JPH0191993A - Crack repairing method for steel structure under stress fluctuation - Google Patents

Crack repairing method for steel structure under stress fluctuation

Info

Publication number
JPH0191993A
JPH0191993A JP24850287A JP24850287A JPH0191993A JP H0191993 A JPH0191993 A JP H0191993A JP 24850287 A JP24850287 A JP 24850287A JP 24850287 A JP24850287 A JP 24850287A JP H0191993 A JPH0191993 A JP H0191993A
Authority
JP
Japan
Prior art keywords
welding
crack
inhibiting
under stress
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24850287A
Other languages
Japanese (ja)
Other versions
JPH0677868B2 (en
Inventor
Koki Sato
佐藤 功輝
Tadamasa Yamaguchi
忠政 山口
Noboru Nishiyama
昇 西山
Yutaka Kawai
豊 川井
Yasumasa Nakanishi
保正 中西
Takeyuki Kouno
河野 武亮
Yoshitaka Nakamura
義隆 中村
Keiichi Sakai
酒井 啓一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
IHI Corp
Original Assignee
IHI Corp
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, Kawasaki Steel Corp filed Critical IHI Corp
Priority to JP24850287A priority Critical patent/JPH0677868B2/en
Publication of JPH0191993A publication Critical patent/JPH0191993A/en
Publication of JPH0677868B2 publication Critical patent/JPH0677868B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PURPOSE:To effectively repair without generating a welding crack even under stress fluctuation by forming a wide groove part in advance prior to the joining of the steel stock contg. an inhibiting element a lot. CONSTITUTION:In executing under stress fluctuation the crack repairing welding of the installed steel structure 1 contg. a lot the element inhibiting a high temp. ductility of C, P, S, etc., for instance, shaping is executed on a crack part 2 to form the groove part having a comparatively wide root gap (a). Then, a joint part is formed by joining the steel stock having less inhibiting element contg. amt. to one part or the whole face of at least one face of the opposing faces of the groove part and thereafter welding is executed on this joint part. Namely, crack generation can be prevented even if welding R is executed under stress fluctuation by building up the steel stock L having less containing amt. of the inhibiting element in advance on the end face of the groove part.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、橋梁や海洋構造物など変動応力が繰り返し
作用している既設鋼構造物に発生したき裂個所の溶接施
工に際しても、耐われ性に優れた溶接部を形成できるき
裂補修方法に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) This invention can be applied to welding cracks that have occurred in existing steel structures, such as bridges and offshore structures, where fluctuating stress repeatedly acts. The present invention relates to a crack repair method that can form a welded part with excellent properties.

(従来の技術) 橋梁は車両等の通行で、また、海洋構造物は波浪等の影
響で変動応力を繰り返し受けているが、かような状態に
ある鋼構造物の補修、改造工事における溶接の際には、
溶接開先開口部は当然変位を受ける。第1図aに示すよ
うな溶接開先開口部(ルートギャップa=2mm)をそ
なえる橋梁を車両が通過したときの、溶接開先開口部の
ルートギャップの変位量を第1図すに示す。第1図aに
おいて、lは母材、2はルートである。
(Prior art) Bridges are subject to repeated fluctuating stress due to the passage of vehicles, etc., and offshore structures are repeatedly subjected to fluctuating stress due to the influence of waves. In some cases,
The weld groove opening is naturally subject to displacement. Figure 1 shows the amount of displacement of the root gap of the weld groove opening when a vehicle passes through a bridge having the weld groove opening (root gap a = 2 mm) as shown in Figure 1a. In FIG. 1a, l is the base material and 2 is the root.

このような変動応力下での溶接に際しては、溶接金属は
延性が十分でない高温度域で引張、圧縮が繰り返される
ために、溶接直後(凝固、冷却中)に割れが発生するこ
とが多く、ひいては供用中にこの割れを起点として割れ
がさらに進展し、橋梁等の構造物とししての寿命の短縮
を余儀なくされる場合もある。
When welding under such fluctuating stress, the weld metal is repeatedly stretched and compressed at high temperatures where it does not have sufficient ductility, so cracks often occur immediately after welding (during solidification and cooling), and even worse. During service, cracks may develop further starting from these cracks, and the lifespan of structures such as bridges may be forced to be shortened.

