JPH017851Y2 - - Google Patents
Info
- Publication number
- JPH017851Y2 JPH017851Y2 JP1981106011U JP10601181U JPH017851Y2 JP H017851 Y2 JPH017851 Y2 JP H017851Y2 JP 1981106011 U JP1981106011 U JP 1981106011U JP 10601181 U JP10601181 U JP 10601181U JP H017851 Y2 JPH017851 Y2 JP H017851Y2
- Authority
- JP
- Japan
- Prior art keywords
- seal
- inner ring
- gas
- vacuum pressure
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Jigs For Machine Tools (AREA)
Description
【考案の詳細な説明】
本考案は非接触シールに関するもので、高速回
転体に油分を含まない高圧気体あるいは真空圧を
供給する場合に有効な高圧気体及び真空圧の漏れ
が少なくしかも小型に構成できる非接触シールを
提供することを目的とする。[Detailed description of the invention] This invention relates to a non-contact seal, which is effective when supplying oil-free high-pressure gas or vacuum pressure to a high-speed rotating body, and has a small structure with less leakage of high-pressure gas and vacuum pressure. The purpose is to provide a non-contact seal that can be used.
従来例として高速回転体に真空圧を供給する場
合について説明する。通常このような用途には非
接触シールの一種であるラビリンスシールが用い
られる。第1図及び第2図に従来例を示し、1は
フランジ2を有する軸であり、図示しないがこの
軸1は軸受により機体に支持されてモータ等によ
り駆動され回転する。3は同心円状に形成された
溝4…と、回転中心から放射状に形成された溝5
…と、これら溝4,5を連通する孔6…を有し、
図示しないボルト等により前記フランジ2に固定
された真空チヤツクである。7はボルト8により
前記真空チヤツク3に固定されたハブである。ボ
ルト8はボルトを締めるための六角孔9と貫通孔
10を有している。11はラジアル玉軸受で、外
輪12はハブ7に圧入固定され、内輪13にはシ
ールリテナー14が圧入固定されている。15は
シール部材で、前記ラジアル玉軸受11の外輪1
2を押圧してハブ7に圧入された後止めねじ27
によりシールリテナー14に固定される。このシ
ール部材15はその凸部16とハブ7の凹部17
によりラビリンスシール部23を形成する。18
は空気流通孔19を有するレバーで、図外の機体
に固定された軸20に第1図矢印A及びB方向に
回動自在に支持されており、その先端にはシール
リテナー14との密着を良くするためのゴムライ
ニング28が施こされている。21はレバー18
と図外の真空源とを接続するチユーブである。2
2は中央部がハブ7の外周により位置決めされて
真空チヤツク3上に載置された被加工物である。
勿論被加工物22を真空チヤツク3に着脱すると
きは真空圧を切り、レバー18を第1図矢印A方
向に回動させてから行なう。 As a conventional example, a case will be described in which vacuum pressure is supplied to a high-speed rotating body. Usually, a labyrinth seal, which is a type of non-contact seal, is used for such applications. A conventional example is shown in FIGS. 1 and 2. Reference numeral 1 denotes a shaft having a flange 2. Although not shown, this shaft 1 is supported by a bearing on the body and rotated by a motor or the like. 3 is a groove 4 formed concentrically, and a groove 5 formed radially from the center of rotation.
... and a hole 6 that communicates these grooves 4 and 5,
This is a vacuum chuck fixed to the flange 2 with bolts (not shown) or the like. 7 is a hub fixed to the vacuum chuck 3 with bolts 8. The bolt 8 has a hexagonal hole 9 and a through hole 10 for tightening the bolt. 11 is a radial ball bearing, an outer ring 12 is press-fitted into the hub 7, and a seal retainer 14 is press-fitted into the inner ring 13. Reference numeral 15 denotes a sealing member, which is attached to the outer ring 1 of the radial ball bearing 11.
