JPH0161221B2 - - Google Patents

Info

Publication number
JPH0161221B2
JPH0161221B2 JP8533281A JP8533281A JPH0161221B2 JP H0161221 B2 JPH0161221 B2 JP H0161221B2 JP 8533281 A JP8533281 A JP 8533281A JP 8533281 A JP8533281 A JP 8533281A JP H0161221 B2 JPH0161221 B2 JP H0161221B2
Authority
JP
Japan
Prior art keywords
cathode
electron
image pickup
electrode
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8533281A
Other languages
Japanese (ja)
Other versions
JPS57199150A (en
Inventor
Yukinao Isozaki
Chihaya Ogusu
Yukio Okude
Yoshio Nagashima
Saburo Okazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Broadcasting Corp filed Critical Japan Broadcasting Corp
Priority to JP8533281A priority Critical patent/JPS57199150A/en
Publication of JPS57199150A publication Critical patent/JPS57199150A/en
Publication of JPH0161221B2 publication Critical patent/JPH0161221B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、テレビジヨンカメラ用光導電形撮
像管に関するもので、主として現行の標準テレビ
ジヨン方式よりも本質的に高画質(高解像度、低
残像、画質均一性ならびに高SN比)なライブ撮
像を可能とする高品位用撮像管の製作歩留り向上
と、長寿命化をはかつたものである。 従来、テレビジヨン用光導電形撮像管の電子銃
部は、第1図にその断面を示すように、ニツケル
などを基体金属とするスリーブ11の上に、酸化
バリウムおよび酸化ストロンチウムなどの電子放
射性物質12を塗布した陰極電子放射面1が、タ
ングステンの細線上にアルミナの絶縁物を被覆し
て成るヒータ2によつて加熱され、その放射面1
から発生する熱電子が、陰極に対して負にバイア
スされた電極3aと、陰極に対して正にバイアス
された電極3bと3cとが作る電界によつて、一
旦、電子がクロスオーバされ細い束状の電子流と
なり、電極3cを貫通して設けられたビーム制限
孔5を通して所要の電子ビーム形態4となつた
後、集束部6および偏向部7の作用を受けてター
ゲツト8上に射突するように組み立てられてき
た。通常は電極3bと3cとは一体の電極を成す
ように組立てられ、電極3cは通常は厚さがたと
えば0.04mmのニツケル板で作られ、開孔5はエレ
クトロフオーミングで形成され、その直径は板厚
程度、あるいはそれより大なるものが普通であつ
た。その他の電極3aおよび3bは真空度に悪影
響を与える可能性が少なく、かつ、成形や組み立
てが比較的容易で、非磁性、安価なステンレス鋼
材を用いて作られてきた。 さて、従来の標準的テレビジヨン画質規準を本
質的に上まわる高画質テレビジヨン方式、たとえ
ば、水平走査線数1125本、フイールド周波数60
Hz、映像周波数帯域幅60MHzの方式において使用
される撮像管は、広帯域信号領域を有していても
S/Nを劣化させないようにし、あわせて低残像
化をはかるため、ターゲツトを走査する電子ビー
ムは従来の標準方式用撮像管のそれよりもより多
くの電流たとえば2倍以上を要した。さらに本質
的低残像を図るため、ビーム内電子の速度分散は
クロスオーバ型におけるよれより小さくたとえば
1/2以下でなければならなかつた。またさらに、
高解像度化のため、電子ビームの直径はより小さ
くたとえば1/4以下で、ビーム制限孔5を通過し
た直後のビーム拡がり角度も零に近いことが望ま
しかつた。 このような高密度で、拡がりが少なく、また電
子速度分散の小さい電子ビームを形成するために
は、たとえば本願人らが特開昭55−154043におい
て提案したような、電子ビームがクロスオーバし
ない二極動作の層流型電子銃を備える必要があつ
た。この電子銃構成を第2図において概略説明す
る。 第2図の1および2はそれぞれ陰極電子放射面
および加熱用ヒータである。陰極前面にごく近設
して配設される制御電極3aは、開孔板3cと一
体となり、電子放射面より電子をクロスオーバさ
せないで平行に引き出すために陰極に対してたと
えば20V正に、加速電極3bはたとえば300V正
に保たれる。開孔板3cの中央部には電子ビーム
を制限して高解像度を保つため細孔5をたとえば
0.01mmないし0.02mmの直径で設けている。この直
径では細孔5の面積は先に述べたクロスオーバ型
電子銃の電子ビーム制限開孔面積の約1/10で、陰
極と制御電極間距離も1/2以下に設計する。そし
て従来の層流型電子銃ではこれら電極構成の材料
はそれ以前のクロスオーバ型と同じくステンレス
が主体であつた。 この層流型電子純がクロスオーバ型に比し機能
的にすぐれている要因は、電子放射面より電子を
クロスオーバさせないで平行に層流状に引き出す
ことにあるが、かゝる構成でターゲツトを走査す
る電子ビーム密度をクロスオーバ型よりより大に
保つためには、陰極電子放射体として公知の高い
電子放射負荷に耐える、たとえばバリウム含浸多
孔質タングステンのブロツク、すなわち含浸型陰
極を使用し、これをタンタルまたはモリブデンを
素材とするスリーブに備えたものでなければなら
なかつた。 以上述べてきた熱電子の層流状引き出しと含浸
型陰極の使用は、ステンレス材料を主体とする従
来形電子銃の構成に以下に述べる欠点を生じてき
た。 この欠点の第一は、電子純動作時に陰極放射面
から発生した熱電子の大部分が、放射面に平行に
ごくく近接しておかれた制御電極すなわちビーム
制限開孔板が正にバイアスされているためこの部
分に射突して異常加熱をおこすことである。過熱
がステンレスなどの電極材料でおこれば、電極材
料の組成が変化し、一部あるいは全部の構成物質
が蒸発し、それから至近距離にある陰極放射面上
にこれら蒸発物質がスパツタ付着をおこしてこの
面を損傷するし、開孔板の制限孔5が周辺金属の
欠落などにより拡がつてしまうことが多かつた。 欠点の第2は陰極電子放射体に含浸型を用いる
ことでおこる。含浸型電子放射体はそれまでの酸
化物被覆型電子放射体に比し、良好な電子放射能
力をうるためには、陰極活性化処理時または活性
化処理に先立ちおこなわれる電子銃部の脱ガス用
加熱時により高温を必要とする。たとえば含浸型
の方が200℃〜300℃高い。従つて陰極面にごく近
接した制御電極および開孔板部が過熱を受け前述
の好ましいからざる現象が屡々発生した。 これら好ましからざる事象を抑制するには、放
射熱電子の射突が最もはげしいビーム制限開孔板
3cの材料としてタンタル、モリブデン、白金な
どの高融点金属薄板を用いればよいが、その薄板
を保持する制御電極3aと材料が異なる場合に
は、開孔板3cが熱変形を起して陰極と接触した
り、制御不能の特性変動を生じたりするおそれが
大きかつた。 たとえば、ステンレス製の電極3a厚さ0.18mm
上に0.03mm厚の白金製開孔板3cを溶接した場
合、陰極活性化時の加熱または電子銃動作時の熱
電子射突の加熱により、白金製開孔板3cの中央
部が陰極放射面1の方へ膨れ上がり陰極と接触を
起し、検査のため解体した結果では熱覆歴によつ
て白金板3cがうねり変形を起していることが多
かつた。 そこで本発明では、陰極に含浸型放射体を使用
し、電子ビームを形成して信号蓄積ターゲツトを
低速度走査する光導電形撮像管の二極動作層流型
電子銃において、陰極放射面に近接して配設さ
れ、前記電子ビームの形成用ビーム制限開孔を有
する開孔板と、該開孔板と一体成形されまたは該
開孔板に固着された制御電極構成部材の少なくと
も一部とを、同一の単体高融点金属タンタルまた
はモリブデンのいずれか一方で形成し、撮像管動
作時または陰極活性化および電極脱ガスの撮像管
排気製作時に屡々発生した前述の欠点を排除し
て、高品位用撮像管の製作歩留り向上と長寿命化
をはかつた。電極材料としてタンタルまたはモリ
ブデンを選んだのは第1表に示すように融点が高
く、単体であり、非磁性で、熱伝導率が従来例の
ステンレスに比べてよく、また、真空管用材料と
して適していることによる。
