JPH0195255A - Protective system of air conditioner - Google Patents

Protective system of air conditioner

Info

Publication number
JPH0195255A
JPH0195255A JP62251162A JP25116287A JPH0195255A JP H0195255 A JPH0195255 A JP H0195255A JP 62251162 A JP62251162 A JP 62251162A JP 25116287 A JP25116287 A JP 25116287A JP H0195255 A JPH0195255 A JP H0195255A
Authority
JP
Japan
Prior art keywords
temperature
compressor
current
refrigerant
coil temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62251162A
Other languages
Japanese (ja)
Inventor
Yoshinori Nakayama
義紀 中山
Takashi Shogetsu
松月 高志
Kazuyasu Mizuno
水野 和康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62251162A priority Critical patent/JPH0195255A/en
Publication of JPH0195255A publication Critical patent/JPH0195255A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE: To eliminate leakage of a refrigerant and to easily detect the shortage of the refrigerant by performing a protection operation when the temperature difference between a temperature to be detected after a specific period of time passes after a compressor starts operating and a temperature being detected when the compressor starts operating is at a specified value or less. CONSTITUTION: The activation treatment of a microcomputer is made, and a value and a current value, a room temperature, and a coil temperature that are operated or set by a key input part are inputted and stored. When a compressor operates once, a timer counts time. When the timer counts two seconds, the conduction of all electrical equipment is shut off and a failure display is made when 5A or larger current is not flowing for a rated current of 6-7A. When the timer counts further three minutes, it is judged to be normal when 'a coil temperature at three minutes before < a current coil temperature' is established on heating and when 'the coil temperature at three minutes before > the current coil temperature' is established on cooling. A protection operation is executed when the above conditions cannot be established.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は冷凍サイクルを有する空気調和機の保護方式に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a protection system for an air conditioner having a refrigeration cycle.

(ロ)従来の技術 一般に従来の保護方式としては、実公昭57−4910
5号公報に記載されているようなものがあった。この公
報、に記fII!、キれているものは、レシーバ−タン
ク内にフロートスイッチを設け、冷媒の不足時にはこの
フロートスイッチからの信号によって警報ランプを点灯
きせるものであった。
(b) Conventional technology In general, conventional protection methods include
There was something like the one described in Publication No. 5. This bulletin is written in fII! The most popular type had a float switch installed in the receiver tank, and when there was a shortage of refrigerant, a signal from the float switch would turn on a warning lamp.

(八)発明が解決しようとする問題点 以上のように構成された従来の冷媒不足検出方式では、
フロートスイッチをレシーバ−タンク内に設ける必要が
あり、このフロートスイッチの接続部から冷媒が漏れや
すい問題点があった。
(8) Problems to be Solved by the Invention In the conventional refrigerant shortage detection system configured as described above,
It is necessary to provide a float switch in the receiver tank, and there is a problem in that refrigerant tends to leak from the connection part of the float switch.

斯かる問題点に鑑み、本発明は冷媒漏れの原因になる接
続部を有せず、冷媒の不足を熱交換器の温度変動から検
出し、保護を行なえる保護方式を提供するものである。
In view of these problems, the present invention provides a protection system that does not have a connection that can cause refrigerant leakage, and that can detect refrigerant shortage from temperature fluctuations in the heat exchanger and provide protection.

(ニ)問題点を解決するための手段 本発明は圧縮機、凝縮器、減圧装置、蒸発器を順次冷媒
配管で環状に接続してなる冷凍サイクルを有する空気調
和機において、凝縮器又は蒸発器の温度を検出する温度
検出器を有し、圧縮機の運転開始から所定時間経過後に
温度検出器が検出する温度と圧縮機の運転開始時に温度
検出器が検出した温度とを比較して、この温度差が一定
値以下の時に圧縮機の運転を停止して保護動作を行なう
ものである。
(d) Means for Solving the Problems The present invention provides an air conditioner having a refrigeration cycle in which a compressor, a condenser, a pressure reducing device, and an evaporator are sequentially connected in a ring through refrigerant piping. It has a temperature detector that detects the temperature of This protects the compressor by stopping the compressor when the temperature difference is below a certain value.

