JPH0194940A - Reactor and steam generator therefor - Google Patents

Reactor and steam generator therefor

Info

Publication number
JPH0194940A
JPH0194940A JP9484687A JP9484687A JPH0194940A JP H0194940 A JPH0194940 A JP H0194940A JP 9484687 A JP9484687 A JP 9484687A JP 9484687 A JP9484687 A JP 9484687A JP H0194940 A JPH0194940 A JP H0194940A
Authority
JP
Japan
Prior art keywords
heat medium
reactor
heat
fluid
box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9484687A
Other languages
Japanese (ja)
Inventor
Isao Nikai
勲 二階
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNOL RES ASSOC SUPER HEAT PUMP ENERG ACCUM SYST
Original Assignee
TECHNOL RES ASSOC SUPER HEAT PUMP ENERG ACCUM SYST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNOL RES ASSOC SUPER HEAT PUMP ENERG ACCUM SYST filed Critical TECHNOL RES ASSOC SUPER HEAT PUMP ENERG ACCUM SYST
Priority to JP9484687A priority Critical patent/JPH0194940A/en
Publication of JPH0194940A publication Critical patent/JPH0194940A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

PURPOSE:To make it easy to charge and hold solids and obtain thereby high thermal efficiencies, enabling application to a steam generator, by assembling a reactor unit in which honeycomb fins with a number of small rooms filled with solids and heat transfer walls are disposed. CONSTITUTION:Fluids 35 flowing from a fluid inlet 31 into a reactor pass through fluid flow holes, passage space, of each distance plates 4 and stainless meshes 7 and flow into honeycomb fins 14 from a number of holes of porous plates 8, where said fluids react in contact with the solids 15 filled in the fins 14, producing thereby reaction heat. On the other hand, heat medium 34 introduced from a heat medium inlet 30 into the reactor passes through heat medium flow holes and flows into a heat medium guide plates in a space of each distance plate 21. And then, while flowing through the passages of the heat medium guide plates, the heat medium absorbs reaction heat generated in the honeycomb fins 14 to be heated and is discharged from a heat medium outlet through the heat medium flow holes.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、固体と気体或いは固体と液体の反応により生
じた反応熱により熱媒を加熱し得るようにした反応器及
び該反応器を用いた蒸気発土器に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a reactor capable of heating a heat medium by reaction heat generated by a reaction between a solid and a gas or a solid and a liquid, and a method using the reactor. It is related to steam excavators.

[従来の技術] 固体と気体或いは固体と液体の反応により生じた反応熱
により熱媒を加熱し得るようにした従来の反応器は、例
えば胴内部に多数の伝熱管を収納したシェルアンドチュ
ーブ式の構造であり、第5図に示すように、伝熱管aの
内部に伝熱管aに対して同心状に全網製の円筒すを収納
し、伝熱管a内周と円筒す外周との間に、例えば粉状の
固体Cとして塩化ニッケルのアンモニア錯状体であるN
1clz ・2 NHaを充填している。
[Prior Art] A conventional reactor that can heat a heating medium using reaction heat generated by a reaction between a solid and a gas or a solid and a liquid is, for example, a shell-and-tube type reactor in which a large number of heat transfer tubes are housed inside the shell. As shown in Fig. 5, a cylindrical tube made of all-mesh is housed inside the heat exchanger tube a concentrically with respect to the heat exchanger tube a, and a cylindrical tube made of all mesh is housed inside the heat exchanger tube a, and a gap between the inner circumference of the heat exchanger tube a and the outer circumference of the cylinder is arranged. For example, N, which is an ammonia complex of nickel chloride, is used as a powdery solid C.
It is filled with 1clz・2NHa.

円筒す内を流通するNH3ガスdは円筒すの孔を通って
粉状の固体C内に滲透し、その結果、N1e12* 2
 NH3+ 4 NH3:N1c12・6 NH3+ 
eOKcal     ・(i) の発熱反応が行われ、シェル内を流通する熱媒eが加熱
される。この熱媒eは反応器から目的機器へ送られ、熱
を放出する。
The NH3 gas d flowing through the cylinder passes through the holes in the cylinder and permeates into the powdery solid C, resulting in N1e12*2
NH3+ 4 NH3:N1c12・6 NH3+
An exothermic reaction of eOKcal .(i) takes place, and the heating medium e flowing inside the shell is heated. This heat medium e is sent from the reactor to the target equipment and releases heat.

[発明が解決しようとする問題点] しかしながら、上述の反応器では、細長い伝熱管aと円
筒すとの間の隙間に粉状の固体Cを均等に充填するのは
難しく、又円筒すは変形し易いため充填した固体Cが偏
らないように支持するのも困難であり、更には伝熱面積
の大きさにも限界があり、熱交換効率の良い熱媒eの加
熱を行うことができない、等の問題があった。
[Problems to be Solved by the Invention] However, in the above-mentioned reactor, it is difficult to evenly fill the gap between the elongated heat exchanger tube a and the cylinder with the powdery solid C, and the cylinder is deformed. It is difficult to support the filled solid C so that it is not biased, and there is also a limit to the size of the heat transfer area, making it impossible to heat the heat medium e with good heat exchange efficiency. There were other problems.