The present invention relates to a photoconductive image pickup tube for television cameras, and mainly enables live imaging with essentially higher image quality (high resolution, low afterimage, uniformity of image quality, and high signal-to-noise ratio) than the current standard television system. The aim is to improve production yields and extend the lifespan of high-quality image pickup tubes. Conventionally, as shown in the cross section of FIG. 1, the electron gun section of a photoconductive image pickup tube for television has been constructed using an electron radioactive material such as barium oxide or strontium oxide on a sleeve 11 whose base metal is nickel or the like. The cathode electron emitting surface 1 coated with No. 12 is heated by a heater 2 consisting of a fine tungsten wire coated with an alumina insulator.
Thermal electrons generated from the cathode are once crossed over and formed into a thin bundle by the electric field created by the electrode 3a, which is negatively biased with respect to the cathode, and the electrodes 3b and 3c, which are positively biased with respect to the cathode. After passing through the beam restriction hole 5 provided through the electrode 3c and forming the required electron beam shape 4, the electron beam impinges on the target 8 under the action of the focusing section 6 and the deflection section 7. It has been assembled like this. Usually, the electrodes 3b and 3c are assembled to form an integrated electrode, and the electrode 3c is usually made of a nickel plate with a thickness of, for example, 0.04 mm, and the aperture 5 is formed by electroforming, and its diameter is They were usually about the same thickness as a board or even thicker. The other electrodes 3a and 3b have been made of stainless steel, which is less likely to adversely affect the degree of vacuum, is relatively easy to mold and assemble, and is non-magnetic and inexpensive. Now, a high-definition television system that essentially exceeds the conventional standard television picture quality standards, such as 1125 horizontal scanning lines and a field frequency of 60
Hz, video frequency bandwidth of 60 MHz, the image pickup tube uses an electron beam to scan the target in order to prevent S/N from deteriorating even if it has a wide signal range, and to reduce image retention. requires more current, e.g., more than twice, than that of conventional standard image pickup tubes. Furthermore, in order to achieve essentially low afterimages, the velocity dispersion of electrons within the beam must be smaller than the twist in the crossover type, for example, 1/2 or less. Furthermore,
In order to achieve high resolution, it is desirable that the diameter of the electron beam be smaller, for example, 1/4 or less, and that the beam divergence angle immediately after passing through the beam restriction hole 5 be close to zero. In order to form such a high-density electron beam with low spread and small electron velocity dispersion, it is necessary to create a double electron beam that does not cross over, as proposed by the applicants in JP-A-154043-1983. It was necessary to have a polar-operating laminar flow electron gun. The configuration of this electron gun will be schematically explained with reference to FIG. Reference numerals 1 and 2 in FIG. 2 are a cathode electron emitting surface and a heating heater, respectively. A control electrode 3a disposed very close to the front surface of the cathode is integrated with an aperture plate 3c, and is accelerated at a positive voltage of, for example, 20V with respect to the cathode in order to extract electrons from the electron emitting surface in parallel without crossover. The electrode 3b is kept positive at 300V, for example. For example, a small hole 5 is provided in the center of the apertured plate 3c to limit the electron beam and maintain high resolution.