(*)作用 以上のように構成された保護方式を用いると、圧縮機の
運転開始前後の凝縮器又は蒸発器の温度と、運転開始か
ら所定時間経過後の凝縮器又は蒸発器の温度との温度差
が一定値以下ならば圧縮機を停止して保護動作を行なう
ものである。従って、冷凍サイクル中の冷媒が不足にな
った時は、圧縮機の運転による熱交換器の温度上昇(又
は温度下降)が遅くなり(又は小さくなり)、所定時間
経過後の熱交換器の温度変動幅が一定値以下となるので
冷媒不足を検知することができる。
(*) Effect When using the protection system configured as described above, the temperature of the condenser or evaporator before and after the compressor starts operating, and the temperature of the condenser or evaporator after a predetermined period of time from the start of operation. If the temperature difference is below a certain value, the compressor is stopped and a protective operation is performed. Therefore, when there is a shortage of refrigerant in the refrigeration cycle, the temperature increase (or temperature decrease) in the heat exchanger due to compressor operation becomes slower (or smaller), and the temperature of the heat exchanger after a predetermined period of time increases. Since the fluctuation range is below a certain value, refrigerant shortage can be detected.

(へ)実施例 以下本考案の実施例を図面に基づいて説明する。第2図
は本考案の装置を用いるヒートポンプ式空気調和機の概
略図であり、1は圧縮機、2は四方弁、3は室内側熱交
換器(利用側熱交換器)、4はキャピラリーチューブ、
5は室外側熱交換器(熱源側熱交換器)、6はアキュム
レータであり、これらを順次冷媒配管を介して環状に接
続して冷凍サイクルを構成している。四方弁2の方向が
図の実線に示す状態(ON時)にある時は、圧縮機1か
ら吐出きれた高温高圧の冷媒が室内側熱交換器3で凝縮
し凝縮熱を出して被調和室の暖房運転を行ない、室外側
熱交換器5で蒸発した後アキュノ、レータ6を通って圧
縮機1に再び吸入される。また四方弁2の方向が図の点
線に示す状態にある時は、圧縮機1から吐出された高温
高圧の冷媒が室外側熱交換器5で凝縮し、室内側熱交換
器3で蒸発して被調和室内の冷房運転を行なう。7は室
内側送風装置であり、室内側熱交換器3に送風できる位
置に設けられている。尚、この送風装置は風量を小風量
、中風量、大風量に切換え得るようにしてもよい。8は
室外側送風装置であり、室外側熱交換器5に送風できる
位置に設けられている。尚、この送風装置は風量を小風
量、古風量の2段階に切換え得るようにしてもよい。
(f) Examples Examples of the present invention will be described below based on the drawings. Figure 2 is a schematic diagram of a heat pump air conditioner using the device of the present invention, where 1 is a compressor, 2 is a four-way valve, 3 is an indoor heat exchanger (user side heat exchanger), and 4 is a capillary tube. ,
5 is an outdoor heat exchanger (heat source side heat exchanger), 6 is an accumulator, and these are sequentially connected in a ring shape via refrigerant piping to constitute a refrigeration cycle. When the direction of the four-way valve 2 is in the state shown by the solid line in the figure (when ON), the high-temperature, high-pressure refrigerant discharged from the compressor 1 condenses in the indoor heat exchanger 3, releases condensation heat, and flows into the conditioned room. After being evaporated in the outdoor heat exchanger 5, the air is sucked into the compressor 1 again through the accumulator 6. Furthermore, when the direction of the four-way valve 2 is in the state shown by the dotted line in the figure, the high temperature and high pressure refrigerant discharged from the compressor 1 is condensed in the outdoor heat exchanger 5 and evaporated in the indoor heat exchanger 3. Performs cooling operation in the conditioned room. Reference numeral 7 denotes an indoor air blower, which is provided at a position where air can be blown to the indoor heat exchanger 3. Note that this air blower may be configured to be able to switch the air volume between a small air volume, a medium air volume, and a large air volume. Reference numeral 8 denotes an outdoor side blower device, which is provided at a position where air can be blown to the outdoor side heat exchanger 5. Note that this air blower may be configured to be able to switch the air volume into two levels: small air volume and old air volume.

