferred.

特に、MgO単結晶基板または5rTiCh単結晶基板
の(001)面または(011)面を成膜面として用い
ることが好ましい。
In particular, it is preferable to use the (001) plane or (011) plane of the MgO single crystal substrate or the 5rTiCh single crystal substrate as the film forming surface.

本発明の複合酸フッ化物超電導体は、その電気抵抗に結
晶異方性を有する。すなわち、結晶のa軸およびb軸で
決定される面に平行な方向に電流が流れ易い。上記の基
板の上記成膜面上に形成さ  −れた複合酸フッ化物超
電導薄膜は、その結晶のC軸が基板成膜面に対し垂直ま
たは垂直に近い角度となるため、特に臨界電流密度Jc
が大きくなる。
The composite acid fluoride superconductor of the present invention has crystal anisotropy in its electrical resistance. That is, current tends to flow in a direction parallel to the plane determined by the a-axis and b-axis of the crystal. The composite oxyfluoride superconducting thin film formed on the film-forming surface of the above-mentioned substrate has a C-axis of its crystal that is perpendicular or nearly perpendicular to the film-forming surface of the substrate.
becomes larger.

従って、MgO単結晶基板またはSrTiO3単結晶基
板の(001)面を成膜面として用いることが好ましい
。また、(011)面を用いてC軸を基板と平行にし、
C軸と垂直な方向を特定して用いることもできる。さら
に、Mg Os SrT r O3は、熱膨張率が上記
の複合酸フッ化物超電導体と近いため、加熱、冷却の過
程で薄膜に不必要な応力を加えることがなく、薄膜を破
損する恐れもない。
Therefore, it is preferable to use the (001) plane of the MgO single crystal substrate or the SrTiO3 single crystal substrate as the film forming surface. In addition, the C axis is made parallel to the substrate using the (011) plane,
It is also possible to specify and use a direction perpendicular to the C-axis. Furthermore, since MgOsSrTrO3 has a coefficient of thermal expansion close to that of the above-mentioned composite oxyfluoride superconductor, unnecessary stress is not applied to the thin film during the heating and cooling process, and there is no risk of damaging the thin film. .

実施例 以下に本発明を実施例により説明するが、本発明の技術
的範囲は、以下の開示に何隻制限されるものではないこ
とは勿論である。
EXAMPLES The present invention will be explained below using examples, but it goes without saying that the technical scope of the present invention is not limited to the following disclosure.

本発明の方法により、マグネトロンスパッタリングで超
電導薄膜を作製した。原料酸化物として、Ho:Ba:
Cuのモル比が1:2:4であるHo−Ba −Cu−
0セラミツクを用いた。上記のセラミックをφ100m
田の円板に成形し、ターゲットとした。基板は、MgO
単結晶基板とし、(100)面を成膜面として用いた。
A superconducting thin film was fabricated by magnetron sputtering according to the method of the present invention. As raw material oxides, Ho:Ba:
Ho-Ba-Cu- where the molar ratio of Cu is 1:2:4
0 ceramic was used. The above ceramic is φ100m
It was formed into a rice disc and used as a target. The substrate is MgO
A single crystal substrate was used, and the (100) plane was used as the film formation surface.

成膜条件を以下に示す。The film forming conditions are shown below.

基板温度    670℃ 圧   力   0.01〜0.ITorrRF電力1
00〜200w 成膜時間は60分で、得られた薄膜の膜厚は約0.8μ
mであった。
Substrate temperature 670℃ Pressure 0.01~0. ITorrRF power 1
00~200W Film formation time was 60 minutes, and the thickness of the obtained thin film was approximately 0.8μ
It was m.

次いで、上記のように作製した複合酸化物薄膜を酸素、
フッ素混合ガスプラズマと酸素のみのプラズマのそれぞ
れのプラズマでプラズマ酸化処理した。プラズマ酸化条
件を以下に示す。尚、雰囲気以外の他の条件は共通であ
る。
Next, the composite oxide thin film prepared as described above was exposed to oxygen,
Plasma oxidation treatment was performed using both fluorine mixed gas plasma and oxygen-only plasma. The plasma oxidation conditions are shown below. Note that conditions other than the atmosphere are the same.

