JPH0193700A - Laminated pressure vessel - Google Patents

Laminated pressure vessel

Info

Publication number
JPH0193700A
JPH0193700A JP62249311A JP24931187A JPH0193700A JP H0193700 A JPH0193700 A JP H0193700A JP 62249311 A JP62249311 A JP 62249311A JP 24931187 A JP24931187 A JP 24931187A JP H0193700 A JPH0193700 A JP H0193700A
Authority
JP
Japan
Prior art keywords
vessel
container
pressure
laminated
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62249311A
Other languages
Japanese (ja)
Inventor
Hiroshi Tanaka
博 田中
Shinichiro Kato
愼一郎 加藤
Yasushi Kashima
鹿島 康
Hiroshi Nomoto
宏 野本
Atsushi Shimomura
下村 敦
Yasushi Mizumura
康 水村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Flowtech Corp
Original Assignee
Bridgestone Flowtech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Flowtech Corp filed Critical Bridgestone Flowtech Corp
Priority to JP62249311A priority Critical patent/JPH0193700A/en
Publication of JPH0193700A publication Critical patent/JPH0193700A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/02Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge involving reinforcing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0621Single wall with three layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0648Alloys or compositions of metals

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To improve operating efficiency of vessel wall members by forming a pressure vessel as a laminated pressure vessel consisting of laminated plural vessel-shaped layers, and radially and evenly distributing the stress generated in the vessel wall by specifying the apparent elastic moduli of each vessel-shaped layer. CONSTITUTION:When a cavity 11 of a laminated pressure vessel 11 is filled with a high pressure fluid, the fluid pressure of the fluid acts on an alloyed vessel 12 so as to enlarge the diameter of the vessel 12, and thus to produce stress in the vessel 12. The stress in the vessel 12 further acts on a reinforcing layer 13 closely contacted with the vessel 12 so as to enlarge the diameter of the reinforcing layer 13, and thus to generate stress in the reinforcing layer 13. However, for the laminated pressure vessel 11, the apparent elastic modulus of the vessel 12 on the high pressure side is about one-half smaller than that of the reinforcing layer 13 on the low pressure side, so that the stress generated in the vessel 12 is greatly reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は積層圧力容器、例えば、流体機械用圧力容器、
プロパンボンベ等の高圧の液体または気体等流体を収納
する圧力容器、または浅海、深海にて使用されるスキュ
ーバダイビング用タンクおよび潜水用機器等高圧の液体
または気体等流体を収納するとともに水圧による高い外
圧の作用する圧力容器に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a laminated pressure vessel, for example, a pressure vessel for fluid machinery,
Pressure vessels that store fluids such as high-pressure liquids or gases, such as propane cylinders, or scuba diving tanks and diving equipment used in shallow or deep sea, and that store fluids such as high-pressure liquids or gases, as well as high external pressure due to water pressure. It relates to a pressure vessel in which

(従来の技術) 最近、流体機械に用いる液圧あるいは気圧等の流体圧は
高圧化され、これら流体機械に用いる圧力容器(以下、
単に容器という)等には耐圧性能の高い容器が使用され
ている。これらの容器では、容器内に収納された高い正
圧の流体が容器の内面を高圧で押圧するので、この押圧
力に耐えるものが要求される。また、深海の高い外圧下
で使用する流体機械に用いる容器等には、水深の増加と
ともに高い外圧が作用し、外圧に対する耐圧性能の高い
容器が使用されている。高い外圧により容器壁を押圧す
る押圧力は容器内に高い負圧の流体が収納されたことに
対応している。以下、代表として正圧の流体に対する容
器につき説明する。
(Prior Art) Recently, fluid pressure such as hydraulic pressure or atmospheric pressure used in fluid machines has been increased, and pressure vessels (hereinafter referred to as
Containers with high pressure resistance are used. In these containers, the high positive pressure fluid contained within the container presses the inner surface of the container at high pressure, so a container that can withstand this pressing force is required. In addition, for containers used in fluid machines used under high external pressure in the deep sea, high external pressure acts as the water depth increases, and containers with high pressure resistance against external pressure are used. The pressing force of the high external pressure against the container wall corresponds to the fact that a high negative pressure fluid is accommodated in the container. Hereinafter, a container for a positive pressure fluid will be explained as a representative example.

従来、容器はその耐圧性能を高めるためには容器の肉厚
を増加することにより実施してきた。すなわち、金属容
器にあっては、容器を2重管にしたり、容器壁の厚さを
増加したり、ホースにあっては、ホースの編組み層数を
増加することがなされている。
Conventionally, the pressure resistance of containers has been increased by increasing the wall thickness of the container. That is, in the case of metal containers, the container is made into a double pipe or the thickness of the container wall is increased, and in the case of hoses, the number of braided layers of the hose is increased.