これらの圧縮機1、四方弁2、室内側送風装置7、室外
側送風装置8の制御は室内温度検出器10の検出値及び
室内側熱交換器3の温度を検出するコイル温度検出器1
1の検出値に基づいて制御装置12が行なっている。
The compressor 1, four-way valve 2, indoor blower 7, and outdoor blower 8 are controlled by a coil temperature detector 1 that detects the detected value of the indoor temperature detector 10 and the temperature of the indoor heat exchanger 3.
This is performed by the control device 12 based on the detected value of No. 1.

第1図は第2図に示した制御装置の要部電気回路図であ
る。この図において、13はマイクロプロセッサであり
、主に室内温度検出器10の検出する室温と設定温度と
を比較して冷房又は暖房運転の制御を行ない、主な動作
は後記する。14はキー人力部であり、運転/停止スイ
ッチ、冷暖切換スイッチ、室温設定スイッチ、タイマ時
間の設定スイッチなどを有している。15は表示部であ
り、運転ランプ、室温表示器などを有している。
FIG. 1 is an electrical circuit diagram of a main part of the control device shown in FIG. 2. In this figure, 13 is a microprocessor, which mainly controls the cooling or heating operation by comparing the room temperature detected by the room temperature detector 10 with a set temperature, and its main operations will be described later. Reference numeral 14 denotes a key power section, which includes a run/stop switch, a cooling/heating changeover switch, a room temperature setting switch, a timer time setting switch, and the like. Reference numeral 15 denotes a display section, which includes an operating lamp, a room temperature indicator, and the like.

16は室内温度検出器10(サーミスタ)と直列に接続
された抵抗であり、室内温度検出器10との接続点をマ
イコンのアナログ入力端子(A/D2)に接続している
。尚、このアナログ入力端子は内部にアナログ/デジタ
ル変換器を有している。17はコイル温度検出器11(
サーミスタ)と直列に接続された抵抗であり、フィル温
度検出器11との接続点をマイコンのアナログ入力端子
(A/D 3 )に接続している。18はドライバー部
であり、マイコンの端子0.乃至O4からの出力を電力
増幅してリレー19乃至22を駆動する。リレー19は
常開接片23を有し、接片の接点容量は3(A)のもの
を用いている。従って四方弁2はこの常開接片23及び
コネクタD、dを介して交流電源に接続される。尚、こ
の四方弁2の定格電流は数10m(A)である。リレー
20.21は夫々常開接片24,25を有し、夫々の接
片の接点容量は3(A)のものを用いている。従って、
室内側送風装置7はこの常開接片24及びコネクタC,
cを介して交流電源に接続され、室外側送風装置8は常
開接片25及びコネクタB、bを介して交流電源に接続
される。尚、この室内側送風装置7、室外側送風装置8
の定格電流は夫々的1(A)である。リレー22は常開
接片26を有し、接片の接点容量は20(A)のものを
用いている。
16 is a resistor connected in series with the indoor temperature detector 10 (thermistor), and the connection point with the indoor temperature detector 10 is connected to the analog input terminal (A/D2) of the microcomputer. Note that this analog input terminal has an analog/digital converter inside. 17 is the coil temperature detector 11 (
The connection point with the fill temperature detector 11 is connected to the analog input terminal (A/D 3 ) of the microcomputer. 18 is a driver section, which is connected to terminals 0.1 of the microcomputer. The outputs from O4 to O4 are power amplified to drive relays 19 to 22. The relay 19 has a normally open contact piece 23, and the contact piece has a contact capacity of 3 (A). Therefore, the four-way valve 2 is connected to the AC power source via this normally open contact piece 23 and the connectors D and d. Note that the rated current of this four-way valve 2 is several tens of meters (A). Relays 20 and 21 each have normally open contacts 24 and 25, each of which has a contact capacity of 3 (A). Therefore,
The indoor air blower 7 includes this normally open contact piece 24 and the connector C,
The outdoor air blower 8 is connected to the AC power source via the normally open contact piece 25 and the connectors B and b. In addition, this indoor side blower device 7, outdoor side blower device 8
The rated current of each is 1 (A). The relay 22 has a normally open contact piece 26, and the contact capacity of the contact piece is 20 (A).