かかる問題の解決のため、発明者らはこれまでにも溶接
ワイヤ並びにフラックス成分につき種々研究が重ねてき
たが、最近建造された構造物はともかく、既設橋梁等の
中には10年以上も前に建造されたものも多く、表1に
示すようにかような鋼材中には溶接金属の高温延性を著
しく阻害するC1P、S、CuおよびNi等の含有量が
現在の鋼材成分に比べて著しく高い場合(とくにBおよ
びC綱)がほとんどである。
In order to solve this problem, the inventors have conducted various studies on welding wire and flux components, but apart from recently constructed structures, some existing bridges etc. As shown in Table 1, the content of C1P, S, Cu, and Ni, which significantly inhibits the high-temperature ductility of weld metal, is significantly higher than that of current steel materials. Most cases are high (especially in classes B and C).

すなわち補修工事を要する既橋梁等は、架設後長い年月
を経過していることが多く、したがってその鋼材の成分
組成は当時の製鋼技術等から現在の鋼材に較べて、溶接
待溶接金属の固液相温度を拡げて高温延性低下をきたす
c、p、s等の不純物元素が多量に含まれることが多く
、また既橋梁鋼材としては耐候性の改善を目的として、
Cu。
In other words, existing bridges, etc. that require repair work are often constructed many years ago, and therefore, the composition of the steel materials used at the time is based on the steel manufacturing technology of the time, etc., and the hardness of the weld metal before welding is lower than that of current steel materials. It often contains large amounts of impurity elements such as c, p, and s, which expand the liquidus temperature and reduce high-temperature ductility.
Cu.

Nt 、Cr等の元素が多量に含有されていることが多
かったのである。
It often contained large amounts of elements such as Nt and Cr.

(発明が解決しようとする問題点) この為、これらの部材を、変動応力下での溶接に際して
も耐われ性にすぐれた特性を示す溶接棒を用いて溶接し
たとしても、鋼材から20〜40−t%(以下単に%で
示す)程度の溶接金属への化学成分の希釈(溶は込み)
があるため、強い変動応力下における溶接に際しては高
温延性低下に起因した割れの発生を免れ得ないところに
問題を残していた。
(Problem to be Solved by the Invention) For this reason, even if these members are welded using a welding rod that exhibits excellent resistance properties even when welding under fluctuating stress, the - Dilution of chemical components into the weld metal to the extent of t% (hereinafter simply expressed as %) (including melt penetration)
Therefore, when welding under strong fluctuating stress, the problem remains that cracks cannot be avoided due to a decrease in high-temperature ductility.

この発明は、上述したような現状に鑑み開発されたもの
で、溶接金属の高温延性を阻害するような化学成分元素
を多く含む既設の鋼構造物の変動応力下における溶接に
際しても、割れ発生を有利に回避できる溶接施工方法を
提案することを目的とする。
This invention was developed in view of the current situation as described above, and is intended to prevent the occurrence of cracks even when welding existing steel structures under fluctuating stress that contain many chemical elements that inhibit the high-temperature ductility of weld metal. The purpose is to propose a welding method that can be advantageously avoided.

(問題点を解決するための手段) さて発明者らは、変動応力下での溶接割れの発生原因に
ついて鋭意研究を重ねた結果、この溶接割れは溶接凝固
・冷却過程における高温延性と穫めて密接な関係がある
こと、しかもかかる割れは、変位の大きい初層のみに集
中し、このときの溶接金属成分組成と変位量が最も強く
影響することも併せて究明した。
(Means for solving the problem) As a result of extensive research into the cause of weld cracking under fluctuating stress, the inventors concluded that this weld cracking is caused by high-temperature ductility during the weld solidification and cooling process. It was also discovered that there is a close relationship, and that such cracking is concentrated only in the initial layer where the displacement is large, and that the weld metal composition and the amount of displacement at this time have the strongest influence.