They are provided with a diameter of 0.01mm to 0.02mm. With this diameter, the area of the pore 5 is approximately 1/10 of the electron beam limiting aperture area of the crossover electron gun mentioned above, and the distance between the cathode and the control electrode is also designed to be 1/2 or less. In conventional laminar flow electron guns, the material used to construct these electrodes was mainly stainless steel, as in previous crossover types. The reason why this laminar flow type electron pure is functionally superior to the crossover type is that electrons are extracted from the electron emitting surface in a parallel laminar flow without crossover. In order to keep the scanning electron beam density higher than that of the crossover type, the use of impregnated cathodes, for example blocks of barium-impregnated porous tungsten, which can withstand high electron radiation loads, known as cathode electron emitters, This had to be provided in a sleeve made of tantalum or molybdenum. The above-described laminar flow extraction of thermionic electrons and the use of an impregnated cathode have caused the following drawbacks in the construction of conventional electron guns mainly made of stainless steel. The first of these drawbacks is that most of the thermoelectrons generated from the cathode radiation surface during pure electron operation are positively biased by the control electrode, that is, the beam limiting aperture plate, which is placed parallel to and very close to the radiation surface. Because of this, it hits this part and causes abnormal heating. If overheating occurs in an electrode material such as stainless steel, the composition of the electrode material changes, some or all of the constituent materials evaporate, and these evaporated materials then spatter onto the cathode emitting surface at close range. This surface is damaged, and the restriction hole 5 of the perforated plate often expands due to missing surrounding metal. The second drawback arises from the use of an impregnated type cathode electron emitter. Compared to previous oxide-coated electron emitters, impregnated electron emitters require degassing of the electron gun during cathode activation treatment or prior to activation treatment in order to obtain good electron emission ability. Requires higher temperature when heating. For example, the temperature of the impregnated type is 200℃ to 300℃ higher. As a result, the control electrode and the apertured plate in close proximity to the cathode surface were overheated, and the aforementioned undesirable phenomenon often occurred. In order to suppress these undesirable phenomena, a high melting point metal thin plate such as tantalum, molybdenum, or platinum may be used as the material of the beam limiting aperture plate 3c, which is most likely to be hit by radiated thermionic electrons. If the material is different from that of the control electrode 3a, there is a great possibility that the perforated plate 3c will be thermally deformed and come into contact with the cathode, or that uncontrollable characteristic fluctuations will occur. For example, stainless steel electrode 3a thickness 0.18mm
When a 0.03 mm thick platinum perforated plate 3c is welded on top, the central part of the platinum perforated plate 3c becomes a cathode radiation surface due to heating during cathode activation or heating due to thermionic bombardment during electron gun operation. The platinum plate 3c swelled toward the side 1 and came into contact with the cathode, and when it was dismantled for inspection, it was found that the platinum plate 3c had often been deformed due to the thermal history. Therefore, in the present invention, an impregnated radiator is used for the cathode in a bipolar operating laminar flow electron gun of a photoconductive image pickup tube that forms an electron beam and scans a signal accumulation target at low speed. an apertured plate having a beam-limiting aperture for forming the electron beam; and at least a part of a control electrode component formed integrally with the apertured plate or fixed to the apertured plate. , made of the same single high melting point metal tantalum or molybdenum, eliminating the above-mentioned drawbacks that often occur during the operation of the image pickup tube or when producing the image tube exhaust for cathode activation and electrode degassing, making it suitable for high-quality use. We have improved the production yield and extended the lifespan of image pickup tubes. Tantalum or molybdenum was chosen as the electrode material because, as shown in Table 1, it has a high melting point, is a single substance, is non-magnetic, has better thermal conductivity than conventional stainless steel, and is suitable as a material for vacuum tubes. Depends on what you're doing.