酸素流量   10〜20SCCM フッ素流量  0.15 SCCM 圧   力   0.5〜I TorrRF電 力  
   40W 処理時間は、いずれも4時間である。
Oxygen flow rate 10~20SCCM Fluorine flow rate 0.15 SCCM Pressure 0.5~I TorrRF power
40W The processing time was 4 hours in both cases.

得られたそれぞれの超電導薄膜の主な超電導特性を以下
に示す。
The main superconducting properties of each superconducting thin film obtained are shown below.

本発明  従来例 臨界型流密5    2X10’   lXl0’Jc
  (A/  )77に 上記のように本発明の方法により作製された超電導薄膜
は、従来のものより良好な超電導特性を示す。これは、
酸素サイトの一部に、電気陰性度が高いフッ素が入った
ことによるものと考えられる。
Present invention Conventional example critical flowtight 5 2X10'lXl0'Jc
(A/)77 The superconducting thin film produced by the method of the present invention as described above exhibits better superconducting properties than conventional ones. this is,
This is thought to be due to the introduction of fluorine, which has a high electronegativity, into some of the oxygen sites.

発明の効果 以上詳述のように、本発明の方法によって得られた超電
導薄膜は、従来の方法で作製されたものに較べ、高いT
c、Jcを示す。
Effects of the Invention As detailed above, the superconducting thin film obtained by the method of the present invention has a higher T than that produced by the conventional method.
c, indicates Jc.

これは、本発明の方法に特徴的な処理方法に従って、ペ
ロブスカイト型結晶構造を持つ酸化物の酸素サイトの一
部を電気陰性度が高いフッ素と置き換えることにより初
めて実現したものである。
This was achieved for the first time by replacing some of the oxygen sites of an oxide with a perovskite crystal structure with fluorine, which has a high electronegativity, in accordance with the treatment method characteristic of the method of the present invention.

また、本発明の方法に従えば、従来よりも置き換えるフ
ッ素の量を厳密に制御できるため、より安定に高性能な
超電導薄膜を供給することが可能となる。
Further, according to the method of the present invention, the amount of fluorine to be replaced can be controlled more strictly than in the past, so it becomes possible to more stably supply a high-performance superconducting thin film.

特許出願人  住友電気工業株式会社Patent applicant: Sumitomo Electric Industries, Ltd.

Claims (20)