この発明は、上記の知見に立脚するものである。This invention is based on the above knowledge.

すなわちこの発明、高温延性を阻害する元素を多量に含
有する既設鋼構造物のき裂補修溶接を変動応力下で行う
に当り、該き裂部に整形加工を施して、ルートギャップ
が比較的広い開先部を形成し、ついで該開先部の対向す
る面のうち少なくとも片面につき、その一部または全面
に上記阻害元素含有量の少ない鋼材を接合して継手部を
形成し、しかるのちこの継手部に溶接を施すことがら成
る、変動応力下にある鋼構造物のき裂補修方法である。
In other words, in this invention, when performing crack repair welding of an existing steel structure containing a large amount of elements that inhibit high-temperature ductility under fluctuating stress, the crack is shaped to create a relatively wide root gap. A groove is formed, and then a joint is formed by joining a steel material with a low content of the inhibiting element to at least one of the opposing surfaces of the groove, and then this joint A method of repairing cracks in steel structures under fluctuating stresses, which involves welding the parts.

この発明において、開先部に対して上記阻害元素含有量
の少ない鋼材を接合するには、肉盛り溶接や板材の固着
が有利に適合する。
In this invention, build-up welding and fixing of plate materials are advantageously suitable for joining the steel material with a low content of inhibiting elements to the groove portion.

またこの発明では、かかる綱材の接合に先立ち、予め広
い開先部を形成しているので、該鋼材の接合の際には変
動応力が作用することはなく、従って割れ発生のおそれ
はない。
Further, in this invention, since a wide groove is formed in advance before joining the steel materials, fluctuating stress does not act upon joining the steel materials, and therefore there is no risk of cracking.

(作 用) 前述したとおり、たとえ耐溶接割れ性にすぐれた溶接棒
を用いて施工したとしても、施工される鋼材中に溶接割
れ(凝固割れ、高温割れ)を起し易い成分が多量に含ま
れている場合には、これらの成分が溶接金属中へ溶込ん
でくるので、溶接割れを効果的に防止することはできな
い。
(Function) As mentioned above, even if a welding rod with excellent welding crack resistance is used, the steel material being constructed contains a large amount of components that are likely to cause welding cracking (solidification cracking, hot cracking). If this is the case, these components will dissolve into the weld metal, making it impossible to effectively prevent weld cracking.

ここに溶接金属中への母材成分の溶込みは、第2図に示
した母材の溶接部面積B、溶接金属の面される。
Here, penetration of the base metal components into the weld metal is determined by the weld area B of the base metal shown in FIG. 2, which is the surface of the weld metal.

たとえば、高温延性や凝固割れを悪化させる元素[X」
をml含有する@板に対して同じくXをn量含有する溶
着金属を生成する溶接棒で肉盛溶接した場合、先に示し
た溶込率に於てA =0.70゜B =0.30とした
とき、このときの溶接によって生成される溶接金属中に
おけるrXuの含有量はP +  =0.70 n +
 0.30m    (−層目)P z =0.70 
n + 0.30 P +   (二層目)P、4=0
.7On+0.30PH−1(N層目)となり、man
であれば成分Xの含有量はnに近ずけることができる。
For example, element [X] that worsens high-temperature ductility and solidification cracking.
When overlaying a @ plate containing ml of X with a welding rod that produces a deposited metal containing n amount of 30, the content of rXu in the weld metal produced by welding at this time is P + =0.70 n +
0.30m (-th layer) P z =0.70
n + 0.30 P + (second layer) P, 4=0
.. 7On+0.30PH-1 (Nth layer), man
If so, the content of component X can be brought close to n.