(発明が解決しようとする問題点) しかしながら、容器の肉厚を増加すると、容器壁の部材
量が増加して、容器の重量が増加し、価格が上昇すると
いう問題点がある。
(Problems to be Solved by the Invention) However, when the wall thickness of the container is increased, there is a problem that the amount of components for the container wall increases, the weight of the container increases, and the price increases.

そこで本発明は、圧力容器の容器壁に発生する応力を器
壁面に垂直方向、すなわち、容器の厚さ方向に一様に分
布させることにより、器壁の部材の使用効率を増加し、
容器の耐圧性能を増加して、容器の重量の増加および価
格の上昇の少ない積層圧力容器を提供することを目的と
する。
Therefore, the present invention increases the usage efficiency of the members of the vessel wall by uniformly distributing the stress generated in the vessel wall of the pressure vessel in the direction perpendicular to the vessel wall surface, that is, in the thickness direction of the vessel,
It is an object of the present invention to provide a laminated pressure vessel that increases the pressure resistance of the vessel and reduces the increase in the weight and price of the vessel.

(問題点を解決するための手段) 本発明者らは、高い流体圧の流体を収納する容器につい
て、器壁の厚さと昇圧時の破壊現象、容器の疲労破壊等
につき種々研究を重ねた。
(Means for Solving the Problems) The present inventors have conducted various studies regarding the thickness of the container wall, the failure phenomenon during pressure increase, the fatigue failure of the container, etc. regarding containers for storing fluids with high fluid pressure.

その結果、単一部材からなる容器はその器壁の厚さを増
加しても、容器の疲労破壊に対して顕著な性能の向上は
見られない。すなわち、容器はその器壁の厚さを増加す
るのみでは耐圧性能は向上しないことが判明した。また
、一方、容器の破壊は、主に容器の内側で起こる場合が
多く、このことは容器の内側に加わる応力が容器の外側
に加わる応力より高いことであり、容器の厚さ方向に応
力が一様に分布していないことを示している。さらに、
容器の厚さ方向の応力と容器の部材との関係につき研究
し、容器の応力分布を容器の厚さ方向に均一にすること
により容器の耐圧性能を大幅に向上できることを見出し
た。
As a result, even if the thickness of the wall of a container made of a single member is increased, there is no significant improvement in the performance against fatigue failure of the container. In other words, it has been found that the pressure resistance of the container cannot be improved simply by increasing the thickness of the container wall. On the other hand, container failure often occurs mainly on the inside of the container, which means that the stress applied to the inside of the container is higher than the stress applied to the outside of the container, and stress increases in the thickness direction of the container. This shows that the distribution is not uniform. moreover,
We studied the relationship between the stress in the thickness direction of the container and the components of the container, and found that by making the stress distribution of the container uniform in the thickness direction of the container, the pressure resistance performance of the container can be significantly improved.

そして、本発明者らは、容器の応力分布を厚さ方向に均
一にするものとして、容器が複数の容器状層を積層した
積層圧力容器からなり、その容器状層の少なくとも1つ
の容器状層が螺旋状に形成されている線状部材によりな
るものとして、それらの容器状層の弾性率を変えること
により実施できることを見出した。以下、その積層圧力
容器の器壁応力について説明する。
In order to make the stress distribution of the container uniform in the thickness direction, the present inventors have proposed that the container is made of a laminated pressure vessel in which a plurality of container-like layers are laminated, and that at least one of the container-like layers is It has been found that this method can be implemented by changing the elastic modulus of the container-like layer formed by a linear member formed in a spiral shape. The vessel wall stress of the laminated pressure vessel will be explained below.

一般に、平均半径Rの器壁を有する円管が管内の内圧に
より拡径し半径方向にUだけ変位すると、このときの円
周方向の歪である円周歪eは次式%式%(1) となる。フックの法則により円周方向の応力である円周
応力Sは次式 %式%(2) ここに、Eは器壁の円周方向の見掛けの弾性重工弾性率
という)である。
In general, when a circular pipe with a wall with an average radius R expands in diameter due to the internal pressure inside the pipe and is displaced by U in the radial direction, the circumferential strain e, which is the strain in the circumferential direction at this time, is calculated by the following formula % formula % (1 ) becomes. According to Hooke's law, the circumferential stress S, which is the stress in the circumferential direction, is expressed by the following formula (%) (2) where E is the apparent elastic modulus of the vessel wall in the circumferential direction.

