JPH0160674B2 - - Google Patents
Info
- Publication number
- JPH0160674B2 JPH0160674B2 JP57016678A JP1667882A JPH0160674B2 JP H0160674 B2 JPH0160674 B2 JP H0160674B2 JP 57016678 A JP57016678 A JP 57016678A JP 1667882 A JP1667882 A JP 1667882A JP H0160674 B2 JPH0160674 B2 JP H0160674B2
- Authority
- JP
- Japan
- Prior art keywords
- preheating
- preheating plug
- temperature
- plug
- constant current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000010438 heat treatment Methods 0.000 claims description 21
- 239000004065 semiconductor Substances 0.000 claims description 7
- 238000001514 detection method Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 5
- 230000004913 activation Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000498 cooling water Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P19/00—Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
- F02P19/02—Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
- F02P19/021—Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs characterised by power delivery controls
- F02P19/022—Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs characterised by power delivery controls using intermittent current supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P19/00—Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
- F02P19/02—Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
- F02P19/025—Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs with means for determining glow plug temperature or glow plug resistance
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Temperature (AREA)
- Control Of Resistance Heating (AREA)
Description
【発明の詳細な説明】
本発明は、冷機状態にあるエンジン(特にデイ
ーゼルエンジン)の始動を容易にするために用い
られる予熱栓(グロープラグ)の加熱制御装置に
関し、特に予熱栓を予定温度に制御するとともに
短時間で予定温度に到達せしめる予熱栓加熱制御
装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heating control device for a preheating plug (glow plug) used to facilitate the starting of a cold engine (particularly a diesel engine), and in particular to a heating control device for a preheating plug (glow plug) to bring the preheating plug to a predetermined temperature. The present invention relates to a preheating plug heating control device that controls and reaches a predetermined temperature in a short time.
冷機状態にあるエンジンはスタータを起動する
だけでは始動しにくいので、予熱栓をエンジンに
設け、エンジンの始動時に燃焼室内で予熱栓を予
定温度に加熱した後スタータで起動をかけること
が行なわれている。予熱栓は、始動時にごく短時
間で予定温度まで加熱し、その予定温度をエンジ
ン始動が終了するまで保持し続けなければならな
い。 Since it is difficult to start a cold engine just by starting the starter, a preheating plug is installed in the engine, and when the engine is started, the preheating plug is heated to a predetermined temperature in the combustion chamber, and then the starter is used to start the engine. There is. The preheating plug must heat up to a predetermined temperature in a very short time when the engine is started, and must maintain that predetermined temperature until the engine has finished starting.
その方法としては従来よりいくつかの方法が知
られているが、例えば特公昭56−54473号公報に
よる、グロープラグと電源との間に開閉素子を接
続し発振回路からの信号により素子の開閉を行な
いプラグに断続電流を流し、プラグ温度上昇に伴
なう抵抗値の増加により素子の開閉周期を変化さ
せプラグ温度を設定温度に保持する装置、実開昭
55−112072号公報による、グロープラグの予熱時
間を電源電圧の変化量により制御し電圧上昇時に
は通電時間を短縮し、低下時には通電時間を延長
する装置、あるいは特開昭55−101771号公報によ
る、デイーゼルエンジンの低温時の始動性を改善
し黒煙の発生を抑え機関停止を防ぐるためにエン
ジン始動後も引続きグロウプラグ保温のため通電
し、通電時間はコンデンサーへの充電時間により
制御し、かつ冷却水温度が一定値以上になれば通
電を中止し、予熱は保温時より高電圧で行ない予
熱時間を短縮する装置等が知られている。このよ
うな予熱栓には一般に抵抗線が用いられており、
この抵抗線には予熱時間を短縮するため正の抵抗
温度係数を持つものが採り入れられている。そし
て予熱栓が予定温度以上に加熱しないよう温度制
御するために、予熱栓に電流供給後に予熱栓の抵
抗値を検出し、その抵抗値が予定温度における予
熱栓の抵抗値と一致するところで予熱栓への電流
供給を停止することが行なわれている。 Several methods have been known in the past, such as the one disclosed in Japanese Patent Publication No. 56-54473, in which a switching element is connected between the glow plug and the power supply, and the element is opened and closed by a signal from an oscillation circuit. A device that maintains the plug temperature at a set temperature by passing intermittent current through the plug and changing the opening/closing cycle of the element by increasing the resistance value as the plug temperature rises.