After pressing 2 and press-fitting into the hub 7, set screw 27
It is fixed to the seal retainer 14 by. This sealing member 15 has a convex portion 16 and a concave portion 17 of the hub 7.
The labyrinth seal portion 23 is formed by this. 18
is a lever having an air circulation hole 19, and is rotatably supported by a shaft 20 fixed to the machine body (not shown) in the directions of arrows A and B in FIG. A rubber lining 28 is provided to improve the quality. 21 is lever 18
This is a tube that connects the vacuum source and a vacuum source (not shown). 2
Reference numeral 2 denotes a workpiece whose center portion is positioned by the outer periphery of the hub 7 and placed on the vacuum chuck 3.
Of course, when attaching and detaching the workpiece 22 to and from the vacuum chuck 3, the vacuum pressure is turned off and the lever 18 is rotated in the direction of arrow A in FIG.
第1図において真空圧を作用させると、空気は
矢印Cで示す経路を通つて排気され、被加工物2
2は真空チヤツク3に吸着固定される。又外部の
空気は第2図矢印Dで示す経路即ちラビリンスシ
ール部23、ラジアル玉軸受11のシールド24
と内輪13との隙間25を通つて内部26に流入
する。その流入量はラビリンスシール部23を構
成する凸部16及び凹部17の形状や隙間等によ
り決定され、流入量が多い場合は内部26の真空
圧が弱くなり十分に強い力で被加工物22を吸着
できなくなる。その場合は排気能力の高い真空源
を必要とする。真空チヤツク3に被加工物22を
吸着した後、軸1をモータ等により回転させると
シールリテナー14はラジアル玉軸受11に支持
され、前記レバー18は内部26の真空圧に引か
れてゴムライニング28はシールリテナー14に
圧接され、ゴムライニング28は摩擦係数が大き
いのでゴムライニング28とシールリテナー14
はすべりを生じることはない。又場合によつては
レバー18をばね等により付勢してゴムライニン
グ28をシールリテナー14に押圧するようにし
ても良い。以上の従来例においてラビリンスシー
ル部23はラジアル玉軸受11と個別に構成され
ているのでラビリンスシール部23の取付精度を
高くすることができないため、シール隙間は通常
小さくても0.1〜0.05mm程度であり、真空圧の漏
れが大きく低能率であつた。又能率を高めるため
には絞り部と膨張部をいくつか重ねなければなら
ないため小型に構成することはできなかつた。又
圧力の漏れの大きなシールで内部の真空圧を強く
するには排気能力の高い真空ポンプ等の真空源を
必要とし、コストの点でも不利であつた。又漏れ
の大きな状態で使用すると、ラジアル玉軸受11
のシールド24内にあるグリスの流出損失が大き
くなると共に外部の塵埃も多量に内輪13、外輪
12及びボール29の間に侵入し、ラジアル玉軸
受11の寿命が著しく短かくなり、頻繁に交換す
る必要があつた。 When vacuum pressure is applied in FIG. 1, air is exhausted through the path shown by arrow C, and the workpiece 2
2 is suctioned and fixed to the vacuum chuck 3. In addition, the external air flows through the path shown by arrow D in FIG.