した  ご、前記(1)、 (2)式により円周応力S
は次式 %式%(3) で表せる。また、器壁の抗張力をσで表し、式(3)の
両辺を抗張力σで除すと、次式を得る。
Then, according to equations (1) and (2) above, the circumferential stress S
can be expressed by the following formula % formula % (3). Further, if the tensile strength of the vessel wall is expressed as σ and both sides of equation (3) are divided by the tensile strength σ, the following equation is obtained.

S/σ−E/σ・U/R・・・・・・(4)内圧が作用
する単一部材からなる容器において、容器の破壊が主に
容器の器壁の内側で起こるのは、容器の器壁の内側の円
周応力Sが最大になるためである。そこで、この破壊を
避けるためには容器の器壁内の円周応力Sを分散させ、
器壁の厚さ方向で円周応力Sを一様にするのが望ましい
S/σ-E/σ・U/R... (4) In a container made of a single member on which internal pressure acts, destruction of the container mainly occurs inside the container wall. This is because the circumferential stress S inside the vessel wall becomes maximum. Therefore, in order to avoid this destruction, the circumferential stress S in the container wall is dispersed,
It is desirable to make the circumferential stress S uniform in the thickness direction of the vessel wall.

積層圧力容器の断面円形状部において、積層圧力容器を
構成する任意の2つの内側および外側の容器状Jiii
+jに作用する円周応力Si、Sjは、各容器状層i、
jで前述の式(3)が成立するので、次式 %式%) の関係がある。ここに、E in  E Jl  σi
、σj。
In the circular cross-sectional part of the laminated pressure vessel, any two inner and outer vessel shapes constituting the laminated pressure vessel Jiii
The circumferential stress Si, Sj acting on +j is
Since the above-mentioned equation (3) holds true for j, the following relationship exists. Here, E in E Jl σi
,σj.

Ui、Uj、Ri、Rjはそれぞれ容器状層i。Ui, Uj, Ri, and Rj are container-like layers i, respectively.

jの弾性率、抗張力、変位、平均半径であり、Ri<R
jの関係がある。
j is the elastic modulus, tensile strength, displacement, and average radius, and Ri<R
There is a relationship of j.

そこで、積層圧力容器においても、前述の単一部材から
なる容器と同様に、容器の内側の破壊を避けるためには
、第3図に示すように、容器の内側に生ずる円周応力の
ピークSpを低下させ、容器内の円周応力を分散させる
ことが望ましく、容器の厚さ方向である半径方向で円周
応力S in  Sj (以下、単に応力という)を−
様にすることが望ましい、すなわち、式(5)において
、((S j/σj)÷(Si/σi))が1に近いこ
とが望ましい。
Therefore, in a laminated pressure vessel as well as in the case of a vessel made of a single member, in order to avoid damage to the inside of the vessel, as shown in Fig. 3, the peak of the circumferential stress Sp It is desirable to reduce the circumferential stress S in Sj (hereinafter simply referred to as stress) in the radial direction, which is the thickness direction of the container, and to disperse the circumferential stress within the container.
In other words, in equation (5), it is desirable that ((S j/σj)÷(Si/σi)) be close to 1.

内圧が作用する積層圧力容器において、容器の厚さ方向
に応力を−様にするためには、式(4)において、Ri
<Rjであるので、各容器状層の部材の弾性率Ei、E
jO内、容器の内側の弾性率Eiを小さくすればよい。
In a laminated pressure vessel to which internal pressure acts, in order to make the stress uniform in the thickness direction of the vessel, in equation (4), Ri
<Rj, so the elastic modulus Ei, E of the member of each container layer
The elastic modulus Ei inside jO and inside the container may be made small.

すなわち、容器に内圧が作用する場合、例えば、容器内
に正圧の流体が導入され流体圧・を作用する場合、容器
の内側の容器状層の部材の見掛けの弾性率Eiを容器の
外側の容器状層の部材の見掛けの弾性率Ejより小さく
すればよい。
That is, when internal pressure acts on the container, for example, when a positive pressure fluid is introduced into the container and the fluid pressure is applied, the apparent elastic modulus Ei of the member of the container-like layer inside the container is It may be made smaller than the apparent elastic modulus Ej of the member of the container-like layer.

また、容器に外圧が作用する場合、例えば、容器外から
の外圧により容器内に負圧の流体が収納され流体圧が作
用する場合、容器の外側の容器状層の部材の見掛けの弾
性率Ejを容器の内側の容器状層の部材の見掛けの弾性
率Eiより小さくすればよい。
In addition, when external pressure acts on the container, for example, when negative pressure fluid is stored in the container due to external pressure from outside the container and fluid pressure acts, the apparent elastic modulus Ej of the member of the container-like layer outside the container may be made smaller than the apparent elastic modulus Ei of the member of the container-like layer inside the container.