本発明は上述の実情に鑑み、粉状の固体の充填、保持を
容易に行うことができ、しかも熱交換効率の良い反応器
及び該反応器を用いた蒸気発生器を提供することを目的
としてなしたものである。
In view of the above-mentioned circumstances, the present invention aims to provide a reactor that can easily fill and hold powdery solids and has good heat exchange efficiency, and a steam generator using the reactor. This is what was done.

[問題点を解決するための手段] 第1の発明は、反応用の流体が流通する流路部と、一面
が該流路部に面し前記流体が通過し得る多数の小孔を有
するポーラス板と、該ポーラス板の他面に面しフィンで
仕切られた多数の小室に前記流体と接触して発熱反応を
起す固体を充填したハニカムフィンと、該ハニカムフィ
ンのポーラス板側とは反対側に配設され前記反応により
生じた熱を熱媒流路部を流れる熱媒に伝える伝熱壁を設
けた構成を備え、第2の発明は、箱型容器に、熱媒を内
部へ供給する供給管と蒸気を上方から取出す蒸気管を接
続すると共に箱型容器の水平方向から反応用の流体を内
部へ導入するダクトを接続し、箱型容器内に、前記ダク
トからの流体が流通する流路部と、一面が該流路部に面
し前記流体が通過し得る多数の小孔を有するポーラス板
と、該ポーラス板の他面に面しフィンで仕切られた多数
の小室に前記流体と接触して発熱反応を起す固体を充填
したハニカムフィンと、該ハニカムフィンのポーラス板
側とは反対側に配設され前記反応により生じた熱を熱媒
流路部を流れる熱媒に伝える伝熱壁を備えた反応器を、
伝熱壁がダクトから導入される流体の流れに対して平行
で且つ熱媒流路部が縦向きになるよう配設し、反応器上
部と箱型容器の間に上部プレナム部を、又反応器下部と
箱型容器の間に下部プレナム部を、更に反応器側部と箱
型容器の間にダウンカマーを設け、熱媒液面を反応器上
端よりも上方に位置させた構成を備えている。
[Means for Solving the Problems] The first invention provides a porous material having a channel portion through which a reaction fluid flows and a large number of small holes whose one side faces the channel portion and through which the fluid can pass. a plate, a honeycomb fin in which a number of small chambers facing the other side of the porous plate and partitioned by fins are filled with a solid that causes an exothermic reaction in contact with the fluid; and a side of the honeycomb fin opposite to the porous plate side. A second aspect of the present invention includes a heat transfer wall disposed in the box-shaped container and configured to transmit heat generated by the reaction to the heat medium flowing through the heat medium flow path. A supply pipe is connected to a steam pipe that takes out steam from above, and a duct that introduces a reaction fluid into the box-shaped container from the horizontal direction is connected to the box-shaped container. a porous plate having one side facing the flow path portion and having a large number of small holes through which the fluid can pass; A honeycomb fin filled with a solid that causes an exothermic reaction when brought into contact with the honeycomb fin, and a heat transfer device disposed on the opposite side of the honeycomb fin from the porous plate side to transfer the heat generated by the reaction to the heat medium flowing through the heat medium flow path. A reactor with walls,
The heat transfer wall is arranged parallel to the flow of the fluid introduced from the duct, and the heat medium flow path section is arranged vertically, and an upper plenum section is placed between the upper part of the reactor and the box-shaped container, and the reaction A lower plenum part is provided between the lower part of the reactor and the box-shaped container, and a downcomer is provided between the side part of the reactor and the box-shaped container, and the heating medium liquid level is positioned above the top of the reactor. There is.

[作   用] 第1の発明では、反応用の流体はポーラス板を通過して
ハニカムフィン内に入り、ハニカムフィン内の固体と反
応して熱が発生し、該熱により熱媒流路を通る熱媒が加
熱される。又第2の発明では熱媒が加熱されて沸騰し蒸
気が発生するため、熱媒流路内の熱媒は発生蒸気の浮力
及び熱媒の密度差により自然循環し、発生した蒸気は上
部プレナム部で気液分離され、蒸気管から外部へ取出さ
れ、熱媒流路から上部プレナム部へ出た熱媒はダウンカ
マーを下降し下部プレナム部から熱媒流路へ再び導入さ
れる。
[Function] In the first invention, the reaction fluid passes through the porous plate and enters the honeycomb fins, reacts with the solid inside the honeycomb fins to generate heat, and the heat causes the reaction fluid to pass through the heat medium flow path. The heating medium is heated. In addition, in the second invention, since the heat medium is heated and boiled to generate steam, the heat medium in the heat medium flow path is naturally circulated due to the buoyancy of the generated steam and the difference in density of the heat medium, and the generated steam is transferred to the upper plenum. The heating medium is separated into gas and liquid in the steam pipe, taken out to the outside through the steam pipe, and exited from the heating medium flow path to the upper plenum portion.The heating medium descends through the downcomer and is reintroduced into the heating medium flow path from the lower plenum portion.