It flows into the interior 26 through the gap 25 between the inner ring 13 and the inner ring 13 . The amount of inflow is determined by the shapes and gaps of the convex portions 16 and recesses 17 that make up the labyrinth seal portion 23, and when the inflow amount is large, the vacuum pressure in the interior 26 becomes weak and the workpiece 22 is pressed with a sufficiently strong force. It becomes impossible to adsorb. In that case, a vacuum source with high exhaust capacity is required. After the workpiece 22 is attracted to the vacuum chuck 3, when the shaft 1 is rotated by a motor or the like, the seal retainer 14 is supported by the radial ball bearing 11, and the lever 18 is pulled by the vacuum pressure inside the inside 26, and the rubber lining 28 is pressed against the seal retainer 14, and since the rubber lining 28 has a large friction coefficient, the rubber lining 28 and the seal retainer 14
will not cause any slippage. In some cases, the lever 18 may be biased by a spring or the like to press the rubber lining 28 against the seal retainer 14. In the conventional example described above, the labyrinth seal part 23 is configured separately from the radial ball bearing 11, so it is not possible to increase the mounting accuracy of the labyrinth seal part 23. Therefore, the seal gap is usually about 0.1 to 0.05 mm at the smallest. However, there was a large leakage of vacuum pressure, resulting in low efficiency. In addition, in order to increase efficiency, it is necessary to overlap several constriction sections and expansion sections, making it impossible to construct a compact structure. In addition, in order to strengthen the internal vacuum pressure in a seal with a large pressure leak, a vacuum source such as a vacuum pump with high exhaust capacity is required, which is disadvantageous in terms of cost. Also, if the radial ball bearing 11 is used in a state with large leakage,
The leakage loss of the grease in the shield 24 increases, and a large amount of external dust also enters between the inner ring 13, outer ring 12, and balls 29, and the life of the radial ball bearing 11 is significantly shortened, requiring frequent replacement. The need arose.
本考案は斯かる従来の問題に対処すべく為され
たもので、以下本考案を実施例を示す図面に基づ
いて説明する。尚前記従来例と同一部分は同一符
号を以つて示し、その詳細説明は省略する。先ず
第1実施例を示す第3図及び第4図に基づいて説
明する。ラジアル及びスラスト荷重の負荷能力を
有するラジアル玉軸受11は従来と同様にハブ7
の孔40に圧入固定されているが、外輪12の下
端はハブ7の段部41に環状のシール部材42を
介して圧接固定している。シール部材42には内
輪13の下端面43と非接触で対向するシール面
44が形成されており、下端面43とシール面4
4により非接触シール部46を構成する。レバー
18の空気流通孔19に真空圧を作用させると、
外部の空気は第3図矢印Eで示す経路、即ちラジ
アル玉軸受11のシールド24と内輪13との隙
間25を通つて内部26に流入する。その流入量
は第4図に示す下端面43とシール面44の隙間
Gにより決定される。真空圧を空気流通孔19に
作用させると、前に述べたように真空圧に引かれ
てゴムライニング28は内輪13を下方に押圧
し、第4図に示すようにボール29と内輪13及
び外輪12のボール軌道面47,48の隙間によ
り内輪13は下方に変位する。従つてその変位量
Fを予じめ管理しておき、内輪13の下端面43
の振れとボール29及び軌道面47,48の摩耗
による変位量Fの増大を考慮してシール隙間Gを
決定し、シール部材42の段差H=F+Gを決定
すれば良い。従つて管理すべき寸法はFとHのみ
であり、シール隙間Gの寸法は許容漏れ量シール
部に作用する圧力差等により決定されるが、5〜
10μm程度まで小さくすることができ、なお且つ
シールの有効径即ち従来例においては第2図のJ
寸法よりも本考案のK寸法を小さくできるので流
路の断面積(π×有効径×シール隙間)が小さく
なり、飛躍的に真空圧の漏れを小さくすることが
できる。シール隙間Gの寸法は、シール部に作用
する気体圧力差,許容漏れ量等により決定される
が、実用的には5〜40μmが適切である。又シー
ルの有効径が小さいので内輪13の振れが拡大さ
れることがなく、従つてシールの接触を避けるた
めにシール隙間を大きくする必要がない。 The present invention has been devised to address such conventional problems, and will be described below based on drawings showing embodiments. Incidentally, the same parts as in the conventional example are indicated by the same reference numerals, and detailed explanation thereof will be omitted. First, the first embodiment will be explained based on FIGS. 3 and 4 showing the first embodiment. The radial ball bearing 11, which has the capacity to carry radial and thrust loads, is attached to the hub 7 as before.