すなわち、高温割れや凝固割れを誘発し易い各種阻害元
素の各溶接肉盛り層中における含有量P、〜P8とくに
P、が、その後に行う変動応力下での溶接において悪影
響を及ぼさない範囲内となるように肉盛用溶接棒の成分
組成及び肉盛層数を調整してやれば、全ての鋼構造物に
つき変動応力下であっても割れの発生なしに溶接施工が
実施できるわけである。
That is, the content of various inhibiting elements that are likely to induce hot cracking and solidification cracking in each weld build-up layer P, ~ P8, especially P, is within a range that does not have an adverse effect on subsequent welding under fluctuating stress. If the chemical composition and number of overlay welding electrodes are adjusted in such a way, welding can be carried out on all steel structures without cracking even under fluctuating stress.

この際の成分毎の夫々の限界値(P8)は、次の変動応
力下での溶接を実施する変動応力状況や溶接材料、溶接
条件等によっても変化するので厳密に数値限定をするこ
とはできないが、表2に示す溶着金属成分組成(試験法
JIS Z 3213−1977)になる溶接棒を用い
た場合(4,mm径、下向溶接、22 KJ 7cm)
にあっては、肉盛溶接後の成分組成がC≦0.20%、
 Si≦0.40%、 Mn =0.30〜2.00%
、P≦0.025%、S≦0.020%、Cu≦0.4
0%。
At this time, the respective limit values for each component (P8) cannot be strictly numerically limited because they change depending on the fluctuating stress situation, welding material, welding conditions, etc. in which welding is performed under the following fluctuating stress. However, when a welding rod with the weld metal composition shown in Table 2 (test method JIS Z 3213-1977) is used (4 mm diameter, downward welding, 22 KJ 7 cm)
In the case, the component composition after overlay welding is C≦0.20%,
Si≦0.40%, Mn =0.30-2.00%
, P≦0.025%, S≦0.020%, Cu≦0.4
0%.

Ni ≦0.20%、  B ≦0.0020%、  
A j2 ≦0.80%およびTi ≦0.050%程
度の範囲であれば実橋補修に相当した変動応力下での溶
接でも割れの発生は認められなかった。
Ni ≦0.20%, B ≦0.0020%,
As long as A j2 ≦0.80% and Ti ≦0.050%, no cracking was observed even during welding under varying stress equivalent to actual bridge repair.

表2    (%) (実施例) 被溶接材としては前掲表1に示す3種の鋼材A〜Cを種
々に組合わせ、また溶接棒としては上掲表2に示したも
の(41径)を用いて以下の要領で溶接を行った。
Table 2 (%) (Example) The materials to be welded were various combinations of the three steel materials A to C shown in Table 1 above, and the welding rods shown in Table 2 above (41 diameter) were used. Welding was performed in the following manner.

第3図に示したような試験片(w=300 mm、  
I!。
A test piece as shown in Fig. 3 (w = 300 mm,
I! .

=1000mm、  t =12mm、  d = 2
mm、  g = 2mm、 tx=60°)を作製し
たのち疲労試験機にセットし、ついで第1図すに示した
ような変動サイクル(試験のときの変位量は±0.2 
mmとした)を与えながら、横向き姿勢、170 A、
 24〜25V、 10cm/minの条件下で溶接施
工を施した。なお溶接割れは、初層で起り易いことから
、初層溶接のみを行い、溶接終了後、直ちに試験片を取
り外したのち、溶接部横断面30ケ所について切出し、
研磨後、顕微鏡で割れの有無を観察することにより、耐
割れ性を評価した。
=1000mm, t =12mm, d = 2
mm, g = 2 mm, tx = 60°), set it in a fatigue testing machine, and then subjected it to a fluctuation cycle as shown in Figure 1 (the amount of displacement during the test was ±0.2
horizontal position, 170 A,
Welding was performed under conditions of 24 to 25 V and 10 cm/min. Since weld cracking is likely to occur in the first layer, only the first layer welding was performed, and after welding, the test piece was immediately removed, and 30 cross sections of the weld were cut out.
After polishing, crack resistance was evaluated by observing the presence or absence of cracks using a microscope.