このようにすると、容器状層の部材には容器の厚さ方向
に−様な応力St、Sjが分布し、容器の内側の応力の
ピークは減少し、かつ応力は平均化されて容器の耐圧性
能は向上する。
In this way, the stresses St and Sj are distributed in the container-like layer member in the thickness direction of the container, the stress peak inside the container is reduced, and the stress is averaged and the pressure resistance of the container is increased. Performance will improve.

本発明者らはさらに鋭意研究を重ね本発明に到達した。The present inventors further conducted intensive research and arrived at the present invention.

すなわち、本発明に係る積層圧力容器は、複数の容器状
層が積層され容器外圧より正圧となる流体あるいは容器
外圧より負圧となる流体が収納される空洞を形成する積
層圧力容器において、少なくとも1つの容器状層が螺旋
状に形成されている線状部材からなり前記流体の流体圧
が積層圧力容器に作用したとき、高圧側となる容器状層
の見掛けの弾性率を低圧側となる容器状層の見掛けの弾
性率より小さくしたことを特徴としている。
That is, the laminated pressure vessel according to the present invention is a laminated pressure vessel in which a plurality of container-like layers are laminated to form a cavity in which a fluid whose pressure is more positive than the external pressure of the container or a fluid whose pressure is negative than the external pressure of the container is housed. One container-like layer is made of a linear member formed in a spiral shape, and when the fluid pressure of the fluid acts on the laminated pressure vessel, the apparent elastic modulus of the container-like layer on the high pressure side is changed to the low pressure side. It is characterized by having a lower apparent elastic modulus than that of the lamina.

ここに、見掛けの弾性率とは、容器内に流体圧を作用さ
せたとき、容器の断面円形状部の直径の拡径または縮径
に対応する円周方向の弾性率である。容器状層が金属容
器のように単一部材の場合はその単一部材の弾性率と同
じである。容器状層が、ワイヤ等の線状部材を螺旋状に
形成してなるものでは、線状部材は容器状層の中心軸線
に対して約54.7°の打込角度で配置される。この場
合、容器状層の円周方向の見掛けの弾性率Eは、線状部
材の引張力向の弾性率E、の約半分となる。
Here, the apparent elastic modulus is the elastic modulus in the circumferential direction corresponding to the expansion or contraction of the diameter of the circular cross-sectional portion of the container when fluid pressure is applied within the container. When the container layer is a single member such as a metal container, the elastic modulus is the same as that of the single member. When the container layer is formed by spirally forming a linear member such as a wire, the linear member is arranged at a driving angle of about 54.7° with respect to the central axis of the container layer. In this case, the apparent elastic modulus E of the container layer in the circumferential direction is approximately half of the elastic modulus E of the linear member in the tensile force direction.

また、本発明においては、容器状層の見掛けの弾性率を
変えるためにその線状部材の打込角度を変えることはし
ない。その打込角度を変えると、耐疲労性能が低下する
ためである。本発明における容器状層の打込角度は、用
いる材料の如何にかかわらず、略54.7°である。
Further, in the present invention, the driving angle of the linear member is not changed in order to change the apparent elastic modulus of the container-like layer. This is because if the driving angle is changed, the fatigue resistance performance decreases. The driving angle of the container-like layer in the present invention is approximately 54.7°, regardless of the material used.

(作用) 積層圧力容器の容器内の空洞に容器外圧に対して正圧と
なる高圧の流体が収納され、器壁に流体圧が作用する。
(Function) A high-pressure fluid having a positive pressure relative to the external pressure of the container is stored in the cavity inside the stacked pressure vessel, and the fluid pressure acts on the vessel wall.

まず、流体圧は高圧側の容器状層に作用して、その器壁
内に応力を発生し、さらに、高圧側の容器状層は積層さ
れた低圧側の容器状層に作用してその器壁内に応力を発
生する。本発明の積層圧力容器は高圧側となる容器状層
の見掛けの弾性率が低圧側となる容器状層の見掛けの弾
性率より小さくしているので、高圧側の容器状層の器壁
に生ずる応力は弾性率が小さい分だけ小さくなる。逆に
、低圧側の容器状層に生じる応力は、弾性率が大きい分
だけ大きくなる。このため、積層圧力容器に発生する応
力は容器の半径方向で略−様に近づくように分布する。
First, the fluid pressure acts on the container-like layer on the high-pressure side and generates stress in the container wall, and then the container-like layer on the high-pressure side acts on the laminated container-like layer on the low-pressure side, causing stress in the vessel wall. Generates stress within the wall. In the laminated pressure vessel of the present invention, the apparent elastic modulus of the container-like layer on the high-pressure side is made smaller than the apparent elastic modulus of the container-like layer on the low-pressure side. The stress decreases as the elastic modulus decreases. Conversely, the stress generated in the container-like layer on the low-pressure side increases as the elastic modulus increases. Therefore, the stress generated in the laminated pressure vessel is distributed in a substantially -like manner in the radial direction of the vessel.