[実 施 例] 以下、本発明の実施例を添付図面を参照しつつ説明する
[Example] Hereinafter, an example of the present invention will be described with reference to the accompanying drawings.

第1図及び第2図(イ)〜(す)は本発明の一実施例で
あり、第1図には反応器の縦断面形状を示し、第2図(
イ)〜(す)には反応器の各部品を示している。
Figures 1 and 2 (A) to (S) show one embodiment of the present invention; Figure 1 shows the vertical cross-sectional shape of the reactor, and Figure 2 (
A) to (S) show each part of the reactor.

図中1は複数段積重ねられた反応器ユニット、2は最上
段の反応器ユニット、3は最下段の反応器ユニットであ
る。
In the figure, 1 is a reactor unit stacked in multiple stages, 2 is the top reactor unit, and 3 is the bottom reactor unit.

反応器ユニットlの詳細について説明すると、平面形状
が矩形額縁状のデイスタンスプレート4の対角線上の2
隅に、厚さ方向へ貫通する熱媒流通孔5,6を設け、デ
イスタンスプレート4の空間4a内に、上方から下方へ
向けて、平面形状が6角形状をしたステンレスメツシュ
ア及び多数の小孔を有するポーラス板8を嵌入し、デイ
スタンスプレート4の下面に、平面形状が矩形額縁状の
デイスタンスプレート9を配設し、該デイスタンスプレ
ート9の−の対角線上の2隅に、厚さ方向へ貫通し前記
熱媒流通孔5,6と連通する熱媒流通孔10.11を設
けると共に、デイスタンスプレート9の他の対角線上の
2隅に、厚さ方向へ貫通して前記デイスタンスプレート
4の空間4aに連通しNH3等の流体が流通するように
した流体流通孔12.13を設け、デイスタンスプレー
ト9の空間9a内に、フィン14aにより上下に貫通し
た多数の小室に区分けされた平面形状が6角形状のハニ
カムフィン14を嵌入し、ハニカムフィン14の各室内
に粉状の固体15として例えばアンモニア錯状体である
N1cb ・2NH3を充填する。
To explain the details of the reactor unit l, two diagonal lines of the distance plate 4, which has a rectangular frame-like planar shape.
Heat medium circulation holes 5 and 6 penetrating in the thickness direction are provided at the corners, and a stainless steel mesh having a hexagonal planar shape and a large number of A porous plate 8 having small holes is inserted, and a distance plate 9 having a rectangular frame shape in plan is arranged on the lower surface of the distance plate 4, and at two diagonal corners of the distance plate 9, Heat medium flow holes 10.11 are provided that penetrate in the thickness direction and communicate with the heat medium flow holes 5 and 6, and at the other two diagonal corners of the distance plate 9, the heat medium flow holes 10.11 that penetrate in the thickness direction and communicate with the heat medium flow holes 5 and 6 are provided. Fluid circulation holes 12.13 are provided which communicate with the space 4a of the distance plate 4 and allow fluid such as NH3 to flow therein, and a large number of small chambers are provided in the space 9a of the distance plate 9, which are vertically penetrated by fins 14a. A segmented honeycomb fin 14 having a hexagonal planar shape is inserted, and each chamber of the honeycomb fin 14 is filled with, for example, N1cb.2NH3, which is an ammonia complex, as a powdery solid 15.

デイスタンスプレート9の下面に熱媒がハニカムフィン
14内に流入するのを防止するための隔離板1Bを配設
し、該隔離板1Bの−の対角線上の2隅に上下へ貫通し
前記熱媒流通孔10.11と連通ずる熱媒流通孔17.
18を設けると共に他の対角線上の2隅に上下へ貫通し
前記流体流通孔12.13と連通する流体流通孔19.
20を設け、隔離板1Bの下面に、平面形状が矩形額縁
状をしたデイスタンスプレート21を配設し、該デイス
タンスプレート21の対角線上の2隅に、前記流体流通
孔19.20と連通ずる流体流通孔22.23を設け、
又デイスタンスプレート21の空間21aを前記熱媒流
通孔17.18と連通せしめ、デイスタンスプレー)2
1の空間21a内に、平面形状が6角形状をし縦断面形
状が波形状の流路を有する熱媒案内板24を嵌入し、デ
イスタンスプレート21の下面に隔離板25を配設し、
隔離板25の−の対角線上の2隅に、前記デイスタンス
プレート21の空間21aに連通する熱媒流通孔26.
27を設けると共に他の対角線上の2隅に、前記流体流
通孔22.23と連通する流体流通孔28.29を設け
る。
A separator plate 1B for preventing the heat medium from flowing into the honeycomb fins 14 is disposed on the lower surface of the distance plate 9, and the separator plate 1B is penetrated vertically at two diagonal corners of the minus sign to prevent the heat transfer medium from flowing into the honeycomb fins. Heat medium flow hole 17 communicating with medium flow hole 10.11.
18 are provided, and fluid communication holes 19.18 are provided at the other two diagonal corners, penetrating vertically and communicating with the fluid communication holes 12.13.
A distance plate 21 having a rectangular frame-like planar shape is disposed on the lower surface of the separator 1B, and two diagonal corners of the distance plate 21 are connected to the fluid communication holes 19 and 20. providing fluid communication holes 22, 23 that communicate with each other;
Also, the space 21a of the distance plate 21 is communicated with the heat medium flow holes 17, 18, and the distance spray) 2
1, a heat medium guide plate 24 having a hexagonal planar shape and a wave-shaped longitudinal cross-sectional flow path is fitted into the space 21a of the heat exchanger 1, and a separating plate 25 is disposed on the lower surface of the distance plate 21.
At two diagonal corners of the separator plate 25, there are heat medium flow holes 26. which communicate with the space 21a of the distance plate 21.
27, and fluid flow holes 28, 29 are provided at the other two diagonal corners to communicate with the fluid flow holes 22, 23.

