JPH0195258A - Air-cooled type absorption refrigerator - Google Patents

Air-cooled type absorption refrigerator

Info

Publication number
JPH0195258A
JPH0195258A JP25116387A JP25116387A JPH0195258A JP H0195258 A JPH0195258 A JP H0195258A JP 25116387 A JP25116387 A JP 25116387A JP 25116387 A JP25116387 A JP 25116387A JP H0195258 A JPH0195258 A JP H0195258A
Authority
JP
Japan
Prior art keywords
air
evaporator
cooled
refrigerant liquid
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25116387A
Other languages
Japanese (ja)
Inventor
Takao Tanaka
貴雄 田中
Yonezo Ikumi
米造 井汲
Tadahito Kobayashi
唯人 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP25116387A priority Critical patent/JPH0195258A/en
Publication of JPH0195258A publication Critical patent/JPH0195258A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE: To reduce the performance reduction of an evaporator and improve the performance of an air-cooled absorption refrigerator by providing the cooler of a refrigerant liquid halfway through a refrigerant liquid path from an air- cooled condenser to an evaporator. CONSTITUTION: While the top part of a cooler CR being arranged at the most upstream side of the fresh air being sent by a blowing machine F and the bottom part of a cooling pipe CT of a condenser C are connected by a pipeline with a pump PR, the bottom part and sprinkler 4 of an evaporator E are connected by a pipeline TR2 . Also, the fresh air is blown from a blower F in the order of the cooler CR, heat transfer pipes A3 , A2 , and A1 of an absorber A, and the cooling pipe CT o the condenser C. Since the temperature and the steam pressure of the refrigerant liquid being guided from the condenser C to the heat transfer pipe ET of the evaporator E are lowered by the cooler CR, more uniform liquid film of the refrigerant liquid can be easily formed on the inner wall of the heat transfer pipe ET and the performance of the evaporator E can be improved by that amount.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、伝熱管内壁面に沿い冷媒液を流しつつその気
化作用で管外の空気などの媒体から熱を奪う蒸発器およ
び空冷式の吸収器ならびに空冷式の吸収器を用いた空冷
式吸収冷凍機の改良に関する。
Detailed Description of the Invention (a) Industrial Application Field The present invention relates to an evaporator and an air-cooled type evaporator that removes heat from a medium such as air outside the tube by flowing a refrigerant liquid along the inner wall surface of a heat transfer tube and using the vaporization action of the refrigerant liquid. This invention relates to an improvement of an air-cooled absorption refrigerator using an air-cooled absorber and an air-cooled absorption refrigerator.

(ロ)従来の技術 上記の空冷式吸収冷凍機の従来の技術として、例えば特
開昭57−198969号公報にみられるように、空冷
式凝縮器で液化した冷媒をほぼそのままの温度レベルで
空冷式蒸発器の伝熱管へ導く構成のものが知られている
(b) Conventional technology As a conventional technology for the above-mentioned air-cooled absorption refrigerating machine, as shown in Japanese Patent Application Laid-open No. 57-198969, the refrigerant liquefied in an air-cooled condenser is air-cooled at almost the same temperature level. A configuration in which the heat exchanger is guided to a heat exchanger tube of a type evaporator is known.

(ハ)発明が解決しようとする問題点 上記のような従来の空冷式吸収冷凍機においては、蒸発
器の伝熱管内へ導かれる冷媒液の飽和温度、飽和蒸気圧
が凝縮器でのそれと殆んど変わらないため、冷媒液が伝
熱管内に流入した際に激しくフラッシュし、これに伴な
い多量の冷媒液滴が伝熱管の空間部を殆んど気化しない
ままに落下し、かつまた、管内壁面での冷媒液膜の形成
も不十分となりやすい、このため、蒸発器の能力が不十
分となり、吸収冷凍機の性能低下を招くという問題点が
ある。
(c) Problems to be solved by the invention In the conventional air-cooled absorption refrigerator as described above, the saturation temperature and saturated vapor pressure of the refrigerant liquid introduced into the heat transfer tube of the evaporator are almost the same as those in the condenser. Therefore, when the refrigerant liquid flows into the heat transfer tube, it flashes violently, and as a result, a large amount of refrigerant droplets fall through the space of the heat transfer tube without being vaporized. There is a problem in that the formation of a refrigerant liquid film on the inner wall surface of the tube is also likely to be insufficient, resulting in insufficient capacity of the evaporator and a decrease in the performance of the absorption refrigerator.