第4図は、鋼材へ同志をそのまま突き合わせ溶接した場
合であるが、鋼材Aは耐割れ性を阻害する成分含有量が
少ないので割れの発生はみられなかった。
FIG. 4 shows a case where the two pieces were butt-welded to a steel material as they were, but no cracking was observed in steel material A because it contained a small amount of components that inhibited cracking resistance.

この点、第5図に示すように、阻害元素を多量に含有す
る鋼材B同志をそのまま溶接した場合には割れが発生し
た。
In this regard, as shown in FIG. 5, when steel materials B containing a large amount of inhibiting elements were welded together as they were, cracks occurred.

第6図は、上述したような聞書元素を多量に含有する鋼
材B同志を溶接するに先立って、予め開先開口部両面に
阻害元素含有量の少ない鋼材を肉盛り溶接し、しかるの
ち得られた継手部を突き合わせ溶接した場合である。
Figure 6 shows that prior to welding steel materials B containing a large amount of interfering elements as described above, a steel material with a low content of inhibiting elements is welded overlay on both sides of the groove opening in advance, and then the obtained steel materials are welded together. This is a case where the joints are butt welded.

なお肉盛り溶接に当っては、表2に示した溶着金属組成
になる4mm径の低水素系全姿勢溶接棒を用い、140
〜160 A、 24V、 10〜20 cm 7m1
n(予熱、バス間温度:150°C以下)の条件で、開
先部の端面に第7図に示すように横向き姿勢の肉盛り溶
接(2層盛り、7〜9バス)を試験片の幅方向全長にわ
たって実施し、その後ポータプルグラインダーで表面の
凸凹を研削して継手部とした。
For build-up welding, a 4 mm diameter low hydrogen all-position welding rod with the weld metal composition shown in Table 2 was used.
~160A, 24V, 10~20cm 7m1
Under the conditions of n (preheating, inter-bath temperature: 150°C or less), overlay welding (2 layers, 7 to 9 baths) in a horizontal position was applied to the end face of the groove as shown in Figure 7. This was carried out over the entire length in the width direction, and then the irregularities on the surface were ground with a portapul grinder to form a joint part.

第6図より明らかなように、阻害元素含有量の多い鋼材
Bについても、その間先部端面に予め、上記阻害元素の
含有量が少ない鋼材を肉盛りしておけば、変動応力下で
溶接を施しても割れの発生はなかった。
As is clear from Fig. 6, even if steel material B has a high content of inhibiting elements, if steel material with a low content of inhibiting elements is built up in advance on the end face of the tip, welding will be possible under fluctuating stress. No cracking occurred even after applying the coating.

第8図は、阻害元素含有量が中程度の鋼材Cにつき、第
6図の場合と同様に、予め開先部の両端面に阻害元素含
有量が少ない鋼材を肉盛り溶接したのち突き合わせ溶接
した場合であるが、割れの発生は全くなかった。
Figure 8 shows a steel material C with a medium content of inhibiting elements, which was prepared by butt welding after overlaying a steel material with a low content of inhibiting elements on both end faces of the groove in advance, as in the case of Figure 6. However, no cracking occurred at all.

次に第9図は、第6図の例において変動応力下における
第1層の溶接に相当する部分のみに阻害元素含有量が少
ない溶接金属を肉盛り(2層盛り、4バス)溶接したの
ち、変動応力下での溶接を行った場合であるが、この場
合にも割れの発生は全くなかった。
Next, Fig. 9 shows the example in Fig. 6, after welding (2 layers, 4 baths) weld metal with a low content of inhibiting elements only on the part corresponding to the welding of the first layer under fluctuating stress. , when welding was performed under varying stress, but no cracking occurred in this case either.

第10図は、第6図において肉盛り溶接の替りに、開先
端面に予め阻害元素低含有の鋼材を接合した場合である
が、この場合も肉盛り溶接の場合と同様割れの発生は全
くなかった。
Figure 10 shows a case in which a steel material with a low content of inhibiting elements is previously welded to the grooved end surface instead of the build-up welding in Figure 6, but in this case as well, no cracks occur at all as in the case of build-up welding. There wasn't.