上下段の反応器ユニット2.3の基本的構成は反応器ユ
ニット1と同様であるが、反応器ユニット2の上面には
、隔離板18.25と同一形状をし熱媒流通孔と連通す
る熱媒入口30及び熱媒入口30に対し対角線上にある
熱媒出口(図示せず)を備え且つ流体流通孔と連通する
流体人口31及び該流体人口31に対し対角線上に位置
する他の流体入口(図示せず)を備えた天板32を取付
け、反応器ユニット3の下面には、盲状の底板33を取
付ける。又34は熱媒、35は流体である。
The basic configuration of the upper and lower reactor units 2.3 is the same as that of the reactor unit 1, but the upper surface of the reactor unit 2 has a separator plate 18.25 having the same shape and communicating with the heat medium flow hole. A fluid port 31 having a heat medium inlet 30 and a heat medium outlet (not shown) located diagonally to the heat medium inlet 30 and communicating with the fluid flow hole, and another fluid located diagonally to the fluid port 31. A top plate 32 with an inlet (not shown) is attached, and a blind bottom plate 33 is attached to the lower surface of the reactor unit 3. Further, 34 is a heat medium, and 35 is a fluid.

流体人口31から反応器内に流入した流体35は、該流
体入口31等から直接或いは流体流通孔12゜13.1
9,20,22,23.28.29を経て各デイスタン
スプレート4の流路を形成する空間4a内に導入され、
空間4a内に挿入されたステンレスメツシュアを通り、
ステンレスメツシュアがらポーラス板8の多数の孔を通
すハニカムフィン14内へ入り、ハニカムフィン14に
充填されている固体15と接触する。この接触により、
流体85がNH3、固体15がN1c12・2NHaの
場合は前述の(+)式で表わされる化学反応が起り、反
応熱が発生する。
The fluid 35 that has flowed into the reactor from the fluid inlet 31 can be passed directly through the fluid inlet 31 or the like or through the fluid communication hole 12° 13.1.
9, 20, 22, 23, 28, and 29 into the space 4a forming the flow path of each distance plate 4,
Passing through the stainless steel mesh inserted into the space 4a,
The stainless steel mesh enters the honeycomb fins 14 passing through the many holes of the porous plate 8, and comes into contact with the solid 15 filled in the honeycomb fins 14. This contact causes
When the fluid 85 is NH3 and the solid 15 is N1c12.2NHa, a chemical reaction expressed by the above-mentioned formula (+) occurs, and reaction heat is generated.

一方、熱媒入口30から反応器内へ導入された熱媒34
は熱媒流通孔5.1O,17を通り、或いは熱媒流通孔
5,10,17.28を通り、各デイスタンスプレート
21の空間21a内の熱媒案内板24へ流入し、熱媒案
内板24の流路を流れつつハニカムフィン14部で生じ
た反応熱を吸収して加熱され、デイスタンスプレート2
1から熱媒流通孔18.11.6.27を通り、図示し
てない熱媒出口から反応器外へ取出され、目的機器へ送
られる。
On the other hand, the heating medium 34 introduced into the reactor from the heating medium inlet 30
passes through the heat medium flow holes 5.1O, 17 or through the heat medium flow holes 5, 10, 17.28, flows into the heat medium guide plate 24 in the space 21a of each distance plate 21, and the heat medium guide It is heated by absorbing the reaction heat generated in the honeycomb fin 14 while flowing through the flow path of the plate 24, and the distance plate 2
1, passes through heat medium flow holes 18, 11, 6, and 27, is taken out of the reactor from a heat medium outlet (not shown), and is sent to a target device.

流体35が固体15に吸収されることにより発熱反応が
継続するが、固体15が全てN1c12 ・6 NH3
になると、それ以後は発熱反応は起なくなる。
The exothermic reaction continues as the fluid 35 is absorbed by the solid 15, but all of the solid 15 is N1c12 ・6 NH3
After that point, no exothermic reaction will occur.