そして、容器の内側の器壁に発生する応力のピークは低
減し、かつ応力は平均化される。このため、積層圧力容
器の耐圧性能は大幅に増加する。
Then, the peak stress generated on the inner wall of the container is reduced and the stress is averaged out. Therefore, the pressure resistance of the laminated pressure vessel is significantly increased.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1.2図は本発明に係る積層圧力容器の一実施例を示
す図である。
FIG. 1.2 is a diagram showing an embodiment of a laminated pressure vessel according to the present invention.

まず、構成について説明する。第1.2図において、1
1は積層圧力容器であり、積層圧力容器11は2つの容
器状層としてのアルミニウム合金からなる合金容器12
および合金容器12の外側に合金容器12に密着し、合
金容器12を覆うよう積層された補強層13を有してい
る。補強層13の外側には例えば、エポキシ樹脂等の合
成樹脂からなるコーティング部材16が補強層13の外
表面を被覆するよう設けられている。合金容器12の内
側には空洞17が形成され、空洞17内には流体が収納
可能である。空洞17は合金容器12の周壁の一部に設
けられた開口12aを通して外部に連通している。積層
圧力容器11の内側に金属からなる合金容器12を設け
たのは、空洞17内に収納する流体が気体の場合、合金
容器12が気体に対する耐透過性において、すべての合
成樹脂より優れているからであり、これはガラス等気体
の透過性の少ないものであってもよい。積層圧力容器l
l内の空洞17には容器外圧に対して正圧となる高圧の
流体が収納され、この流体の流体圧が積層圧力容器11
に作用したとき、合金容器12は高圧側となり、補強層
13は低圧側となる。補強層13は、線状部材であるカ
ーボン繊維18からなり、このカーボン繊維18を互い
に周方向に密着させ、積層圧力容器11の軸線に対して
約54.7°の静止角度で螺旋状を形成するよう巻き付
け、かつ半径方向に層状に互に密着して積層し、所定の
厚さになるよう設けられている。各層のカーボン繊維1
8の螺旋の方向は、例えば、第1.3層がS方向または
第2.4層がZ方向であり、各層で交互になるようにな
っている。そして、第1〜4層は全体として補強層13
を構成している。
First, the configuration will be explained. In Figure 1.2, 1
1 is a laminated pressure vessel, and the laminated pressure vessel 11 is an alloy vessel 12 made of an aluminum alloy as two vessel-like layers.
A reinforcing layer 13 is laminated on the outside of the alloy container 12 so as to be in close contact with the alloy container 12 and cover the alloy container 12. A coating member 16 made of synthetic resin such as epoxy resin is provided on the outside of the reinforcing layer 13 so as to cover the outer surface of the reinforcing layer 13 . A cavity 17 is formed inside the alloy container 12, and a fluid can be stored in the cavity 17. The cavity 17 communicates with the outside through an opening 12a provided in a part of the peripheral wall of the alloy container 12. The reason why the alloy container 12 made of metal is provided inside the laminated pressure vessel 11 is that when the fluid stored in the cavity 17 is gas, the alloy container 12 is superior to all synthetic resins in permeation resistance to gas. This material may be made of a material with low gas permeability, such as glass. Laminated pressure vessel
A high-pressure fluid having a positive pressure with respect to the external pressure of the container is stored in the cavity 17 inside the laminated pressure vessel 11.
When acted upon, the alloy container 12 becomes the high pressure side, and the reinforcing layer 13 becomes the low pressure side. The reinforcing layer 13 is made of carbon fibers 18 which are linear members, and the carbon fibers 18 are brought into close contact with each other in the circumferential direction to form a spiral shape at a static angle of approximately 54.7° with respect to the axis of the laminated pressure vessel 11. The wires are wound so as to have a predetermined thickness, and are laminated in layers in the radial direction in close contact with each other. Carbon fiber in each layer 1
For example, the direction of the spiral of No. 8 is the S direction for the 1.3rd layer and the Z direction for the 2.4th layer, and is alternated in each layer. The first to fourth layers are the reinforcing layer 13 as a whole.
It consists of