No. 55-112072 discloses a device that controls the preheating time of a glow plug based on the amount of change in power supply voltage, shortens the energization time when the voltage increases, and extends the energization time when the voltage decreases, or JP-A-55-101771. In order to improve the startability of a diesel engine at low temperatures, suppress the generation of black smoke, and prevent the engine from stopping, the glow plug continues to be energized to keep it warm after the engine has started, and the energization time is controlled by the charging time of the capacitor. There is known a device that stops energizing when the cooling water temperature exceeds a certain value and preheats at a higher voltage than during heat retention to shorten the preheating time. Resistance wire is generally used in such preheating plugs,
This resistance wire has a positive temperature coefficient of resistance in order to shorten the preheating time. Then, in order to control the temperature so that the preheating plug does not heat up above the scheduled temperature, the resistance value of the preheating plug is detected after electric current is supplied to the preheating plug, and when the resistance value matches the resistance value of the preheating plug at the scheduled temperature, the preheating plug is The current supply to the equipment is stopped.
このような予熱栓の加熱制御において予熱栓の
抵抗値を検出するためには、断続的に予熱栓に電
圧を印加し、断時に該予熱栓の抵抗値を検出する
ようにしている。このような方法としては、例え
ば実開昭56−159677号公報による、グロープラグ
の抵抗値と冷却水温とからエンジン始動時の暖機
状況を寒冷、常温、高温等に分けプラグへの通電
時間を変化させ予熱時間を最小限に短縮し、抵抗
値は一定電流を流しプラグの電圧降下量により求
める装置が開示されている。しかしながら、かゝ
る断続制御では予定温度に到達するまでの時間が
長くかゝるという欠点が生じる。そして、バツテ
リ等電源電圧が変動して低くなるとますます予定
温度に到達するまでの時間が長くなる。 In order to detect the resistance value of the preheating plug in such heating control of the preheating plug, a voltage is applied to the preheating plug intermittently, and the resistance value of the preheating plug is detected when the voltage is turned off. Such a method, for example, uses the resistance value of the glow plug and the cooling water temperature to divide the warm-up condition at engine start into cold, normal temperature, high temperature, etc., as disclosed in Japanese Utility Model Application Publication No. 56-159677, and calculates the time for energizing the plug. A device has been disclosed in which the preheating time is changed to a minimum, and the resistance value is determined from the amount of voltage drop across the plug by flowing a constant current. However, such intermittent control has the disadvantage that it takes a long time to reach the predetermined temperature. As the power supply voltage of the battery or the like fluctuates and becomes lower, the time required to reach the expected temperature becomes longer and longer.
また予熱栓は高温に加熱されるため断線する危
険があるが、予熱栓の断線を検知する方法として
は実開昭54−68039号公報による、すくなくとも
4グロープラグを二組に分割し、スイツチの切替
により各々の組内部でプラグを直列接続あるいは
並列接続を選択できる回路を並列接続し、予熱時
は各組内部を並列接続にし、各プラグに電源電圧
を印加し設定時間後に組内部を直列接続に切換え
印加電圧を半減させプラグを保温し、4プラグが
ブリツジを形成したときプラグが断線していれば
並列回路間に電位差が生じランプが点燈するプラ
グ断線表示器が設置されている装置が開示されて
いるがグロープラグを特殊な接続にしなくてはな
らず、実施は一部のエンジンに限定される。また
通電直後のグロープラグは未だ低温度であるため
抵抗値が低く、よつてグロープラグには大電流が
流れる。この通電直後のいわゆるラツシユカーレ
ントと呼ばれる大電流を半導体開閉素子で制御す
るには大容量の半導体開閉素子が必要であるが、
大容量半導体開閉素子は高価なため装置全体が高
価になるという問題がある。 In addition, since the preheating plug is heated to a high temperature, there is a risk of the wire breaking. However, a method for detecting the wire breakage of the preheating plug is based on Japanese Utility Model Application Publication No. 54-68039, which divides at least four glow plugs into two sets, and Connect the circuits in parallel so that the plugs can be connected in series or in parallel within each group by switching, connect each group in parallel during preheating, apply power supply voltage to each plug, and connect the groups in series after a set time. If the plug is disconnected when the four plugs form a bridge, a potential difference will be created between the parallel circuits and a lamp will light up. Although disclosed, the glow plug requires a special connection and implementation is limited to some engines. Further, the glow plug immediately after energization is still at a low temperature, so its resistance value is low, and therefore a large current flows through the glow plug. In order to control this large current, so-called rush current, immediately after energization with a semiconductor switching element, a large-capacity semiconductor switching element is required.