この場合には反応器外で加熱した熱媒34或いは蒸気等
を前述の経路で反応器内へ供給し、固体15を加熱する
。そう、すると、(0式のN1c12  ・6NH3が
吸熱反応により分解されてN1c12 ・2NH3に戻
るため、再び熱媒34の加熱に使用が可能な状態になる
。なお、固体15が全てN1clz・6 NH3に変化
しないうちに固体15に熱を加え、N1cL2・6NH
KをN1elz ・2NHKに戻すようにしても良い。
In this case, the heat medium 34 or steam heated outside the reactor is supplied into the reactor through the above-mentioned route to heat the solid 15. Yes, then, N1c12 6NH3 in formula (0 is decomposed by an endothermic reaction and returns to N1c12 2NH3, so it can be used to heat the heating medium 34 again. Note that all of the solid 15 is N1clz 6NH3 Heat is applied to solid 15 before it changes to N1cL2.6NH.
It is also possible to return K to N1elz/2NHK.

上述の反応器では、固体15は面積の広い面が開放され
たハニカムフィン14内に充填するものであるため、固
体15の充填を容易に行うことができ、又固1体15は
多数のフィン14aで形成される小室内に充填されるた
め、偏ることなく、安定して保持され、更に多数のフィ
ン14aが伝熱面積の広い隔離板16と接触しているた
め、ハニカムフィン14から熱媒34への熱の伝達は迅
速且つ効率良く行われる。
In the above-mentioned reactor, the solid 15 is packed into the honeycomb fins 14 which have a large open surface, so that the solid 15 can be easily filled, and the solid 15 is packed in a large number of fins. Since it is filled into the small chamber formed by the honeycomb fins 14a, it is stably held without being biased, and since a large number of fins 14a are in contact with the separator plate 16 having a large heat transfer area, the heat medium is transferred from the honeycomb fins 14. Transfer of heat to 34 is rapid and efficient.

第3図及び第4図は第1図に示す反応器と同様の反応器
を用いた蒸気発生器の例である。
3 and 4 are examples of steam generators using a reactor similar to the reactor shown in FIG. 1.

箱型容器36の前面に、NH3ガス37を水平方向から
導入するダクトフランジ38を接続し、該ダクトフラン
ジ38にNH3ガス供給用の図示してないダクトを接続
し、箱型容器3B内に反応器を配設する。すなわちダク
トフランジ38の水平口径方向へ向い所要の間隔で、横
断面形状が波形状をした流路39aを有する複数組の熱
媒案内板39を、縦向きにしかも熱交換面がNH3ガス
37の流れ方向と平行になるよう配設する。
A duct flange 38 that introduces NH3 gas 37 from the horizontal direction is connected to the front surface of the box-shaped container 36, and a duct (not shown) for supplying NH3 gas is connected to the duct flange 38, and the reaction is carried out inside the box-shaped container 3B. Arrange the vessels. That is, a plurality of sets of heat medium guide plates 39 each having a channel 39a having a wave-shaped cross section at a required interval in the horizontal radial direction of the duct flange 38 are oriented vertically and the heat exchange surface is the same as that of the NH3 gas 37. Arrange it so that it is parallel to the flow direction.

熱媒案内板39の上下端を熱媒42が箱型容器36の下
部プレナム40部から流入し上部プレナム部41へ流出
し得るよう開放させ、又熱媒42がダクトフランジ38
側へ漏洩しないよう熱媒案内板39上端をダクトフラン
ジ38上端より多少上方へ位置させると共に熱媒案内板
39下端をダクトフランジ38下端より多少下方へ位置
させ、熱媒案内板39の前後面を箱型容器36内面に接
触、固着させ、ダクトフランジ38水平口径方向両側の
熱媒案内板39前面両側端部をダクトフランジ38より
も多少箱型容器36側部側へ位置させるか或は熱媒漏洩
防止板を固着する。更に、ダクトフランジ38水平口径
方向両側の熱媒案内板39と箱型容器36との間にダウ
ンカマー43を形成させ、箱型容器36の下部プレナム
40部へ熱媒42を供給する供給管44を箱型容器38
下部に接続し、上部プレナム部4■上方に蒸気管45を
接続する。
The upper and lower ends of the heat medium guide plate 39 are opened so that the heat medium 42 can flow in from the lower plenum 40 of the box-shaped container 36 and flow out to the upper plenum 41.
The upper end of the heat medium guide plate 39 is positioned slightly higher than the upper end of the duct flange 38 to prevent leakage to the side, and the lower end of the heat medium guide plate 39 is positioned slightly lower than the lower end of the duct flange 38, so that the front and rear surfaces of the heat medium guide plate 39 are The heating medium guide plate 39 is placed in contact with and fixed to the inner surface of the box-shaped container 36, and the front side ends of the heating medium guide plates 39 on both sides of the duct flange 38 in the horizontal caliber direction are positioned slightly closer to the side of the box-shaped container 36 than the duct flange 38, or the heating medium Fix the leakage prevention plate. Furthermore, a downcomer 43 is formed between the heat medium guide plate 39 on both sides in the horizontal radial direction of the duct flange 38 and the box-shaped container 36, and a supply pipe 44 that supplies the heat medium 42 to the lower plenum 40 of the box-shaped container 36 is formed. Box type container 38
A steam pipe 45 is connected to the lower part and above the upper plenum part 4.