積層圧力容器11の軸線方向中央の円筒部11aにおい
て、第2図に示すように、合金容器12の外径り、!、
は160鶴、内径I)+zbは1201璽であり、補強
層13の外径DI311は180龍、内径DI3には1
60nで合金容器12の外径DI2mと同じである。コ
ーティング部材16は厚さDoが2.5 +uである。
In the cylindrical portion 11a at the axial center of the laminated pressure vessel 11, as shown in FIG. 2, the outer diameter of the alloy vessel 12 is ! ,
is 160 Tsuru, the inner diameter I) + zb is 1201 Tsuru, the outer diameter DI311 of the reinforcing layer 13 is 180 Tsuru, and the inner diameter DI3 is 1
60n, which is the same as the outer diameter DI2m of the alloy container 12. The coating member 16 has a thickness Do of 2.5 +u.

合金容器12の軸方向の弾性率は7.200kg f 
7mm”であり、合金容器12の円周方向の見掛けの弾
性率E、!は軸方向の弾性率と同じテア、200kg 
f /mn+”である。補強層13はカーボン繊維18
を螺旋状に形成したものであり、静止角度約54.7°
になるよう巻き付けられているので、補強層13の円周
方向の見掛けの弾性率E13はカーボン繊維18の引張
り弾性率の26.000kg f /ms”の半分の1
3.000kg f /mmzである。
The elastic modulus of the alloy container 12 in the axial direction is 7.200 kg f
7 mm'', and the apparent elastic modulus E in the circumferential direction of the alloy container 12, ! is the same as the elastic modulus in the axial direction, 200 kg.
f /mn+". The reinforcing layer 13 is made of carbon fiber 18
is formed in a spiral shape, and the resting angle is approximately 54.7°.
Therefore, the apparent elastic modulus E13 of the reinforcing layer 13 in the circumferential direction is 1, which is half of the tensile elastic modulus of the carbon fiber 18 of 26.000 kg f /ms.
It is 3.000 kg f /mmz.

すなわち、積層圧力容器11の高圧側となる内側の容器
状層であるアルミニウム容器の見掛けの弾性率El!は
積層圧力容器11の低圧側となる外側の容器状層である
補強層13の見掛けの弾性率ELSより小さく、約1/
2である。
That is, the apparent elastic modulus El! of the aluminum container, which is the inner container-like layer on the high-pressure side of the laminated pressure vessel 11, is is smaller than the apparent elastic modulus ELS of the reinforcing layer 13, which is the outer container-like layer on the low-pressure side of the laminated pressure vessel 11, and is about 1/
It is 2.

次に、作用について説明する。Next, the effect will be explained.

積層圧力容器11の空洞17に高圧の流体が収納される
と、流体の流体圧が合金容器12に作用して合金容器1
2の直径を大きくしようとして合金容器12内に応力S
+zを発生する0合金容器12の応力SI!は、さらに
合金容器12に密着した補強層13に作用し、補強層1
3の直径を大きくしようとして補強層13内に応力S1
3を発生する。しかしながら、本発明の積層圧力容器1
1は高圧側の合金容器12の見掛けの弾性率EI!が低
圧側の補強層13の見掛けの弾性率EI!より小さく、
約1/2であるので、合金容器12に発生する応力S、
!は大幅に低下する。このため、合金容器12の内側の
部分に発生する応力Sl!の最大値5P(1が、第3図
に示すように大幅に小さくなり、応力は容器の器壁の厚
さ方向に平均化され、応力が器壁内で分散され、積層圧
力容器11の耐久性能が大幅に向上するとともに耐疲労
性も大幅に向上した。
When a high-pressure fluid is stored in the cavity 17 of the laminated pressure vessel 11, the fluid pressure of the fluid acts on the alloy vessel 12 and the alloy vessel 1
When trying to increase the diameter of alloy container 12, stress S
The stress SI of the 0 alloy container 12 that generates +z! further acts on the reinforcing layer 13 that is in close contact with the alloy container 12, and the reinforcing layer 1
When trying to increase the diameter of the reinforcing layer 13, stress S1
Generates 3. However, the laminated pressure vessel 1 of the present invention
1 is the apparent elastic modulus EI of the alloy container 12 on the high pressure side! is the apparent elastic modulus EI of the reinforcing layer 13 on the low pressure side! smaller,
Since the stress S generated in the alloy container 12 is approximately 1/2,
! decreases significantly. Therefore, the stress Sl! generated in the inner part of the alloy container 12! The maximum value of 5P (1) becomes significantly smaller as shown in Figure 3, and the stress is averaged in the thickness direction of the vessel wall, and the stress is dispersed within the vessel wall, increasing the durability of the laminated pressure vessel 11. Not only the performance has been greatly improved, but also the fatigue resistance has been greatly improved.