第11図および第12図は、開先部の片面の端面に阻害
元素低含有の銅材を接合した場合の例であるが、いずれ
の場合も割れの発生は見られなかった。
FIG. 11 and FIG. 12 show examples in which a copper material containing a low content of inhibiting elements was joined to one end face of the groove, and no cracking was observed in either case.

(発明の効果) かくしてこの発明によれば、たとえ高温延性を阻害する
元素を多量に含む鋼材で建造された既設鋼構造物にき裂
が生じたとしても、かかるき裂を、その供用中すなわち
変動応力下においても溶接割れを発生することなしに効
果的に補修することができ、従って変動応力下における
補修工事や改造工事を構造物の成分の影響を受けること
なしに実施することができ、鋼構造物の現場施工に偉効
を奏する。
(Effects of the Invention) Thus, according to the present invention, even if cracks occur in an existing steel structure constructed of steel containing a large amount of elements that inhibit high-temperature ductility, the cracks can be removed during service, i.e. Even under fluctuating stress, it can be effectively repaired without causing weld cracking, and therefore repair work or remodeling work can be carried out under fluctuating stress without being affected by the components of the structure. Great for on-site construction of steel structures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは、溶接開先部の断面図、同図すは第1図aに
示した溶接開先部における変位量と時間との関係を示し
たグラフ、 第2図は、希釈率の説明図、 第3図は、変動応力下での溶接割れ試験に用いる試験片
の斜視図、 第4〜12図はいずれも、溶接要領の説明図である。 第1図a 第1図す 第2図 −(D− 第4図 第5図 第6図 第7図 第8図
Figure 1a is a cross-sectional view of the welding groove, and Figure 2 is a graph showing the relationship between displacement and time in the welding groove shown in Figure 1a. 3 is a perspective view of a test piece used in a weld cracking test under varying stress, and FIGS. 4 to 12 are explanatory views of welding procedures. Figure 1 a Figure 1 Figure 2 - (D- Figure 4 Figure 5 Figure 6 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】 1、高温延性を阻害する元素を多量に含有する既設鋼構
造物のき裂補修溶接を変動応力下で行うに当り、 該き裂部に整形加工を施して、ルートギャ ップが比較的広い開先部を形成し、ついで該開先部の対
向する面のうち少なくとも片面につき、その一部または
全面に上記阻害元素含有量の少ない鋼材を接合して継手
部を形成し、しかるのちこの継手部に溶接を施すことを
特徴とする、変動応力下にある鋼構造物のき裂補修方法
。 2、開先部に対する高温延性阻害元素含有量の少ない鋼
材の接合が、肉盛り溶接によるものである特許請求の範
囲第1項記載の方法。 3、開先部に対する高温延性阻害元素含有量の少ない鋼
材の接合が、板材の固着によるものである特許請求の範
囲第1項記載の方法。
[Claims] 1. When performing crack repair welding under fluctuating stress in an existing steel structure containing a large amount of elements that inhibit high-temperature ductility, the crack portion is shaped to reduce the root gap. forming a relatively wide groove, and then joining a steel material with a low content of the inhibiting element to at least one of the opposing surfaces of the groove to a part or the entire surface to form a joint, A method for repairing cracks in a steel structure under fluctuating stress, the method comprising then welding the joint. 2. The method according to claim 1, wherein the joining of the steel material with a low content of high-temperature ductility-inhibiting elements to the groove portion is by build-up welding. 3. The method according to claim 1, wherein the joining of the steel material with a low content of high-temperature ductility-inhibiting elements to the groove portion is by fixing the plate material.
JP24850287A 1987-10-01 1987-10-01 Crack repair method for steel structures under fluctuating stress Expired - Lifetime JPH0677868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24850287A JPH0677868B2 (en) 1987-10-01 1987-10-01 Crack repair method for steel structures under fluctuating stress