特に空冷式凝縮器を用いた吸収冷凍機においては、外気
温が高くて大きい冷凍出力が必要なときほど、凝縮器と
蒸発器との飽和蒸気圧の差が拡大して蒸発器での冷媒液
のフラッシュの激しさが増すため、より一層の冷凍出力
の低下を招きやすい問題点があった。
In particular, in absorption refrigerators using air-cooled condensers, when the outside temperature is high and a large refrigeration output is required, the difference in saturated vapor pressure between the condenser and evaporator increases, causing the refrigerant liquid in the evaporator to increase. As the intensity of the flash increases, there is a problem in that the refrigeration output tends to decrease further.

本発明は、このような問題点に鑑み、蒸発器の伝熱管内
での冷媒液のフラッシュを緩和して蒸発器の性能低下を
軽減し、空冷式吸収冷凍機の性能を従来のもののそれよ
りも向上させることを目的としたものである。
In view of these problems, the present invention alleviates the flash of refrigerant liquid in the heat transfer tube of the evaporator, reduces the performance deterioration of the evaporator, and improves the performance of the air-cooled absorption refrigerator compared to that of the conventional one. It is also aimed at improving the

(ニ)問題点を解決するための手段 本発明は、上記の問題点を解決する手段として、前述の
構成の空冷式吸収冷凍機の空冷式凝縮器から蒸発器へ至
る冷媒液経路の途中に冷媒液の冷却器を備え、かつ、こ
の冷却器から空冷式吸収器経由で空冷式凝縮器へと順に
空気の流れる通路を形成したことに特徴をもつ。
(d) Means for Solving the Problems The present invention, as a means for solving the above-mentioned problems, provides a solution to the refrigerant liquid path from the air-cooled condenser to the evaporator of the air-cooled absorption refrigerator having the above-mentioned configuration. It is characterized by being equipped with a refrigerant liquid cooler and forming a passage through which air flows sequentially from the cooler to the air-cooled condenser via the air-cooled absorber.

(ネ)作用 本発明の吸収冷凍機においては、冷媒液の冷却器が蒸発
器の伝熱管に流入する冷媒液の温度レベルを下げてその
飽和蒸気圧を低める作用をするので、伝熱管内での冷媒
液の自己蒸発に伴なうフラッシュの激しさが緩和される
。これにより、伝熱管内を未蒸発のまま落下する液滴の
量が減少すると共に伝熱管内壁面に沿って形成される液
膜の不均一さも軽減される結果、蒸発器の性能低下の軽
減効果がもたらされる。そして、上記の冷却器を備えて
いない従来の空冷式吸収冷凍機にくらべ、その性能の向
上効果がもたらされる。また、上記の空気通路に冷却器
と吸収器と凝縮器をコンパクトに並べて配置でき、これ
により空冷式吸収冷凍機の小型化も可能となる。
(f) Function In the absorption refrigerator of the present invention, the refrigerant liquid cooler functions to lower the temperature level of the refrigerant liquid flowing into the heat transfer tube of the evaporator and lower its saturated vapor pressure. The intensity of the flash caused by self-evaporation of the refrigerant liquid is reduced. This reduces the amount of droplets that fall unevaporated inside the heat transfer tube, and also reduces the non-uniformity of the liquid film that forms along the inner wall surface of the heat transfer tube, resulting in a reduction in evaporator performance degradation. is brought about. Moreover, compared to the conventional air-cooled absorption refrigerator which does not include the above-mentioned cooler, the performance is improved. Furthermore, the cooler, absorber, and condenser can be arranged side by side in a compact manner in the air passage, thereby making it possible to downsize the air-cooled absorption refrigerator.