【特許請求の範囲】[Claims] (1)周期律表IIa族元素から選択された少なくとも1
種の元素α、周期律表IIIa族元素から選択された少な
くとも1種の元素βおよび周期律表 I b、IIb、IIIb
、IVa、VIIIa族元素から選択された少なくとも1種の
元素γを含有する複合酸フッ化物超電導体薄膜を作製す
る方法において、物理蒸着により上記元素α、βおよび
γを含有する薄膜を生成し、該薄膜を酸素およびフッ素
の混合ガスプラズマに曝すプラズマ酸化処理を行って複
合酸フッ化物超電導体薄膜を作製することを特徴とする
超電導薄膜の作製方法。
(1) At least one selected from group IIa elements of the periodic table
element α, at least one element β selected from group IIIa elements of the periodic table, and elements I b, IIb, IIIb of the periodic table
, IVa, and VIIIa group elements, a method for producing a composite oxyfluoride superconductor thin film containing at least one element γ selected from group IVa and VIIIa elements, comprising: producing a thin film containing the above elements α, β, and γ by physical vapor deposition; A method for producing a superconducting thin film, which comprises producing a composite oxyfluoride superconductor thin film by subjecting the thin film to a plasma oxidation treatment in which the thin film is exposed to a mixed gas plasma of oxygen and fluorine.
(2)上記複合酸フッ化物超電導体が、 一般式:(α_1_−_xβ_x)γ_y〔O、F〕_
z(但し、α、β、γは、上記定義の元素であり、xは
α+βに対するβの原子比で、0.1≦x≦0.9であ
り、yおよびzは(α_1_−_xβ_x)を1とした
場合に0.4≦y≦3.0、1≦z≦5となる原子比で
ある) で表される組成の酸化物であることを特徴とする特許請
求の範囲第1項に記載の超電導薄膜の作製方法。
(2) The above composite acid fluoride superconductor has the general formula: (α_1_−_xβ_x)γ_y[O,F]_
z (However, α, β, γ are the elements defined above, x is the atomic ratio of β to α + β, 0.1≦x≦0.9, and y and z are (α_1_−_xβ_x) Claim 1 is characterized in that the oxide is an oxide having a composition represented by The method for producing the superconducting thin film described above.
(3)上記複合酸フッ化物超電導体が、ペロブスカイト
型酸化物であることを特徴とする特許請求の範囲第1項
または第2項に記載の超電導薄膜の作製方法。
(3) The method for producing a superconducting thin film according to claim 1 or 2, wherein the composite acid fluoride superconductor is a perovskite-type oxide.
(4)上記複合酸フッ化物超電導体が、Ba、Yおよび
Al、Fe、Co、Ni、Zn、Cu、Ag、Tiによ
って構成される群から選択される少なくとも1種の元素
を含むことを特徴とする特許請求の範囲第1項乃至第3
項のいずれか1項に記載の超電導薄膜の作製方法。
(4) The composite oxyfluoride superconductor contains Ba, Y, and at least one element selected from the group consisting of Al, Fe, Co, Ni, Zn, Cu, Ag, and Ti. Claims 1 to 3 of the claims
A method for producing a superconducting thin film according to any one of the above.
(5)上記複合酸フッ化物超電導体が、Ba、Laおよ
びAl、Fe、Co、Ni、Zn、Cu、Ag、Tiに
よって構成される群から選択される少なくとも1種の元
素を含むことを特徴とする特許請求の範囲第1項乃至第
3項のいずれか1項に記載の超電導薄膜の作製方法。
(5) The composite oxyfluoride superconductor contains Ba, La, and at least one element selected from the group consisting of Al, Fe, Co, Ni, Zn, Cu, Ag, and Ti. A method for producing a superconducting thin film according to any one of claims 1 to 3.
(6)上記複合酸フッ化物超電導体が、Sr、Laおよ
びAl、Fe、Co、Ni、Zn、Cu、Ag、Tiに
よって構成される群から選択される少なくとも1種の元
素を含むことを特徴とする特許請求の範囲第1項乃至第
3項のいずれか1項に記載の超電導薄膜の作製方法。
(6) The composite oxyfluoride superconductor contains Sr, La, and at least one element selected from the group consisting of Al, Fe, Co, Ni, Zn, Cu, Ag, and Ti. A method for producing a superconducting thin film according to any one of claims 1 to 3.
(7)上記複合酸フッ化物超電導体が、Ba、Hoおよ
びAl、Fe、Co、Ni、Zn、Cu、Ag、Tiに
よって構成される群から選択される少なくとも1種の元
素を含むことを特徴とする特許請求の範囲第1項乃至第
3項のいずれか1項に記載の超電導薄膜の作製方法。
(7) The composite oxyfluoride superconductor contains Ba, Ho, and at least one element selected from the group consisting of Al, Fe, Co, Ni, Zn, Cu, Ag, and Ti. A method for producing a superconducting thin film according to any one of claims 1 to 3.
(8)上記複合酸フッ化物超電導体が、 Y_1Ba_2Cu_3〔O、F〕_7_−_x(ただ
しxは0<x<1を満たす数である) で表される複合酸フッ化物であることを特徴とする特許
請求の範囲第4項に記載の超電導薄膜の作製方法。
(8) The composite oxyfluoride superconductor is characterized by being a composite oxyfluoride represented by Y_1Ba_2Cu_3[O,F]_7_-_x (where x is a number satisfying 0<x<1). A method for producing a superconducting thin film according to claim 4.
(9)上記複合酸フッ化物超電導体が、 La_1Ba_2Cu_3〔O、F〕_7_−_x(た
だしxは0<X<1を満たす数である) で表される複合酸フッ化物であることを特徴とする特許
請求の範囲第5項に記載の超電導薄膜の作製方法。
(9) The composite oxyfluoride superconductor is characterized by being a composite oxyfluoride represented by La_1Ba_2Cu_3[O,F]_7_-_x (where x is a number satisfying 0<X<1). A method for producing a superconducting thin film according to claim 5.