The lower end of the outer ring 12 is press-fitted into the hole 40 of the hub 7, and the lower end of the outer ring 12 is press-fitted and fixed to the stepped portion 41 of the hub 7 via an annular seal member 42. The sealing member 42 is formed with a sealing surface 44 that faces the lower end surface 43 of the inner ring 13 in a non-contact manner.
4 constitutes a non-contact seal portion 46. When vacuum pressure is applied to the air circulation hole 19 of the lever 18,
External air flows into the interior 26 through the path shown by arrow E in FIG. 3, that is, through the gap 25 between the shield 24 of the radial ball bearing 11 and the inner ring 13. The amount of inflow is determined by the gap G between the lower end surface 43 and the sealing surface 44 shown in FIG. When vacuum pressure is applied to the air circulation hole 19, the rubber lining 28 is pulled by the vacuum pressure and presses the inner ring 13 downward, as shown in FIG. The inner ring 13 is displaced downward due to the gap between the 12 ball raceway surfaces 47 and 48. Therefore, the amount of displacement F is managed in advance, and the lower end surface 43 of the inner ring 13 is
The seal gap G may be determined by taking into consideration the increase in displacement amount F due to runout and wear of the balls 29 and raceway surfaces 47 and 48, and the height difference H=F+G of the seal member 42 may be determined. Therefore, the only dimensions that need to be managed are F and H, and the size of the seal gap G is determined by the allowable leakage amount and the pressure difference acting on the seal part.
It can be made as small as about 10 μm, and the effective diameter of the seal, that is, in the conventional example, J in Fig. 2
Since the K dimension of the present invention can be made smaller than the dimensions, the cross-sectional area of the flow path (π×effective diameter×seal gap) becomes smaller, and leakage of vacuum pressure can be dramatically reduced. The size of the seal gap G is determined by the gas pressure difference acting on the seal portion, the allowable leakage amount, etc., but 5 to 40 μm is practically appropriate. Further, since the effective diameter of the seal is small, the runout of the inner ring 13 is not increased, and therefore there is no need to increase the seal gap to avoid contact between the seals.
次に本考案の他の実施例について説明する。先
ず高圧気体をシールする実施例について述べる。
第5図に示す実施例は、ラジアル玉軸受11の上
端部のみに環状のシール部材49を設け、このシ
ール部材49はハブ7に圧入されたラジアル玉軸
受11の内輪13の上端面との間で非接触シール
部50を構成している。51はハブ7にネジ込ま
れたナツトで、シール部材49を外輪12に密着
押圧するためのものである。51aはナツト51
をネジ込むためのレンチとの係合孔である。52
は内輪13に圧入固定され、上端にニツプル53
がネジ込まれた円筒状の固定部材であり、ニツプ
ル53をネジ込むときにスパナを掛けるための平
面カツト部54が形成されている。ニツプル53
を介して内部55に高圧気体を供給すると、前記
真空圧の場合とは逆に内輪13は上方へ変位する
ことだけが異なるだけで他の作用は真空圧の場合
と同一である。 Next, another embodiment of the present invention will be described. First, an embodiment for sealing high pressure gas will be described.
In the embodiment shown in FIG. 5, an annular seal member 49 is provided only at the upper end of the radial ball bearing 11, and this seal member 49 is between the upper end surface of the inner ring 13 of the radial ball bearing 11 press-fitted into the hub 7. This constitutes a non-contact seal portion 50. A nut 51 is screwed into the hub 7 and is used to press the sealing member 49 tightly against the outer ring 12. 51a is Natsu 51
This is an engagement hole with a wrench for screwing in. 52
is press-fitted into the inner ring 13 and has a nipple 53 at the upper end.
It is a cylindrical fixing member into which a nipple 53 is screwed, and is formed with a flat cut portion 54 for applying a wrench when screwing in the nipple 53. Nipple 53
When high-pressure gas is supplied to the interior 55 through the vacuum pressure, the only difference is that the inner ring 13 is displaced upward, contrary to the vacuum pressure case, and the other functions are the same as in the vacuum pressure case.