【表】 実施例1は以下のようにするが、この例の電極
構成は第2図と全く同じであるから同図を用いて
説明する。制御電極3aはタンタル板を用い、そ
の厚みは0.1mmないし0.5mmで、プレス成形によつ
て中央のたとえば0.5mm直径の孔とともに形成さ
れる。電極厚みの下限および上限は、電極構造体
としての強度の限界および通常の技術レベルにお
けるプレス成形の可能限界とにそれぞれ対応す
る。ビーム制限開孔5を有する薄いタンタルから
なる開孔板3cは、レーザーによる孔あけ加工で
0.01mmないし0.03mm直径の開孔を作るに適した
0.02mmないし0.05mmの厚みを有し、制御電極3a
の陰極側に溶接される。 実施例2は第3図によつて説明するが、3aは
前例と同じく0.1mmないし0.5mm厚を有するタンタ
ル板をプレス成形した部材である。この部材をさ
らにプレス成形作業にかけて中央部のみを薄くす
るか、あるいはエツチングによつて中央部のみを
薄くし、その部分3cの厚みをレーザー孔あけ加
工に適したものとし、次に中央にレーザー孔あけ
加工を施してビーム制限開孔5を形成する。 さらに他の一つの実施例3を第4図に示す。図
において3dは通常の直空用ステンレス鋼などの
材料を用いて作るカツプ状電極であるが、これは
底面に大きな開孔を備えており、この電極3dの
底面にモリブデンを材料とし、適当な厚さたとえ
ば0.3mmの平板3aをルテニウムろう9aなどを
用いてとりつけ、この二つの部材3aと3dとを
もつて制御電極構体とする。3aの中央部にはた
とえば直径0.5mmの開孔を備える。この開孔をふ
さぐようにして、モリブデンを材料とし、厚みた
とえば0.03mmの、中央に0.01mmないし0.03mmのビ
ーム制限開孔5を有する開孔板3cを、たとえば
ルテニウムろう9bを用いて電極3aにとりつけ
る。 もう一つの実施例4と第5図に示す。3dは第
4図に示したものと同じである。3aは中央部を
エツチングあるいは切削によつてレーザー孔あけ
加工に適した、たとえば0.03mm程度の厚みの開孔
板3cとしてある。3aはたとえばルテニウムろ
う9aなどによつて3dに固着されて制御電極構
体を構成する。 さらにまた、実施例3(第4図)の変形例を第
6図に示す。第4図のカツプ状電極3dの代り
に、同じステンレス鋼材のカツプ状電極3dとス
テンレス鋼材の大きな開孔を備えた板状電極3
d′を用意し、これらで図に示す如くモリブデン平
板状電極3aをはさみこみ、一点鎖線の場所10
でネジどめし、第4図示のルテニウムろう9aを
省略することができる。この方法は実施例4にも
適用できる。 上述の諸実施例のタンタルまたはモリブデン材
料からなる制御電極構体を電子銃に有する撮像管
を製作することにより、陰極に含浸型放射体を備
えた二極動作の層流型電子銃で、陰極活性化時ま
たはそれ以前の電子銃電極脱ガス時に、制御電極
部が好ましからざる過熱を受け、その構成物質が
蒸発して陰極放射面を損傷するなどの事故が皆無
となり、撮像管排気製作時の歩留りが著しく向上
した。 また、さらにかゝる撮像管を動作させた場合も
放射熱電子の射突によつても制御電極の異常加熱
がなく管の寿命が改善された。 以上の説明から明らかなように、この発明を実
施することにより、特開昭55−154043において提
案した、電子のクロスオーバのない、陰極に含浸
型放射体を使用した、層流型電子銃を備えた撮像
管の製作歩留り向上と、長寿命化がはかられ、こ
れまでの標準規格よりも本質的に高画質を必要と
するテレビジヨン方式、たとえば、水平走査線数
1125本、フイールド周波数60Hz、映像周波数帯域
60MHzの方式に適応する、ライブ撮像を可能とす
る高品位撮像管の実用化が可能となつた。 また、この発明は、現行の標準テレビジヨン方
式、あるいは他の異なつたテレビジヨン方式にお
いて用いる撮像管に適用して何ら悪影響なく、む
しろ良好な特性を可能とする効果をもつている
し、陰極が含浸型陰極以外の場合にも必要に応じ
て適用することができる。
[Table] Example 1 is carried out as follows, but since the electrode configuration of this example is exactly the same as that in FIG. 2, it will be explained using the same figure. The control electrode 3a is made of a tantalum plate having a thickness of 0.1 mm to 0.5 mm, and is formed by press molding with a hole having a diameter of, for example, 0.5 mm in the center. The lower and upper limits of the electrode thickness respectively correspond to the strength limit of the electrode structure and the possible limit of press molding at a normal technical level. The aperture plate 3c made of thin tantalum and having the beam-limiting aperture 5 is formed by laser drilling.
Suitable for making holes with a diameter of 0.01mm to 0.03mm
The control electrode 3a has a thickness of 0.02 mm to 0.05 mm.
Welded to the cathode side of the Embodiment 2 will be explained with reference to FIG. 3, where 3a is a member press-molded from a tantalum plate having a thickness of 0.1 mm to 0.5 mm, as in the previous example. This member is further press-formed to make only the center part thinner, or etched to make only the center part thinner, so that the thickness of that part 3c is suitable for laser drilling, and then a laser hole is made in the center. A beam limiting aperture 5 is formed by drilling. Still another embodiment 3 is shown in FIG. In the figure, 3d is a cup-shaped electrode made of a material such as ordinary stainless steel for direct air use, and this has a large hole at the bottom. A flat plate 3a having a thickness of, for example, 0.3 mm is attached using ruthenium solder 9a, and these two members 3a and 3d form a control electrode structure. For example, an opening with a diameter of 0.5 mm is provided in the center of 3a. In order to close this hole, a hole plate 3c made of molybdenum and having a thickness of, for example, 0.03 mm and a beam limiting hole 5 of 0.01 mm to 0.03 mm in the center is connected to the electrode 3a using, for example, ruthenium solder 9b. Attach to. Another example 4 is shown in FIG. 3d is the same as shown in FIG. 3a is a perforated plate 3c having a thickness of, for example, about 0.03 mm, which is suitable for laser drilling by etching or cutting the central portion. 