各熱媒案内板39間の上下部に、熱媒42のダクトフラ
ンジ38側への漏洩を防止するため、ダクトフランジ8
8上下端縁部に位置するようデイスタンスプレート46
を固着し、上下のデイスタンスプレート46間に熱媒案
内板39の伝熱面に接触する多数のフィン47aを備え
たハニカムフィン47を配設し、フィン47aで包囲さ
れる小室に固体としてNIC12・2 NH3の粉末を
充填させ、ハニカムフィン47の熱媒案内板39に面し
た側とは反対の面に多数の小孔のあるポーラス板48を
固着し、相対向するポーラス板48間にNH3ガスの流
路49を形成させる。図中50は液面である。
In order to prevent the heat medium 42 from leaking to the duct flange 38 side, a duct flange 8 is provided at the upper and lower portions between each heat medium guide plate 39.
8 Distance plate 46 located at the upper and lower edges
A honeycomb fin 47 having a large number of fins 47a in contact with the heat transfer surface of the heat medium guide plate 39 is disposed between the upper and lower distance plates 46, and the NIC 12 is fixed as a solid in a small chamber surrounded by the fins 47a.・2 Filled with NH3 powder, a porous plate 48 with a large number of small holes is fixed to the opposite side of the honeycomb fin 47 to the side facing the heat medium guide plate 39, and NH3 is filled between the opposing porous plates 48. A gas flow path 49 is formed. In the figure, 50 is the liquid level.

NH3ガス37はダクトフランジ3Bより箱型容器3B
内反応器の流路49に導入され、ポーラス板48よりハ
ニカムフィン47内へ入り、N1e12  ・2NH3
と反応してN1c12  ・6NH3が生じると共に熱
が発生する。
NH3 gas 37 is transferred from the duct flange 3B to the box-shaped container 3B.
N1e12 ・2NH3
reacts with N1c12 .6NH3 and generates heat.

反応により生じた熱により、熱媒案内板39の流路39
a内にある熱媒が加熱されて沸騰し蒸気が発生するため
、流路39a内の熱媒は発生蒸気の浮力及び熱媒の密度
差により上昇して自然循環し、発生した蒸気は上部プレ
ナム部41で気液分離され、蒸気管45を通って外部へ
取出される。
Due to the heat generated by the reaction, the flow path 39 of the heat medium guide plate 39
Since the heat medium in the flow path 39a is heated and boiled to generate steam, the heat medium in the flow path 39a rises due to the buoyancy of the generated steam and the difference in density of the heat medium and circulates naturally, and the generated steam flows into the upper plenum. Gas and liquid are separated in section 41 and taken out to the outside through steam pipe 45.

流路39a上端から上部プレナム部41へ出た熱媒はダ
ウンカマー43へ流れてここを下降し、下部プレナム部
40から再び熱媒案内板39の流路39aへ流入し、循
環する。
The heat medium exiting from the upper end of the flow path 39a to the upper plenum portion 41 flows to the downcomer 43 and descends there, and flows back into the flow path 39a of the heat medium guide plate 39 from the lower plenum portion 40 and circulates.

一方、NIC12・6NH3をN1e12・2NH3に
戻す場合には、熱媒42を箱型容器3Bから抜いておき
、別の蒸気を蒸気管45から箱型容器36内に導入する
。而して、蒸気は熱媒案内板39の流路39aに入り、
流路39a内で凝縮して放熱し、吸熱反応の熱をまかな
う。凝縮液は下部プレナム部40より外部へ放出される
On the other hand, when returning the NIC12.6NH3 to N1e12.2NH3, the heat medium 42 is removed from the box-shaped container 3B, and another steam is introduced into the box-shaped container 36 from the steam pipe 45. Thus, the steam enters the flow path 39a of the heat medium guide plate 39,
It condenses and radiates heat within the flow path 39a, covering the heat of the endothermic reaction. The condensate is discharged to the outside from the lower plenum section 40.

N1c12 ・6NH3をN1e12 φ2NH3に戻
す場合の他の手段としては、熱媒42は抜かずに、上部
プレナム部41まで入れたままとし、下部プレナム部に
蒸気導入ノズルを設けて該蒸気導入ノズルより蒸気を熱
媒案内板39の流路39a中に吹込むようにしても良い
。吹込まれた蒸気は放熱して消滅し、液になる。この分
の液は、箱型容器36にオーバーブロー管を設けておき
、ここから外部へ放出させる。
Another method for returning N1c12 ・6NH3 to N1e12 φ2NH3 is to leave the heating medium 42 in the upper plenum part 41 without removing it, and provide a steam introduction nozzle in the lower plenum part to allow steam to flow through the steam introduction nozzle. may be blown into the flow path 39a of the heat medium guide plate 39. The blown steam radiates heat and disappears, turning into liquid. An overblow pipe is provided in the box-shaped container 36, and this amount of liquid is discharged to the outside from there.