第5図においてニツプル53に強い曲げモーメ
ントが作用し、ラジアル玉軸受11が1個では不
安定な場合は、ラジアル玉軸受11を2個用いれ
ば良い。第5図の構成においてラジアル玉軸受1
1を2個用いた構成を第6図に示す。 In FIG. 5, if a strong bending moment acts on the nipple 53 and one radial ball bearing 11 is unstable, two radial ball bearings 11 may be used. Radial ball bearing 1 in the configuration shown in FIG.
A configuration using two 1s is shown in FIG.
本考案の非接触シールは以上述べたように実施
し得るもので、ころがり軸受の内輪に、そのスラ
スト方向に作用する気体圧力の低圧側に配設され
て外輪の端面に密着すると共に、内輪の端面と非
接触で対向して気体をシールするシール面を構成
し、前記気体圧力が作用した状態で前記内輪端面
と前記シール部材のシール面との隙間を所定量と
したことによつて、次に述べるような効果が得ら
れる。 The non-contact seal of the present invention can be implemented as described above, and is disposed on the inner ring of a rolling bearing on the low pressure side of the gas pressure acting in the thrust direction, and is in close contact with the end face of the outer ring. By configuring a sealing surface that faces the end surface in a non-contact manner to seal gas, and by setting a predetermined gap between the inner ring end surface and the sealing surface of the sealing member when the gas pressure is applied, the following can be achieved. The effects described in can be obtained.
従来に比較してシールの加工時に高精度に寸
法管理せねばならない個所が著しく少なくな
り、構造が簡単になると共に小型になり、安価
にしかも従来よりも微小なシール隙間を容易に
得ることができる。微小なシール隙間を得るこ
とにより、高圧気体及び真空圧の漏れが少なく
なり、軸受グリスの流出損失、外部からの塵埃
の侵入が少なくなり、軸受寿命を著しく長くす
ることができる。又そればかりでなく高圧気体
あるいは真空圧の発生源の能力を下げることが
可能となり、設備費、運転費用をも削減するこ
とができる。 Compared to the conventional method, the number of parts that require highly accurate dimensional control during seal processing is significantly reduced, the structure is simpler and smaller, and it is possible to obtain a smaller seal gap more easily than in the conventional method at a lower cost. . By creating a small seal gap, leakage of high-pressure gas and vacuum pressure is reduced, loss of outflow of bearing grease and intrusion of dust from the outside is reduced, and the life of the bearing can be significantly extended. In addition, it is possible to reduce the capacity of the source of high-pressure gas or vacuum pressure, and it is also possible to reduce equipment costs and operating costs.
軸受を構成す要素即ち内輪の端面を直接シー
ル面として利用しているため、従来のように軸
受から離れた位置にシール面を構成したものに
比較して軸受の振れによるシール面の振れが拡
大されることがないので、微少なシール隙間を
得るには非常に有利であると共に、シール面の
有効径が小さくなり、流路断面積を小さくでき
るのでこの点でも漏れに対して従来よりも非常
に有利となる。 Since the end face of the inner ring, which constitutes the bearing, is used directly as the sealing surface, the runout of the sealing surface due to bearing runout is increased compared to conventional sealing surfaces that are located away from the bearing. This is very advantageous for obtaining a minute seal gap, and since the effective diameter of the sealing surface is small, the cross-sectional area of the flow path can be made smaller, which also makes it much more resistant to leaks than before. be advantageous to
第1図は従来例を示す縦断面図、第2図は第1
図の要部拡大図、第3図は本考案の第1実施例を
示す縦断面図、第4図は第3図の要部拡大図、第
5図及び第6図は夫々本考案の他の異なつた実施
例を示す要部縦断面図である。
7…ハブ、11…ラジアル玉軸受、12…外
輪、13…内輪、42…シール部材、46…非接
触シール部、49…シール部材、50…非接触シ
ール部。
Figure 1 is a vertical cross-sectional view showing a conventional example, and Figure 2 is a vertical cross-sectional view of a conventional example.