従って、圧縮機1はこの常開接片26、コネクタA、a
を介して交流電源に接続きれている。尚、この圧縮機1
の定格電流は約6〜7(A〉である。
Therefore, the compressor 1 uses this normally open contact piece 26, the connector A, a
It is not connected to AC power through the Furthermore, this compressor 1
The rated current is about 6 to 7 (A).

圧縮機1、室内側送風装置7、室外側送風装置8には単
相誘導電動機を用いており、運転開始時の突入電流を考
慮して大きめの接点容量を有するリレーを用いている。
A single-phase induction motor is used for the compressor 1, the indoor blower 7, and the outdoor blower 8, and a relay with a large contact capacity is used in consideration of rush current at the start of operation.

27は電流検出器であり、C,728(カレントトラン
ス)で検出した電流値に比例する電位の直流電圧をマイ
コン13のアナログ入力端子(A/D1)へ出力する。
27 is a current detector, which outputs a DC voltage having a potential proportional to the current value detected by C, 728 (current transformer) to the analog input terminal (A/D1) of the microcomputer 13.

このC,T28は圧縮機1、室内側送風装置7、室外側
送風装置8、及び四方弁2に流れる全電流を検出できる
位置に設けられている。
These C and T28 are provided at positions where the total current flowing through the compressor 1, the indoor side blower device 7, the outdoor side blower device 8, and the four-way valve 2 can be detected.

尚、29は降圧トランス、30は整流、平滑、安定化回
路部である。
Note that 29 is a step-down transformer, and 30 is a rectification, smoothing, and stabilization circuit section.

以上のような制御回路において、正常はフネクタA−a
、 B−b、 C−c、 D−d、 E−eが夫々接続
されている。
In the above control circuit, the normal state is Funecta A-a.
, B-b, C-c, D-d, and E-e are connected, respectively.

第3図は第1図に示したマイクロプロセッサ13の主な
動作を示す動作説明図である。まずステップSIでマイ
コンの起動処理を行なう0次にステッーブS、でキー人
力部で操作又はセットされた値(運転/停止、冷暖切換
、室温設定値など)及び電流値、室内温度、コイル温度
をアナログ入力端子(A/DI、A/D2、A/D3)
から入力して記憶する6次にステップS、で室温設定値
と室内温度とを比較して圧縮機の0N−OFFを制御す
る。次にステップS4でこの圧縮機のONが運転開始か
ら数えて1回目のものであるか否かを判断する。1回目
でない場合、すなわち2回目以降の場合はステップS6
にて室内側送風装置及び室外側送風装置の運転を開始す
る。尚、この時暖房運転であれば四方弁をON状態にす
る。
FIG. 3 is an explanatory diagram showing the main operations of the microprocessor 13 shown in FIG. 1. First, in Step SI, the microcomputer is started up. Next, in Step S, the values operated or set by the key manual section (run/stop, cooling/heating switching, room temperature set value, etc.), current value, indoor temperature, coil temperature are checked. Analog input terminals (A/DI, A/D2, A/D3)
Next, in step S, the room temperature set value is compared with the room temperature to control ON-OFF of the compressor. Next, in step S4, it is determined whether this compressor is turned on for the first time since the start of operation. If it is not the first time, that is, if it is the second time or later, step S6
The operation of the indoor air blower and outdoor air blower will begin. At this time, if heating operation is being performed, the four-way valve is turned on.