上部プレナム部41での気液分離は、上部プレナム部4
1に完全な液面が形成された状態で行われるため、蒸気
へのミストの混入がなく、転変の高い蒸気が得られる。
Gas-liquid separation in the upper plenum part 41 is performed in the upper plenum part 4.
Since the process is carried out with a complete liquid level formed at 1, there is no mist mixed into the steam, and steam with a high conversion rate can be obtained.

又箱型容器36内の熱媒42の内部自然循環量は、ダウ
ンカマー43での流速の低下がないこと、熱媒案内板3
9での流れの円滑なこと等から、蒸気排出量の数十倍〜
数百倍に達し、熱交換効率の高さと相まって大きな蒸気
発生率が得られる。
In addition, the internal natural circulation amount of the heat medium 42 in the box-shaped container 36 is determined by ensuring that there is no decrease in flow velocity at the downcomer 43 and that the heat medium guide plate 3
Due to the smooth flow at 9, the amount of steam discharged is several tens of times ~
Combined with the high heat exchange efficiency, the steam generation rate is several hundred times higher.

なお、本発明は、上述の実施例に限定されるものではな
く、本発明の要旨を逸脱しない範囲内で種々変更を加え
得ることは勿論である。
Note that the present invention is not limited to the above-described embodiments, and it goes without saying that various changes can be made without departing from the gist of the present invention.

[発明の効果] 本発明の反応器及び該反応器を用いた蒸気発生器によれ
ば、反応器は固体の充填、保持を容易に行うことができ
ると共に高い熱交換率を達成でき、又反応器を蒸気発生
器に用いた場合には、大きな蒸気発生率で転変の高い蒸
気を得ることができる、等種々の優れた効果を奏し得る
[Effects of the Invention] According to the reactor of the present invention and the steam generator using the reactor, the reactor can easily fill and retain solids, achieve a high heat exchange rate, and When the steam generator is used in a steam generator, it can produce various excellent effects such as being able to obtain steam with a high steam generation rate and high transformation rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明図、第2図(イ)〜(す)
は第1図の反応器に使用する部品の説明用斜視図、第3
図は第1図に示す反応器と同様の反応器を使用した蒸気
発生器の説明用斜視図、第4図は第3図の■方向矢視図
、第5図は従来の反応器の伝熱管の部分の説明図である
。 図中1.2.3は反応器ユニット、4はデイスタンスプ
レート、8はポーラス板、9はデイスタンスプレート、
14はハニカムフィン、15は固体、16は隔離板、2
1はデイスタンスプレート、24は熱媒案内板、25は
隔離板、34は熱媒、35は流体、36は箱型容器、3
7はNH3ガス、38はダクトフランジ、39は熱媒案
内板、40は下部プレナム部、41は上部プレナム部、
42は熱媒、43はダウンカマー、4Bはデイスタンス
プレート、47はハニカムフィン、48はポーラス板、
49は流路を示す。
Figure 1 is a detailed explanatory diagram of the present invention, Figures 2 (A) to (S)
is an explanatory perspective view of parts used in the reactor shown in Figure 1;
The figure is an explanatory perspective view of a steam generator using a reactor similar to the reactor shown in Figure 1, Figure 4 is a view taken in the direction of the ■ arrow in Figure 3, and Figure 5 is a diagram of a conventional reactor. FIG. 3 is an explanatory diagram of a heat tube portion. In the figure, 1.2.3 is a reactor unit, 4 is a distance plate, 8 is a porous plate, 9 is a distance plate,
14 is a honeycomb fin, 15 is a solid, 16 is a separator, 2
1 is a distance plate, 24 is a heat medium guide plate, 25 is a separation plate, 34 is a heat medium, 35 is a fluid, 36 is a box-shaped container, 3
7 is NH3 gas, 38 is a duct flange, 39 is a heat medium guide plate, 40 is a lower plenum part, 41 is an upper plenum part,
42 is a heating medium, 43 is a downcomer, 4B is a distance plate, 47 is a honeycomb fin, 48 is a porous plate,
49 indicates a flow path.

Claims (1)