くべ)実施例 図面は本発明による空冷式吸収冷凍機の一実施例を示し
た概略構成説明図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The drawings are schematic structural diagrams showing one embodiment of an air-cooled absorption refrigerator according to the present invention.

図において、(G)は直焚発生器、(C)は空冷式凝縮
器、(A)は空冷式吸収器、(E)は空冷式蒸発器、(
H8)は溶液熱交換器である。
In the figure, (G) is a direct-fired generator, (C) is an air-cooled condenser, (A) is an air-cooled absorber, (E) is an air-cooled evaporator, (
H8) is a solution heat exchanger.

(Fりは蒸発器(E)用の送風機で、これと蒸発器(E
)とで室内側ユニットが形成されている一方、これら機
器以外の上述の機器と送風機(F)とで室外側ユニット
が形成されている。
(F is the blower for the evaporator (E), and this and the evaporator (E)
) forms an indoor unit, while the above-mentioned devices other than these devices and the blower (F) form an outdoor unit.

<AI )、 (AI )、 (As )はそれぞれ吸
収器(A)用の伝熱管で、これらは垂直に並べて配列さ
れ、かつ、ポンプ(FAI)付きの管路(T、)、ポン
プ(PAn)付きの管路(Tりで直列に結ばれている。
<AI), (AI), and (As) are heat exchanger tubes for the absorber (A), respectively, which are arranged vertically, and are connected to a pipe (T,) with a pump (FAI), and a pump (PAn). ) with pipes (connected in series with T-strings).

(1)、 (2)、 (3)はそれぞれ伝熱管(Al 
)、 (AI )、 (AJ )の水平部層縁へ吸収液
を滴下する散布器で、ここから滴下された吸収液は管内
壁に沿って流下しつつ管内の気状冷媒を吸収する。そし
て、ポンプ(P、)付きの管路(’rt、)で伝熱管(
A、)底部と溶液熱交換器(Hりの希液入口とが結ばれ
る一方、この濃液出口と散布器(1)とが管路(T14
.)で結ばれている。なお、これら伝熱管の外壁にはフ
ィンが設けである。
(1), (2), and (3) are heat exchanger tubes (Al
), (AI), (AJ) This is a sprayer that drops the absorption liquid onto the horizontal layer edges of the pipes, and the absorption liquid dripped from here flows down along the inner wall of the pipe and absorbs the gaseous refrigerant inside the pipe. Then, a heat transfer tube ('rt,) with a pump (P,) is connected to
The bottom part of the solution heat exchanger (A,) is connected to the dilute liquid inlet of the solution heat exchanger (H), while the concentrated liquid outlet and the sprayer (1) are connected to the pipe (T14).
.. ) are connected. Note that fins are provided on the outer walls of these heat exchanger tubes.

また、管路(rt*)で発生器(G)の希液入口と溶液
熱交換器(H8)の希液出口とが結ばれる一方、この濃
液入口と発生器(G)の濃液出口とが管路(T□)で結
ばれている。
In addition, while the dilute solution inlet of the generator (G) and the dilute solution outlet of the solution heat exchanger (H8) are connected through the pipe (rt*), this concentrated solution inlet and the concentrated solution outlet of the generator (G) and are connected by a conduit (T□).

(Dec)は発生器(G)の気相部と空冷式凝縮器(C
)のそれとを結ぶダクトであり、(Cア)は凝縮器(C
)のフィン付き放熱管である。
(Dec) shows the gas phase part of the generator (G) and the air-cooled condenser (C
), and (Ca) is a duct connecting the condenser (C
) is a finned heat dissipation tube.

(D!A)は蒸発器(E)の気相部と空冷式吸収器(A
)のそれとを結ぶダクトであり、(ET)は蒸発器(E
)のフィン付き伝熱管であり、これは垂直に配置されて
いる。また、(4)は伝熱管(E、r)の水平部層縁に
冷媒液を滴下する散布器で、ここから滴下きれた冷媒液
は管内壁に沿って流下しつつ管外の空気から熱を奪って
気化しその潜熱で空気を冷やす。
(D!A) shows the gas phase part of the evaporator (E) and the air-cooled absorber (A!
), and (ET) is the duct connecting the evaporator (E
) is a finned heat exchanger tube that is vertically arranged. In addition, (4) is a sprayer that drips refrigerant liquid onto the horizontal layer edge of the heat transfer tube (E, r). It vaporizes and cools the air with its latent heat.