圧縮機の運転が1回目の時はステップS、へ進みタイマ
の計時を行なう、尚、このタイマは最初にタイマの計時
を行なう時にリセットきれる。次に、ステップS、でタ
イマの計時が2秒経過したか否かを判断する。2秒(圧
縮機の起動時間)経過後にはステップS、で電流値が5
(A)以上か否かを判断する。この時は、まだ圧縮機の
ON信号しか出ておらず第1I50に示すリレー22の
みが通電されている。従って、コネクタA乃至E、a乃
至eが正しく接続きれていれば、圧縮機1に定格電流(
6〜?(A))が流れている。このステップSmで5(
A)以上の電流が流れていないと判断されれば保護動作
のサブルーチンへ進む、このサブルーチンは、圧縮機な
ど全ての電気機器の通電を遮断し、異常表示、例えば表
示灯の点滅などを行なう、尚、この動作は再イニシヤラ
イズによって解除される。5(A)以上の電流が検出さ
れた時はステップS、に進み通常運転を行なう、このス
テップS、は前記したステップS、と同じ動作である。
When the compressor is operated for the first time, the process proceeds to step S, where a timer is counted. Note that this timer can be reset when the timer is counted for the first time. Next, in step S, it is determined whether two seconds have elapsed since the timer has counted. After 2 seconds (compressor startup time), the current value is set to 5 in step S.
(A) Determine whether or not the above is satisfied. At this time, only the compressor ON signal is still being output, and only the relay 22 shown at No. 1 I50 is energized. Therefore, if the connectors A to E and a to e are properly connected, the compressor 1 will be supplied with the rated current (
6~? (A)) is flowing. In this step Sm, 5 (
A) If it is determined that the above current is not flowing, proceed to the protective operation subroutine. This subroutine cuts off the power to all electrical equipment such as the compressor, and displays an abnormality indication, such as blinking an indicator light. Note that this operation is canceled by re-initialization. When a current of 5 (A) or more is detected, the process proceeds to step S and normal operation is performed. This step S is the same operation as step S described above.

次にステップS1.で、タイマの計時がさらに3分経過
したか否かを判断する。3分経過していれば、暖房運転
か否かによって、ステップst 1 * st*へ進む
、ステップstt 、 5111では3分前のコイル温
度(圧縮機の通電開始時又は前後数10秒以内のコイル
温度)と現在のコイル温度とを比較し、ステップS++
(暖房時)では43分前のフィル温度く現コイル温度”
が成り立てば正常と判断し、ステップS+*(冷房時)
では″3分前のコイル温度〉現フィル温度”が成り立て
ば正常(冷媒が充分にあり、冷凍サイクル中を循環して
熱交換器の温度が変化した。)と判断する。これ等の条
件を満たさない時(四方弁の誤接続や冷凍サイクル中の
ガス欠時)には前記した保護動作のサブルーチンを実行
するものである。
Next, step S1. Then, it is determined whether the timer has counted three more minutes. If 3 minutes have elapsed, the process advances to step st1*st* depending on whether the heating operation is in progress or not. In step stt, 5111, the coil temperature 3 minutes ago (the coil temperature at the start of energization of the compressor or within several 10 seconds before and after) is checked. temperature) and the current coil temperature, and step S++
(When heating), the fill temperature 43 minutes ago is the current coil temperature.”
If it holds true, it is judged as normal, and step S+* (when cooling)
Then, if "Coil temperature 3 minutes ago>Current fill temperature" holds true, it is determined to be normal (there is enough refrigerant, and the temperature of the heat exchanger has changed as it circulates through the refrigeration cycle). When these conditions are not met (such as when a four-way valve is incorrectly connected or when there is a gas shortage during the refrigeration cycle), the above-mentioned protective operation subroutine is executed.