3a is fixed to 3d by, for example, ruthenium solder 9a to form a control electrode structure. Furthermore, a modification of the third embodiment (FIG. 4) is shown in FIG. Instead of the cup-shaped electrode 3d in FIG. 4, a cup-shaped electrode 3d made of the same stainless steel material and a plate-shaped electrode 3 made of stainless steel with a large opening are provided.
d′, sandwich the molybdenum flat electrode 3a between them as shown in the figure, and place the molybdenum plate electrode 3a at the location 10 indicated by the dashed-dotted line.
The ruthenium solder 9a shown in FIG. 4 can be omitted. This method can also be applied to Example 4. By fabricating an image pickup tube in which the electron gun has a control electrode structure made of tantalum or molybdenum material as described in the above embodiments, a bipolar operation laminar flow electron gun with an impregnated radiator in the cathode can be used to achieve cathode activity. There are no accidents such as the control electrode receiving undesirable overheating during the electron gun electrode degassing process or prior to that, resulting in evaporation of its constituent materials and damage to the cathode emission surface. has improved significantly. Further, when such an image pickup tube is operated, the control electrode does not become abnormally heated even by the bombardment of radiated thermoelectrons, and the life of the tube is improved. As is clear from the above description, by implementing the present invention, a laminar flow electron gun, which does not have electron crossover and uses an impregnated radiator for the cathode, as proposed in JP-A-154043, can be realized. Television systems that require essentially higher image quality than previous standards, such as the number of horizontal scanning lines, are being developed to improve production yields and extend the lifespan of image pickup tubes.
1125 lines, field frequency 60Hz, video frequency band
It has become possible to put into practical use a high-quality image pickup tube that is compatible with the 60MHz system and enables live imaging. Furthermore, this invention has the effect of enabling good characteristics without causing any adverse effects when applied to image pickup tubes used in the current standard television system or other different television systems. It can also be applied to cases other than impregnated cathodes, if necessary.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来クロスオーバ型電子銃の構成を示
す断面図、第2図は従来および本発明の二極動作
層流型電子銃の構成を示す断面図、第3図より第
6図は本発明撮像管における電子銃の構成例を示
す断面図である。 1は陰極電子放射面、2はヒータ、3aは制御
電極、3bは加速電極、3cはビーム制限開孔
板、4は整形された電子ビーム、5はビーム制限
開孔、6は撮像管の電子集束部、7は偏向部、8
はターゲツト、11は陰極スリーブ、12は電子
放射材料である。
FIG. 1 is a sectional view showing the configuration of a conventional crossover type electron gun, FIG. 2 is a sectional view showing the configuration of a conventional dual-pole laminar flow type electron gun and the present invention, and FIGS. FIG. 3 is a cross-sectional view showing an example of the configuration of an electron gun in the inventive image pickup tube. 1 is a cathode electron emitting surface, 2 is a heater, 3a is a control electrode, 3b is an accelerating electrode, 3c is a beam limiting aperture plate, 4 is a shaped electron beam, 5 is a beam limiting aperture, 6 is an electron of the image pickup tube Focusing part, 7 is deflection part, 8
1 is a target, 11 is a cathode sleeve, and 12 is an electron emitting material.