また、本発明に係る積層管の重量は大幅に軽減され、積
層管の単位肉厚当りの耐圧力が大幅に向上した。このた
め、重量/圧力および価格/圧力の比を大幅に低減でき
た。
Furthermore, the weight of the laminated pipe according to the present invention has been significantly reduced, and the withstand pressure per unit wall thickness of the laminated pipe has been significantly improved. Therefore, the weight/pressure and price/pressure ratios could be significantly reduced.

次に、積層圧力容器の試験体1〜3を3種類(実施例、
比較例1,2)準備して本発明の効果を確認したので説
明する。
Next, three types of laminated pressure vessel test specimens 1 to 3 (Example,
Comparative Examples 1 and 2) were prepared and the effects of the present invention were confirmed, so they will be explained.

試験体lは前述の第1.2図に示す実施例と同じで−あ
る。試験体2.3は、それぞれ試験体1において、積層
圧力容器の内側および外側の2つの容器状層が共にアル
ミニウム合金部材およびカーボン繊維の場合である。す
なわち、試験体2においては積層圧力容器の内側および
外側の容器状層の弾性率が共に7.200 kgf /
mad”であり、試験体3においては、とにも13.0
00kg f / mm”である。
The test specimen 1 is the same as the embodiment shown in FIG. 1.2 described above. Test specimen 2.3 is the same as test specimen 1 in which both the inner and outer container-like layers of the laminated pressure vessel are made of aluminum alloy members and carbon fibers. That is, in test specimen 2, the elastic modulus of both the inner and outer container-like layers of the laminated pressure vessel is 7.200 kgf/
mad”, and in test specimen 3, both were 13.0
00kg f/mm”.

これらの試験体について、試験体内の空洞に内圧1.0
00 kg f /Jの高圧の流体を収納したとき各容
器状層に発生する円周方向の応力Sの分布を比較した。
For these specimens, an internal pressure of 1.0 was applied to the cavity inside the specimen.
The distribution of stress S in the circumferential direction generated in each container-like layer when a high-pressure fluid of 0.00 kg f /J was housed was compared.

結果を第3図に示す。試験体1 (実施例)のものは試
験体2.3(それぞれ比較例1.2)に比較し、試験体
の内側の応力のピークSP。
The results are shown in Figure 3. Test specimen 1 (Example) was compared with Test specimen 2.3 (Comparative example 1.2, respectively), and the stress peak SP inside the specimen.

が大幅に低下するとともに、試験体2.3に比較して応
力分散され、平均化されている。
The stress was significantly reduced, and the stress was dispersed and averaged compared to test specimen 2.3.

また、このときの試験体の各部の半径方向の変位を第4
図に示す。半径方向の変位の差は、試験体の間で極めて
小さく、管状層の弾性率の変化による差は少なく、実用
上の差はない。
In addition, the radial displacement of each part of the test specimen at this time was measured by the fourth
As shown in the figure. The difference in radial displacement is extremely small between the test specimens, and the difference due to the change in the elastic modulus of the tubular layer is small, and there is no practical difference.

なお、前述の実施例においては、補強層は、線状部材を
周方向に密着させ、かつ半径方向に層状に積層し、さら
に、各層間で線状部材が交互に交差した場合につき説明
したが、本発明においては、この実施例に限らず補強層
は、線状部材を各層で所定角度で交互に交差するように
編組みし、この編組みした層を層状に積層したものであ
ってもよい。
In the above-mentioned embodiments, the reinforcing layer is constructed by making the linear members closely adhere to each other in the circumferential direction and laminated in layers in the radial direction, and the linear members alternately intersect between each layer. In the present invention, the reinforcing layer is not limited to this embodiment, but may be one in which linear members are braided so that each layer alternately intersects at a predetermined angle, and the braided layers are laminated in a layered manner. good.