(ト)発明の効果 本発明は圧縮機、凝縮器、減圧装置、蒸発器を順次冷媒
配管で環状に接続してなる冷凍サイクルを有する空気調
和機において、圧縮機の運転開始時の凝縮器又は蒸発器
の温度と圧縮機の運転開始時から所定時間経過後の温度
とを比較して、これらの温度差が一定値以下の時は、冷
凍サイクル中の冷媒が減って能力が充分に出ていないと
判断し、保護動作を行なうので、冷媒の量を直接検出す
るフロートスイッチや冷媒の圧力から冷媒の量を検知す
る圧力スイッチなどを設ける必要がなく、熱交換器の温
度変化から冷媒不足を容易に検知できるものである。
(G) Effects of the Invention The present invention provides an air conditioner having a refrigeration cycle in which a compressor, a condenser, a pressure reducing device, and an evaporator are sequentially connected in an annular manner through refrigerant piping. Compare the temperature of the evaporator and the temperature after a predetermined period of time has elapsed since the start of operation of the compressor, and if the difference between these temperatures is below a certain value, the refrigerant in the refrigeration cycle has decreased and the capacity is insufficient. Since there is no need to install a float switch that directly detects the amount of refrigerant or a pressure switch that detects the amount of refrigerant from the pressure of the refrigerant, it is possible to detect refrigerant shortage from temperature changes in the heat exchanger. It can be easily detected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第2図に示した制御装置の要部電気回路図、第
2図は本発明の実施例を用いる空気調和機の概略図、第
3図は第1図に示したマイコンの主な動作を示す動作説
明図である。 1・・・圧縮機、  2・・・四方弁、 7・・・室内
側送風装置、  8・・・室外側送風装置、  10・
・・室内温度検出器、  11・・・コイル温度検出器
、  13・・・マイコン、  19乃至22・・・リ
レー、  23乃至26・・・常開接片、 27・・・
電流検出器、 28・・・C,T。
FIG. 1 is an electrical circuit diagram of the main part of the control device shown in FIG. 2, FIG. 2 is a schematic diagram of an air conditioner using an embodiment of the present invention, and FIG. 3 is a main part of the microcomputer shown in FIG. FIG. DESCRIPTION OF SYMBOLS 1... Compressor, 2... Four-way valve, 7... Indoor side blower, 8... Outdoor side blower, 10.
... Indoor temperature detector, 11... Coil temperature detector, 13... Microcomputer, 19 to 22... Relay, 23 to 26... Normally open contact piece, 27...
Current detector, 28...C,T.

Claims (1)

【特許請求の範囲】[Claims] (1)圧縮機、凝縮器、減圧装置、蒸発器を順次冷媒配
管で環状に接続してなる冷凍サイクルを有する空気調和
機において、凝縮器又は蒸発器の温度を検出する温度検
出器を有し、圧縮機の運転開始から所定時間経過後に温
度検出器が検出する温度と圧縮機の運転開始時に温度検
出器が検出した温度とを比較して、この温度差が一定値
以下の時に圧縮機の運転を停止して保護動作を行なうこ
とを特徴とする空気調和機の保護方式。
(1) In an air conditioner having a refrigeration cycle in which a compressor, a condenser, a pressure reducing device, and an evaporator are sequentially connected in a ring through refrigerant piping, the air conditioner is equipped with a temperature detector to detect the temperature of the condenser or evaporator. , the temperature detected by the temperature sensor after a predetermined time has elapsed since the start of compressor operation is compared with the temperature detected by the temperature sensor at the time of start of compressor operation, and when this temperature difference is below a certain value, the compressor is activated. A protection method for air conditioners that is characterized by stopping operation and performing protective actions.
JP62251162A 1987-10-05 1987-10-05 Protective system of air conditioner Pending JPH0195255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62251162A JPH0195255A (en) 1987-10-05 1987-10-05 Protective system of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62251162A JPH0195255A (en) 1987-10-05 1987-10-05 Protective system of air conditioner

Publications (1)

Publication Number Publication Date
JPH0195255A true JPH0195255A (en) 1989-04-13

Family

ID=17218597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62251162A Pending JPH0195255A (en) 1987-10-05 1987-10-05 Protective system of air conditioner

Country Status (1)