Claims (1)

【特許請求の範囲】[Claims] 1 陰極に含浸型放射体を使用し、電子ビームを
形成して信号蓄積ターゲツトを低速度走査する光
導電形撮像管の二極動作層流型電子銃において、
陰極放射面に近接して配設され、前記電子ビーム
の形成用ビーム制限開孔を有する開孔板と、該開
孔板と一体成形されまたは該開孔板に固着された
制御電極構成部材の少なくとも一部とを、同一の
単体高融点金属タンタルまたはモリブデンのいず
れか一方で形成したことを特徴とする撮像管。
1. In a bipolar operating laminar flow electron gun of a photoconductive type image pickup tube that uses an impregnated emitter as a cathode and forms an electron beam to scan a signal accumulation target at low speed,
an aperture plate disposed close to the cathode radiation surface and having a beam-limiting aperture for forming the electron beam; and a control electrode component integrally molded with the aperture plate or fixed to the aperture plate. 1. An image pickup tube characterized in that at least a portion of the tube is made of the same single high melting point metal tantalum or molybdenum.
JP8533281A 1981-06-03 1981-06-03 Image pickup tube Granted JPS57199150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8533281A JPS57199150A (en) 1981-06-03 1981-06-03 Image pickup tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8533281A JPS57199150A (en) 1981-06-03 1981-06-03 Image pickup tube