(効果) 以上説明したように、本発明によれば、圧力容器を複数
の容器状層を積層した積層圧力容器とし、容器状層の見
掛けの弾性率を特定して管壁に発生する応力を半径方向
に一様に分布させることにより、器壁の部材の使用効率
を増加し、容器の耐圧性能を大幅に増加できる。また、
積層圧力容器の重量の増加および価格の上昇を少なくで
き、重量/圧力および価格/圧力の比が大幅に低減でき
る。
(Effects) As explained above, according to the present invention, the pressure vessel is a laminated pressure vessel in which a plurality of vessel-like layers are laminated, and the stress generated in the tube wall is reduced by specifying the apparent elastic modulus of the vessel-like layer. By uniformly distributing it in the radial direction, it is possible to increase the utilization efficiency of the members of the container wall and significantly increase the pressure resistance performance of the container. Also,
Increases in weight and price of the laminated pressure vessel can be reduced, and the weight/pressure and price/pressure ratios can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1.2図は本発明に係る積層圧力容器の一実施例を示
す図であり、第1図はその一部縦断面図、第2図は第1
図の■−■矢視断面図である。第3.4図は本発明の効
果を示すグラフであり、第3図はその円周方向の応力を
示すグラフ、第4図はその半径変位を示すグラフである
。 11・・・・・・積層圧力容器、 12・・・・・・合金容器(容器状層)、13・・・・
・・補強層(容器状層)、16・・・・・・コーティン
グ部材、 17・・・・・・空洞、 18・・・・・・カーボン繊維(線状部材)、E l 
! l E I 3・・・・・・見掛けの弾性率。
Fig. 1.2 is a view showing an embodiment of the laminated pressure vessel according to the present invention, Fig. 1 is a partial vertical sectional view thereof, and Fig.
It is a sectional view taken along the line ■-■ in the figure. 3.4 is a graph showing the effect of the present invention, FIG. 3 is a graph showing the stress in the circumferential direction, and FIG. 4 is a graph showing the radial displacement. 11... Laminated pressure vessel, 12... Alloy container (container-like layer), 13...
... Reinforcement layer (container-like layer), 16 ... Coating member, 17 ... Cavity, 18 ... Carbon fiber (linear member), El
! l E I 3... Apparent modulus of elasticity.

Claims (1)

【特許請求の範囲】[Claims] 複数の容器状層が積層され容器外圧より正圧となる流体
あるいは容器外圧より負圧となる流体が収納される空洞
を形成する積層圧力容器において、少なくとも1つの容
器状層が螺旋状に形成されている線状部材からなり前記
流体の流体圧が積層圧力容器に作用したとき、高圧側と
なる容器状層の見掛けの弾性率を低圧側となる容器状層
の見掛けの弾性率より小さくしたことを特徴とする積層
圧力容器。
In a laminated pressure vessel in which a plurality of container-like layers are stacked to form a cavity in which a fluid whose pressure is more positive than the external pressure of the container or a fluid whose pressure is negative than the external pressure of the container is stored, at least one container-like layer is formed in a spiral shape. When the fluid pressure of the fluid acts on the laminated pressure vessel, the apparent elastic modulus of the container-like layer on the high-pressure side is made smaller than the apparent elastic modulus of the container-like layer on the low-pressure side. A laminated pressure vessel featuring:
JP62249311A 1987-10-02 1987-10-02 Laminated pressure vessel Pending JPH0193700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62249311A JPH0193700A (en) 1987-10-02 1987-10-02 Laminated pressure vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62249311A JPH0193700A (en) 1987-10-02 1987-10-02 Laminated pressure vessel

Publications (1)

Publication Number Publication Date
JPH0193700A true JPH0193700A (en) 1989-04-12

Family

ID=17191102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62249311A Pending JPH0193700A (en) 1987-10-02 1987-10-02 Laminated pressure vessel

Country Status (1)

Country Link
JP (1) JPH0193700A (en)

Similar Documents

Publication Publication Date Title
AU692981B2 (en) Flexible tubular pipe comprising an interlocked armouring web
JP2722237B2 (en) Tubular body containing composite layers with different elastic moduli
EP0074747B1 (en) Hose construction
US9939108B2 (en) Wire wrapped pressure vessels
US4699288A (en) High pressure vessel construction
US5024252A (en) Hoses stable in length under the effect of an internal pressure
EP0024512B1 (en) Fatigue resistant high pressure hose
US3481368A (en) Flexible reinforced hose
JP5746822B2 (en) Axial reinforcement hose
AU2007246823B2 (en) Improvements relating to hose
US5573039A (en) Kink-resistant fuel hose liner
CN110878904B (en) Pressure vessel
EP3390888B1 (en) Pressure vessel dome gas vents
JP2010539407A (en) hose
JP2018025236A (en) hose
JPS5836236B2 (en) hose
US20210270396A1 (en) Pressure Hose
EP3330618A1 (en) Hybrid tanks
JPH0193700A (en) Laminated pressure vessel
GB2366345A (en) Hose incorporating an improved sealing layer
JPH07156285A (en) Flexible fluid delivery tube
JP2002257267A (en) Structure of marine hose
JPH10274392A (en) Frp pressure vessel excellent in external pressure tightness
CN211010227U (en) Novel ring rib steel band reinforcing flexible composite pipe
JPH0193690A (en) Laminated high-pressure hose