(10)上記複合酸フッ化物超電導体が、 La_1Sr_2Cu_3〔O、F〕_7_−_x(た
だしxは0<x<1を満たす数である) で表される複合酸フッ化物であることを特徴とする特許
請求の範囲第6項に記載の超電導薄膜の作製方法。
(10) The composite oxyfluoride superconductor is characterized by being a composite oxyfluoride represented by La_1Sr_2Cu_3[O,F]_7_-_x (where x is a number satisfying 0<x<1). A method for producing a superconducting thin film according to claim 6.
(11)上記複合酸フッ化物超電導体が、 Ho_1Ba_2Cu_3〔O、F〕_7_−_x(た
だしxは0<x<1を満たす数である) で表される複合酸フッ化物であることを特徴とする特許
請求の範囲第7項に記載の超電導薄膜の作製方法。
(11) The composite oxyfluoride superconductor is characterized by being a composite oxyfluoride represented by Ho_1Ba_2Cu_3[O,F]_7_-_x (where x is a number satisfying 0<x<1). A method for producing a superconducting thin film according to claim 7.
(12)上記物理蒸着が、スパッタリング、分子線エピ
タキシー(MBE)、イオンプレーティングおよび真空
蒸着のいずれかであることを特徴とする特許請求の範囲
第1項乃至第11項のいずれか1項に記載の超電導薄膜
の作製方法。
(12) According to any one of claims 1 to 11, wherein the physical vapor deposition is one of sputtering, molecular beam epitaxy (MBE), ion plating, and vacuum evaporation. The method for producing the superconducting thin film described above.
(13)上記物理蒸着による成膜を、基板を加熱しなが
ら行うことを特徴とする特許請求の範囲第1項乃至第1
2項のいずれか1項に記載の超電導薄膜の作製方法。
(13) Claims 1 to 1, characterized in that the film formation by physical vapor deposition is performed while heating the substrate.
The method for producing a superconducting thin film according to any one of Item 2.
(14)上記基板の加熱温度が、150〜800℃であ
ることを特徴とする特許請求の範囲第13項に記載の超
電導薄膜の作製方法。
(14) The method for producing a superconducting thin film according to claim 13, wherein the heating temperature of the substrate is 150 to 800°C.
(15)上記基板として、上記複合酸フッ化物結晶の面
間隔と近い面間隔を有する酸化物単結晶を用いることを
特徴とする特許請求の範囲第1項乃至第14項のいずれ
か1項に記載の超電導薄膜の作製方法。
(15) According to any one of claims 1 to 14, wherein the substrate is an oxide single crystal having a lattice spacing close to that of the composite oxyfluoride crystal. The method for producing the superconducting thin film described above.
(16)上記基板として、MgO単結晶、SrTiO_
3単結晶またはZrO_2単結晶を用いることを特徴と
する特許請求の範囲第1項乃至第15項のいずれか1項
に記載の超電導薄膜の作製方法。
(16) As the substrate, MgO single crystal, SrTiO_
The method for producing a superconducting thin film according to any one of claims 1 to 15, characterized in that a ZrO_2 single crystal or a ZrO_2 single crystal is used.
(17)上記MgO単結晶またはSrTiO_3単結晶
基板の成膜面を、{001}面または{011}面とす
ることを特徴とする特許請求の範囲第16項に記載の超
電導薄膜の作製方法。
(17) The method for producing a superconducting thin film according to claim 16, wherein the film-forming surface of the MgO single crystal or SrTiO_3 single crystal substrate is a {001} plane or a {011} plane.
(18)上記酸素およびフッ素の混合ガスの酸素、フッ
素の割合F_2/(F_2+O_2)が、0.05乃至
10原子%の範囲であることを特徴とする特許請求の範
囲第1項乃至第17項のいずれか1項に記載の超電導薄
膜の作製方法。
(18) Claims 1 to 17, characterized in that the proportion of oxygen and fluorine in the mixed gas of oxygen and fluorine, F_2/(F_2+O_2), is in the range of 0.05 to 10 atomic %. The method for producing a superconducting thin film according to any one of the above.
(19)上記酸素およびフッ素の混合ガスの酸素、フッ
素の割合F_2/(F_2+O_2)が、0.05乃至
1原子%の範囲であることを特徴とする特許請求の範囲
第18項に記載の超電導薄膜の作製方法。
(19) The superconductor according to claim 18, characterized in that the proportion of oxygen and fluorine in the mixed gas of oxygen and fluorine, F_2/(F_2+O_2), is in the range of 0.05 to 1 atomic %. Method for producing thin films.
(20)上記プラズマ酸化時の圧力が、0.1乃至5T
orrの範囲であることを特徴とする特許請求の範囲第
1項乃至第19項のいずれか1項に記載の超電導薄膜の
作製方法。
(20) The pressure during the plasma oxidation is 0.1 to 5T.
20. The method for producing a superconducting thin film according to any one of claims 1 to 19, wherein the superconducting thin film is in the range of orr.
JP62253189A 1987-10-07 1987-10-07 Formation of superconducting thin film Pending JPH0195416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62253189A JPH0195416A (en) 1987-10-07 1987-10-07 Formation of superconducting thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62253189A JPH0195416A (en) 1987-10-07 1987-10-07 Formation of superconducting thin film