Publications (2)

Publication Number Publication Date
JPS57199150A JPS57199150A (en) 1982-12-07
JPH0161221B2 true JPH0161221B2 (en) 1989-12-27

Family

ID=13855675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8533281A Granted JPS57199150A (en) 1981-06-03 1981-06-03 Image pickup tube

Country Status (1)

Country Link
JP (1) JPS57199150A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035724U (en) * 1989-06-08 1991-01-21

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100639050B1 (en) * 1999-11-12 2006-10-26 삼성에스디아이 주식회사 Electron gun for cathode ray tube and the cathode ray tube having the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035724U (en) * 1989-06-08 1991-01-21

Also Published As

Publication number Publication date
JPS57199150A (en) 1982-12-07

Similar Documents

Publication Publication Date Title
US4178531A (en) CRT with field-emission cathode
JPH02295038A (en) X-ray scanning tube with deflecting electrode
US4297612A (en) Electron gun structure
US2825837A (en) Electrostatic focusing system
US2914694A (en) Cathode assembly
US3090882A (en) Electron gun
US2971118A (en) Electron discharge device
US3213311A (en) Electron discharge device
KR20010092674A (en) Cold cathode structure for emitting electric field and electron gun using the cold cathode
US20030117054A1 (en) Cathode structure, and production method therefor and electron gun and cathode ray tube
US2712087A (en) Plural beam electron discharge devices
JPH0161221B2 (en)
US2877369A (en) Electron beam tube
US6917148B2 (en) Oxide cathode for an electron gun, having a denser and thinner emissive zone
US4547694A (en) Low-loss cathode for a television camera tube
US2922072A (en) Image reproduction device
JPH0419660B2 (en)
CA1174263A (en) Electron gun with improved beam forming region
US3467879A (en) Planar dispenser cathode assembly with a cap member to which an electronemissive,tubular heater,and rodshaped support members are clamped
US6522057B1 (en) Electron gun for cathode ray tube
JPS62188138A (en) Color picture tube device
US2148588A (en) Cathode ray tube
JPS5919407B2 (en) Electron gun for cathode ray tube
CA1296048C (en) Electron-gun system
US2717322A (en) Cathode ray tube guns