Country Link
JP (1) JPH0195255A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337366U (en) * 1989-08-22 1991-04-11
JPH0337365U (en) * 1989-08-22 1991-04-11
JPH0560444A (en) * 1991-03-06 1993-03-09 Mitsubishi Electric Corp Controller for refrigerator and safe protector of refrigerating cycle
US5713213A (en) * 1995-12-22 1998-02-03 Denso Corporation Refrigeration cycle device having accurate refrigerant deficiency detection capability
US6446505B1 (en) 1999-07-27 2002-09-10 Daimlerchrysler Ag Method for monitoring the refrigerant filling level in refrigerating system
JP2009024923A (en) * 2007-07-19 2009-02-05 Sharp Corp Refrigerant leakage detecting device, air conditioner, and refrigerant leakage detecting method
JP2009236332A (en) * 2008-03-26 2009-10-15 Gunma Prefecture Refrigerant leakage detecting method of refrigerating device
CN111043709A (en) * 2019-12-20 2020-04-21 四川长虹空调有限公司 Method for detecting fluorine deficiency state of refrigerant
CN111237977A (en) * 2020-01-15 2020-06-05 四川长虹空调有限公司 Refrigerant fluorine-deficient state self-checking method and air conditioner

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623676A (en) * 1979-08-02 1981-03-06 Sanyo Electric Co Method and device for detecting abnormality of cooling device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623676A (en) * 1979-08-02 1981-03-06 Sanyo Electric Co Method and device for detecting abnormality of cooling device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337366U (en) * 1989-08-22 1991-04-11
JPH0337365U (en) * 1989-08-22 1991-04-11
JPH0560444A (en) * 1991-03-06 1993-03-09 Mitsubishi Electric Corp Controller for refrigerator and safe protector of refrigerating cycle
US5713213A (en) * 1995-12-22 1998-02-03 Denso Corporation Refrigeration cycle device having accurate refrigerant deficiency detection capability
US6446505B1 (en) 1999-07-27 2002-09-10 Daimlerchrysler Ag Method for monitoring the refrigerant filling level in refrigerating system
JP2009024923A (en) * 2007-07-19 2009-02-05 Sharp Corp Refrigerant leakage detecting device, air conditioner, and refrigerant leakage detecting method
JP2009236332A (en) * 2008-03-26 2009-10-15 Gunma Prefecture Refrigerant leakage detecting method of refrigerating device
CN111043709A (en) * 2019-12-20 2020-04-21 四川长虹空调有限公司 Method for detecting fluorine deficiency state of refrigerant
CN111237977A (en) * 2020-01-15 2020-06-05 四川长虹空调有限公司 Refrigerant fluorine-deficient state self-checking method and air conditioner

Similar Documents

Publication Publication Date Title
JP3703346B2 (en) Air conditioner
JP3378724B2 (en) Defrosting control method for air conditioner
KR960010637B1 (en) Control device for an air-conditioner
JPH0195255A (en) Protective system of air conditioner
JPH02230045A (en) Air conditioning device
JPH05231754A (en) Operational failure detection device for air conditioner
JPH10197031A (en) Trouble detector for air conditioner
JP2708756B2 (en) Protection method for electrical equipment
JPH04350439A (en) Control method of detection of erroneous wiring in heat pump type air conditioner
JP2715741B2 (en) Air conditioner
JPH0448418Y2 (en)
JPH03211349A (en) Air conditioner
JP4015665B2 (en) Air conditioner
JPH05223360A (en) Air conditioner
JPH0452603Y2 (en)
JPH0719679A (en) Air conditioner
KR0186056B1 (en) Overload control method of heat pump airconditioner
KR100337910B1 (en) Emergency driving controll apparatus for an air conditioner and method thereof
JPH05126443A (en) Controller of refrigerator
KR19980023791A (en) How to prevent overheating of air conditioner
JPH0566498B2 (en)
JPH0583819B2 (en)
JPS62213638A (en) Defrost control device for air conditioner
JPS62129638A (en) Air conditioner
JPH04324084A (en) Protecting device for refrigerating machine