かつまた、(CIl)は送風機(F)で送られる外気の
最上流側に配置された冷却器で、その頂部と凝縮器(C
)の放熱管(Cア)底部とがポンプ(P、)付きの管路
(Ll)で結ばれる一方、底部と蒸発器(E)の散布器
(4)とが管路(Ttz)で結ばれている。図示してい
ないが、管路(Lx)にもポンプを備えても良く、また
、伝熱管(ET)底部とポンプ(P、)吸込み側とを管
路で結んでも良い。
In addition, (CIl) is a cooler placed on the most upstream side of the outside air sent by the blower (F), and the top of the cooler and the condenser (C
) is connected to the bottom of the heat dissipation pipe (Ca) by a pipe (Ll) with a pump (P, ), while the bottom and the diffuser (4) of the evaporator (E) are connected by a pipe (Ttz). It is. Although not shown, the pipe (Lx) may also be equipped with a pump, or the bottom of the heat transfer tube (ET) and the suction side of the pump (P,) may be connected by a pipe.

また、冷却器(C6)、吸収器(A)の伝熱管(AI)
In addition, the heat exchanger tubes (AI) of the cooler (C6) and absorber (A)
.

(At) 、 (As)、凝縮器(C)の放熱管(CT
)の順に外気が送風機(F)で送られるようになってい
る。
(At), (As), heat dissipation tube (CT) of condenser (C)
) The outside air is sent by a blower (F) in this order.

このような構成の空冷式吸収冷凍機〔以下、本機という
〕においては、凝縮器(C)から蒸発器(E)の伝熱管
(H7)へ導かれる冷媒液の温度および蒸気圧が冷却器
(C−で低められるので、この冷却器を備えていない従
来のものにくらべ、散布器(4)から流出する冷媒液の
自己蒸発によるフラッシュの激しさが弱まり、その分、
伝熱管内壁面での液膜の形成への悪影響の度合が減ると
共に管内の空間部を未気化のままで落下する液滴の量も
減り、管外の空気と管内の液冷媒との熱交換率の低下が
軽減される。換言すれば、冷却器(cm)を備えていな
い従来のものにくらべ、本機においては、伝熱管(El
)内壁でより均一な冷媒液の液膜が形成されやすくなり
、その分、蒸発器(E)の性能が向上するのである。
In an air-cooled absorption refrigerator with such a configuration (hereinafter referred to as this machine), the temperature and vapor pressure of the refrigerant liquid led from the condenser (C) to the heat transfer tube (H7) of the evaporator (E) are (Since the temperature is lowered by C-, the intensity of the flash due to self-evaporation of the refrigerant liquid flowing out from the sprayer (4) is weakened compared to the conventional one not equipped with this cooler, and
The degree of negative effect on the formation of a liquid film on the inner wall surface of the heat transfer tube is reduced, and the amount of droplets that fall unvaporized in the space inside the tube is also reduced, improving heat exchange between the air outside the tube and the liquid refrigerant inside the tube. reduction in rate is reduced. In other words, compared to conventional models that do not have a cooler (cm), this machine uses heat exchanger tubes (El
) A more uniform liquid film of the refrigerant liquid is easily formed on the inner wall, and the performance of the evaporator (E) is improved accordingly.