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24850287A JPH0677868B2 (en) 1987-10-01 1987-10-01 Crack repair method for steel structures under fluctuating stress

Publications (2)

Publication Number Publication Date
JPH0191993A true JPH0191993A (en) 1989-04-11
JPH0677868B2 JPH0677868B2 (en) 1994-10-05

Family

ID=17179128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24850287A Expired - Lifetime JPH0677868B2 (en) 1987-10-01 1987-10-01 Crack repair method for steel structures under fluctuating stress

Country Status (1)

Country Link
JP (1) JPH0677868B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009202201A (en) * 2008-02-28 2009-09-10 Katayama Stratec Kk Method for repairing and reinforcing steel structure under service by welding
WO2013150793A1 (en) * 2012-04-05 2013-10-10 株式会社Ihiインフラシステム Welding method
WO2020203411A1 (en) * 2019-03-29 2020-10-08 株式会社Ihi Crack repairing method for existing steel structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009202201A (en) * 2008-02-28 2009-09-10 Katayama Stratec Kk Method for repairing and reinforcing steel structure under service by welding
WO2013150793A1 (en) * 2012-04-05 2013-10-10 株式会社Ihiインフラシステム Welding method
JP2013215757A (en) * 2012-04-05 2013-10-24 Ihi Infrastructure Systems Co Ltd Welding method
US9623508B2 (en) 2012-04-05 2017-04-18 Ihi Infrastructure Systems Co., Ltd. Welding method
WO2020203411A1 (en) * 2019-03-29 2020-10-08 株式会社Ihi Crack repairing method for existing steel structure
JPWO2020203411A1 (en) * 2019-03-29 2021-11-25 株式会社Ihi How to repair cracks in existing steel structures

Also Published As

Publication number Publication date
JPH0677868B2 (en) 1994-10-05

Similar Documents

Publication Publication Date Title
US10994361B2 (en) Stepped design weld joint preparation
CN100450688C (en) Thin-wall stainless steel double-layer and carbon steel base layer composite tube girth weld welding method
US20070241169A1 (en) Method for welding nickel-based superalloys
Ogedengbe et al. Investigation of mechanical properties and parametric optimization of the dissimilar GTAW of AISI 304 stainless steel and low carbon steel
US4817859A (en) Method of joining nodular cast iron to steel by means of fusion welding
US6730876B2 (en) Highly ductile reduced imperfection weld for ductile iron and method for producing same
KR102402239B1 (en) Welded structural member having excellent crack resistance and manufacturing method of the same
JPH08243754A (en) Inner face welding method of clad steel tube
JPH0191993A (en) Crack repairing method for steel structure under stress fluctuation
CN110666305A (en) Narrow gap welding process of G115 steel
Chennaiah et al. Influence of heat input and PWHT on the microstructure and mechanical properties in dissimilar (IS2062-EN8) welded joints
CN114833531A (en) Welding method of low-temperature high-manganese steel T-shaped joint
JPH07290244A (en) Method for welding clad steel pipe
Adonyi Weldability of high performance steels
EP2364808B1 (en) Method for preferential formation of weld join
JP7160090B2 (en) Composite welding method for metallic materials and butt welding member for metallic materials
Kinsey The welding of structural steels without preheat
DE102017107318A1 (en) PROCESS FOR RESISTANCE SPOT WELDING OF ALUMINUM TO STEEL
JP4465055B2 (en) Welding method for structural steel
McGaughy et al. Improving Structural Weld Fatigue Performance via Friction Surfacing Techniques
JP2001012202A (en) Different kind materials welded turbine rotor and manufacture thereof
Singh et al. Using Various Process Parameters in Gas Metal arc Welding to Optimize of Weld Quality
Pereira et al. Pulsed Laser Welding between DP1000 Steel and Aluminum Alloy 1050
JPH0788653A (en) Butt welding method for copper alloy clad steels
JPS59163094A (en) Method for preventing weld cracking in heat and corrosion resistant alloy steel

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term