【特許請求の範囲】 1)反応用の流体が流通する流路部と、一面が該流路部
に面し前記流体が通過し得る多数の小孔を有するポーラ
ス板と、該ポーラス板の他面に面しフィンで仕切られた
多数の小室に前記流体と接触して発熱反応を起す固体を
充填したハニカムフィンと、該ハニカムフィンのポーラ
ス板側とは反対側に配設され前記反応により生じた熱を
熱媒流路部を流れる熱媒に伝える伝熱壁を設けたことを
特徴とする反応器。 2)箱型容器に、熱媒を内部へ供給する供給管と蒸気を
上方から取出す蒸気管を接続すると共に箱型容器の水平
方向から反応用の流体を内部へ導入するダクトを接続し
、箱型容器内に、前記ダクトからの流体が流通する流路
部と、一面が該流路部に面し前記流体が通過し得る多数
の小孔を有するポーラス板と、該ポーラス板の他面に面
しフィンで仕切られた多数の小室に前記流体と接触して
発熱反応を起す固体を充填したハニカムフィンと、該ハ
ニカムフィンのポーラス板側とは反対側に配設され前記
反応により生じた熱を熱媒流路部を流れる熱媒に伝える
伝熱壁を備えた反応器を、伝熱壁がダクトから導入され
る流体の流れに対して平行で且つ熱媒流路部が縦向きに
なるよう配設し、反応器上部と箱型容器の間に上部プレ
ナム部を、又反応器下部と箱型容器の間に下部プレナム
部を、更に反応器側部と箱型容器の間にダウンカマーを
設け、熱媒液面を反応器上端よりも上方に位置させたこ
とを特徴とする蒸気発生器。
[Scope of Claims] 1) A channel portion through which a reaction fluid flows, a porous plate having one side facing the channel portion and having a large number of small holes through which the fluid can pass, and other parts of the porous plate. A honeycomb fin in which a large number of small chambers facing the surface and partitioned by fins is filled with a solid that causes an exothermic reaction upon contact with the fluid; A reactor characterized by being provided with a heat transfer wall that transfers heat to a heat medium flowing through a heat medium flow path. 2) A supply pipe for supplying heat medium into the inside and a steam pipe for taking out steam from above are connected to the box-shaped container, and a duct for introducing reaction fluid into the box-shaped container from the horizontal direction is connected to the box-shaped container. In the mold container, a flow path section through which the fluid from the duct flows, a porous plate having one side facing the flow path section and having a large number of small holes through which the fluid can pass, and the other side of the porous plate. A honeycomb fin in which a large number of small chambers partitioned by facing fins is filled with a solid that causes an exothermic reaction when it comes into contact with the fluid, and a honeycomb fin arranged on the opposite side of the honeycomb fin from the porous plate side to generate heat generated by the reaction. The reactor is equipped with a heat transfer wall that transmits the heat to the heat medium flowing through the heat medium flow path, and the heat transfer wall is parallel to the flow of the fluid introduced from the duct, and the heat medium flow path is oriented vertically. The upper plenum part is arranged between the upper part of the reactor and the box-shaped vessel, the lower plenum part is arranged between the lower part of the reactor and the box-shaped vessel, and the downcomer is arranged between the side part of the reactor and the box-shaped vessel. A steam generator characterized in that the heating medium liquid level is located above the upper end of the reactor.
JP9484687A 1987-04-17 1987-04-17 Reactor and steam generator therefor Pending JPH0194940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9484687A JPH0194940A (en) 1987-04-17 1987-04-17 Reactor and steam generator therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9484687A JPH0194940A (en) 1987-04-17 1987-04-17 Reactor and steam generator therefor

Publications (1)

Publication Number Publication Date
JPH0194940A true JPH0194940A (en) 1989-04-13

Family

ID=14121398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9484687A Pending JPH0194940A (en) 1987-04-17 1987-04-17 Reactor and steam generator therefor

Country Status (1)

Country Link
JP (1) JPH0194940A (en)

Similar Documents

Publication Publication Date Title
US4544544A (en) Plate reactors for chemical syntheses under high pressure in gaseous phase and with heterogeneous catalysis
US20040154788A1 (en) Heat exchanger
JPH06507145A (en) modular isothermal reactor
JP2016512320A (en) Counterflow heat exchanger / reactor
JPH04503327A (en) Simultaneous transfer of matter and heat
JPS5823521B2 (en) Fluidized bed heat exchanger with diagonally extended heat exchange tubes
JPS5714188A (en) Heat exchanger between circulation gas and water from ammonia converter
GB2126119A (en) Temperature control of fluidized bed reactors using heat pipes
CN1714268B (en) Method for obtaining a gaseous phase from a liquid medium and device for carrying out the same
ES482982A1 (en) Heat exchangers with tube bundles
CN106076220A (en) A kind of gas-solid phase microreactor
CN113091338B (en) Reaction heat recycling system in formaldehyde production
JPH0194940A (en) Reactor and steam generator therefor
JP3550436B2 (en) Fuel reformer
KR101064630B1 (en) Heat exchanger
US2660519A (en) Fluid heater
KR20150098451A (en) Shell and tube type heat exchanger
US5045568A (en) Process and apparatus for performing chemical reactions under pressure in a multi-stage reaction zone with external intermediary thermal conditioning
CN208091283U (en) A kind of heat-exchanger rig and microreactor
JPH04243901A (en) Apparatus of metallic halide
US5192512A (en) Apparatus for performing chemical reactions under pressure in a multi-stage reaction zone with external intermediary thermal conditioning
JP3098467B2 (en) Heat exchange type reactor
CN219367419U (en) Laboratory is with solid-state hydrogen storage device
RU2039923C1 (en) Shell-and-tube heat exchanger
RU2341750C1 (en) Heat exchanger