ちなみに、本機の冷却器(R)に約35℃の外気を送り
つつここで冷媒液の温度を20°C程度下げて約40℃
の冷媒液を伝熱管(ET)へ滴下しつつ管内で冷媒液を
約10℃で気化させた場合と、凝縮器(C)からの約6
0″Cの冷媒液を伝熱管(ET)へ滴下しつつその他の
条件をほぼ同じにして気化させた場合とを、実験により
比較した結果、前者の場合には後者の場合にくらべ冷媒
1kg当り20Kcal程度も冷凍能力が大きくなり、
約4%の冷凍効率の向上効果があることも確認された。
By the way, while sending outside air at about 35°C to the cooler (R) of this machine, the temperature of the refrigerant liquid is lowered by about 20°C to about 40°C.
When the refrigerant liquid is dripped into the heat transfer tube (ET) and the refrigerant liquid is vaporized at about 10℃ in the tube, and when the refrigerant liquid is vaporized at about 10℃ from the condenser (C).
As a result of an experiment, we compared a case where a 0"C refrigerant liquid was dropped into a heat exchanger tube (ET) and vaporized under almost the same conditions. Refrigeration capacity increases by about 20Kcal,
It was also confirmed that there was an effect of improving refrigeration efficiency by about 4%.

なお、冷却器(cm)出口側、吸収器(A)出口側、凝
縮器(C)出口側の外気温度はそれぞれ35.1℃、3
9℃、42.1℃である。
The outside air temperatures at the cooler (cm) outlet side, absorber (A) outlet side, and condenser (C) outlet side are 35.1℃ and 35.1℃, respectively.
9°C and 42.1°C.

上述のように、本機は、冷却器(CI)、空冷式吸収器
(A>、空冷式凝縮器(C>の順にこれらを送風機(F
)の下流側へ並べてコンパクトに配置した構造のもので
、従来の空冷式吸収冷凍機よりも高性能かつ従来のもの
よりも小型化可能なものとして実用的価値を有する。
As mentioned above, this machine connects the cooler (CI), air-cooled absorber (A>, and air-cooled condenser (C>) to the blower (F
), it has a structure that is compactly arranged side by side on the downstream side, and has practical value as it has higher performance than conventional air-cooled absorption refrigerators and can be made smaller than conventional ones.

(ト)発明の効果 以上のとおり、本発明は、伝熱管内壁面に沿って冷媒液
を流しつつその蒸発潜熱で伝熱管外の空気などの媒体を
冷却する蒸発器を有する空冷式吸収冷凍機において、そ
の蒸発器の伝熱管に流入する冷媒液の管内面での均一な
液膜の形成への阻害要因となる冷媒液のフラッシュを緩
和して蒸発器の能力低下を軽減する効果をもたらし、か
つ、水冷式凝縮器にくらべて凝縮冷媒の温度レベルが高
くなりやすい空冷式凝縮器を有する空冷式吸収冷凍機の
性能を従来のもののそれよりも向上きせる効果をもたら
すものとして特に有用である。
(G) Effects of the Invention As described above, the present invention provides an air-cooled absorption refrigerator having an evaporator that cools a medium such as air outside the heat transfer tube with the latent heat of vaporization while flowing a refrigerant liquid along the inner wall surface of the heat transfer tube. In this method, the refrigerant liquid flowing into the heat transfer tube of the evaporator has the effect of alleviating the flash of the refrigerant liquid, which is an impediment to the formation of a uniform liquid film on the inner surface of the tube, and reducing the reduction in the capacity of the evaporator. In addition, it is particularly useful as an effect of improving the performance of an air-cooled absorption refrigerator having an air-cooled condenser where the temperature level of the condensed refrigerant tends to be higher than that of a conventional one compared to a water-cooled condenser.

また、本発明によれば、冷却器、空冷式吸収器、空冷式
凝縮器を互に近接させてこれらを空気通路にコンパクト
に並べて配置することができ、空冷式吸収冷凍機の小型
化も可能となる。
Furthermore, according to the present invention, the cooler, air-cooled absorber, and air-cooled condenser can be placed close to each other and arranged compactly in the air passage, making it possible to downsize the air-cooled absorption refrigerator. becomes.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明による吸収冷凍機の一実施例を示した概略
構成説明図である。 (G)・・・発生器、 (E)・・・蒸発器、 (C)
・・・空冷式凝縮器、 (A)・・・空冷式吸収器、 
(C1)・・・冷却器、(rat)、(rat)・・・
管路、 (F)・・・送風機。
The drawing is a schematic structural explanatory diagram showing one embodiment of an absorption refrigerator according to the present invention. (G)...generator, (E)...evaporator, (C)
...air-cooled condenser, (A)...air-cooled absorber,
(C1)...Cooler, (rat), (rat)...
Pipeline, (F)...Blower.