Publications (1)

Publication Number Publication Date
JPH0195416A true JPH0195416A (en) 1989-04-13

Family

ID=17247783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62253189A Pending JPH0195416A (en) 1987-10-07 1987-10-07 Formation of superconducting thin film

Country Status (1)

Country Link
JP (1) JPH0195416A (en)

Similar Documents

Publication Publication Date Title
JP2567460B2 (en) Superconducting thin film and its manufacturing method
JP2664066B2 (en) Superconducting thin film and method for producing the same
JP2501620B2 (en) Preparation method of superconducting thin film
JPH01167221A (en) Production of superconducting thin film
JP2501035B2 (en) Superconducting thin film
JPH0264021A (en) Preparation of multiple oxide superconducting thin film
JPH01166419A (en) Manufacture of superconductive membrane
JP2544759B2 (en) How to make a superconducting thin film
JPH0195416A (en) Formation of superconducting thin film
JPH0195419A (en) Formation of superconducting thin film
JPH0195418A (en) Formation of superconducting thin film
JPH0195415A (en) Formation of superconducting thin film
JPH0195417A (en) Formation of superconducting thin film
JP2545422B2 (en) Composite oxide superconducting thin film and method for producing the same
JP2645730B2 (en) Superconducting thin film
JP2544760B2 (en) Preparation method of superconducting thin film
JP2544761B2 (en) Preparation method of superconducting thin film
JPH0829938B2 (en) Composite oxide superconducting thin film and method for producing the same
JPH01167218A (en) Production of superconducting thin film
JPH01176216A (en) Production of superconducting thin film of compound oxide
JP2567416B2 (en) Preparation method of superconducting thin film
JP2501609B2 (en) Method for producing complex oxide superconducting thin film
JP2577056B2 (en) Preparation method of composite oxide superconducting thin film
JP2525842B2 (en) Superconducting wire and its manufacturing method
JPH02237082A (en) Semiconductor substrate provided with superconductor thin film and manufacture thereof