FIG. 3 is a vertical sectional view showing the first embodiment of the present invention, FIG. 4 is an enlarged view of the principal part of FIG. 3, and FIGS. FIG. 3 is a vertical cross-sectional view of a main part showing a different embodiment. 7... Hub, 11... Radial ball bearing, 12... Outer ring, 13... Inner ring, 42... Seal member, 46... Non-contact seal part, 49... Seal member, 50... Non-contact seal part.
Claims (1)
と共に、その内輪の内側に気体の通路を形成した
ころがり軸受と、前記ころがり軸受の内輪に、そ
のスラスト方向に作用する気体圧力の低圧側に配
設されて前記ころがり軸受の外輪の端面に密着す
ると共に、前記内輪の端面と非接触で対向して前
記気体をシールするシール面を有する部材であつ
て、前記気体圧力が作用した状態で前記内輪端面
と前記シール面との隙間を所定量としてなるシー
ル部材とから構成したことを特徴とする非接触シ
ール。 A rolling bearing is capable of carrying radial and thrust loads and has a gas passage formed inside its inner ring; A member having a sealing surface that is in close contact with an end face of an outer ring of a rolling bearing and that seals the gas by opposing the end face of the inner ring without contacting the end face of the inner ring, the member having a sealing surface that seals the gas when the gas pressure is applied to the inner ring end face and the seal. 1. A non-contact seal characterized by comprising a sealing member having a predetermined amount of clearance between the seal member and the surface.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP10601181U JPS5811124U (en) | 1981-07-15 | 1981-07-15 | Non-contact seal |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP10601181U JPS5811124U (en) | 1981-07-15 | 1981-07-15 | Non-contact seal |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS5811124U JPS5811124U (en) | 1983-01-24 |
| JPH017851Y2 true JPH017851Y2 (en) | 1989-03-02 |
Family
ID=29900521
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP10601181U Granted JPS5811124U (en) | 1981-07-15 | 1981-07-15 | Non-contact seal |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS5811124U (en) |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5747460Y2 (en) * | 1976-05-21 | 1982-10-19 |
-
1981
- 1981-07-15 JP JP10601181U patent/JPS5811124U/en active Granted
Also Published As
| Publication number | Publication date |
|---|---|
| JPS5811124U (en) | 1983-01-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO1995012072A1 (en) | Axle bearing device and method for measuring a bearing gap | |
| US6402387B2 (en) | Double seal bearing | |
| US3028203A (en) | Seal for tapered roller bearings and the like | |
| JPH1113764A (en) | Hydrostatic air bearing | |
| US4958942A (en) | Oil seal assembly | |
| JPH0617828A (en) | Bearing device with radial bearing and axial bearing | |
| JPH11210771A (en) | Double row bearing device | |
| JPH017851Y2 (en) | ||
| JP2601238Y2 (en) | Sealing device for wheel bearings | |
| JPH0712736Y2 (en) | Spherical roller bearing | |
| JPH023044B2 (en) | ||
| JPS6139875Y2 (en) | ||
| JP4321154B2 (en) | Tapered roller bearing device for wheel and method of assembling the same | |
| JP2002228006A (en) | Oil seal | |
| JPH0446149Y2 (en) | ||
| JPH038872Y2 (en) | ||
| JP2529945Y2 (en) | Mechanical seal with built-in jig | |
| JPH0623815Y2 (en) | Air rotary joint sealing device | |
| JPH0614141Y2 (en) | Pump shaft sealing device | |
| JPS631084Y2 (en) | ||
| JP2005083496A (en) | Conical roller bearing device for wheel and its assembling method | |
| JP2006077835A (en) | Sealing device | |
| JPH0138370Y2 (en) | ||
| JPH0726611Y2 (en) | Sealing device | |
| JPS632701Y2 (en) |