Claims (1)

【特許請求の範囲】[Claims] (1)伝熱管内壁面に沿い冷媒液を流しつつその蒸発潜
熱で管外の空気を冷却する蒸発器を形成し、これと空冷
式凝縮器、空冷式吸収器、発生器などの機器とを配管接
続して構成した空冷式吸収冷凍機において、その空冷式
凝縮器から蒸発器へ至る冷媒液経路の途中に冷媒液の冷
却器が配備され、かつ、この冷却器から空冷式吸収器経
由で空冷式凝縮器へ空気を順に流す通路が形成されてい
ることを特徴とした空冷式吸収冷凍機。
(1) Form an evaporator that cools the air outside the tube with the latent heat of vaporization while flowing a refrigerant liquid along the inner wall surface of the heat transfer tube, and connect this with equipment such as an air-cooled condenser, an air-cooled absorber, and a generator. In an air-cooled absorption refrigerating machine configured by connecting piping, a refrigerant liquid cooler is installed in the middle of the refrigerant liquid path from the air-cooled condenser to the evaporator, and from this cooler to the air-cooled absorber An air-cooled absorption refrigerating machine characterized by a passageway that sequentially flows air to an air-cooled condenser.
JP25116387A 1987-10-05 1987-10-05 Air-cooled type absorption refrigerator Pending JPH0195258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25116387A JPH0195258A (en) 1987-10-05 1987-10-05 Air-cooled type absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25116387A JPH0195258A (en) 1987-10-05 1987-10-05 Air-cooled type absorption refrigerator

Publications (1)

Publication Number Publication Date
JPH0195258A true JPH0195258A (en) 1989-04-13

Family

ID=17218613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25116387A Pending JPH0195258A (en) 1987-10-05 1987-10-05 Air-cooled type absorption refrigerator

Country Status (1)

Country Link
JP (1) JPH0195258A (en)

Similar Documents

Publication Publication Date Title
EP1365199A1 (en) Evaporator with mist eliminator
CN107702383A (en) A kind of direct-expansion type evaporator of all-fresh air unit
CN207214529U (en) A kind of direct-expansion type evaporator of all-fresh air unit
JPH0195258A (en) Air-cooled type absorption refrigerator
JP2503315B2 (en) Absorption refrigerator
JPH06257878A (en) Absorption refrigerator and water cooler-heater with both low temperature regenerator and exhaust heat recovering low temperature regenerator
JPS58208559A (en) Air cooling type absorption refrigerator
JP2527590B2 (en) Air-cooled absorption refrigerator
WO2023095589A1 (en) Absorber unit, heat exchange unit, and absorption refrigerator
JP3762217B2 (en) refrigerator
JPH0830628B2 (en) Absorption refrigerator
JP2001082824A (en) Absorption refrigerating machine
JP2517421B2 (en) Absorption refrigerator
JPS5912528Y2 (en) Refrigerator with wet air-cooled condenser
KR200172397Y1 (en) High temperature generator for an absorption refrigerator
JP3408116B2 (en) Absorption refrigeration equipment
JP2004333019A (en) Absorption type refrigerating machine
JP2022128910A (en) Shell-and-tube type heat exchanger, refrigeration cycle device, and heat exchange method
JPH0221167A (en) Air-cooled absorption system cold and hot water apparatus
JP2005300126A (en) Absorption type refrigerating machine
RU2268446C2 (en) Absorption-and-compression refrigeration unit
JPS6115982B2 (en)
JPH0345090Y2 (en)
JPH0198861A (en) Air-cooled type absorption refrigerator
CN107702384A (en) A kind of direct-expansion type evaporator assemblies of all-fresh air unit