Since large-capacity semiconductor switching elements are expensive, there is a problem in that the entire device becomes expensive.
従つて、本発明の目的は、短時間で予定温度に
到達せしめることができ、しかも電源電圧の変動
に影響されずに温度制御をすることのでき、かつ
廉価な予熱栓加熱制御装置を提供するにある。 Therefore, an object of the present invention is to provide an inexpensive preheating plug heating control device that can reach a predetermined temperature in a short time, can control the temperature without being affected by fluctuations in power supply voltage, and is capable of controlling the temperature without being affected by fluctuations in power supply voltage. It is in.
以下、本発明を図面に従い詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to the drawings.
本発明では、予熱栓の加熱制御の開始から予定
温度近傍に到達する時点までは温度検出の必要が
ないとして、温度検出期間を設けず、加熱制御
し、予熱栓の予定温度近傍では加熱制御期間と温
度検出期間とを交互に設けて予熱栓を予定温度に
温度制御するようにしている。 In the present invention, since there is no need for temperature detection from the start of heating control of the preheating plug until the time when the temperature reaches near the scheduled temperature, heating is controlled without providing a temperature detection period, and when the preheating plug is near the scheduled temperature, the heating control period is and a temperature detection period are provided alternately to control the temperature of the preheating plug to a predetermined temperature.
次に、本発明の実施例を説明する。 Next, examples of the present invention will be described.
第1図は本発明の一実施例ブロツク図、第2図
はその各部波形図であり、図中、Eは電源であ
り、車輌のバツテリーと考えてよい。TRはパワ
ートランジスタ等の半導体から成る電気的スイツ
チ素子である。スイツチ素子TRは後述する制御
部1によつて、そのオン期間に予熱栓GPに電源
Eの電流を流し、オフ期間に電流の供給を停止す
る。GPは予熱栓(グロープラグ)であり、エン
ジンのシリンダ数だけ設けられ、第1図では4つ
の予熱栓が設けられている。予熱栓GPは発熱体
としての金属抵抗線を有し、抵抗線の抵抗温度特
性は正の特性(即ち、温度が高くなるにつれて抵
抗が高くなる特性)を持つている。CCは定電流
回路で、制御部1のタイミングパルスTPを受け、
スイツチ素子TRのオフ期間に予熱栓GPに一定
電流iを流すものである。APは差動アンプで、
予熱栓GPに電流が流れることにより生ずる電圧
降下を電圧値etと出力するもので、入力用バラン
ス抵抗R1,R2を備えている。10は設定温度比
較回路で、所望の設定予熱温度(例えば900℃)
における予熱栓GPの抵抗値rsによつて定まる電
圧値es(=i×rs)が設定乃至記憶され、差動ア
ンプAPで出力されるオフ期間の電圧値etと設定
電圧値esを比較し、et≧esの場合に後述するスイ
ツチ素子制御回路11に禁止信号ST(第2図参
照)を与えるもの。11はスイツチ素子制御回路
で、図示しないスタートスイツチ等からのエンジ
ン始動信号によつて動作し、後述するリレー制御
回路14の動作終了後、スイツチ素子TRのオ
ン、オフを制御する第2図の駆動信号DVを発生
する。駆動信号DVの1周期はスイツチ素子TR
をオンして予熱栓を加熱する加熱期間aと、スイ
ツチ素子TRをオフし定電流によつて予熱栓の温
度を検出する検出期間bとから成り、加熱期間a
にパルスが与えられればスイツチ素子TRはオン
する。その断続周期は、予じめ求めた予熱栓温度
−経過時間特性から求めた温度上昇値/時間値と
設定予熱温度の許容幅から決定される。本実施例
では約15msとしてある。又スイツチ素子制御回
路11は定電流回路CCを駆動するタイミングパ
ルスTRを発生する。タイミングパルスTPは第
2図の如き、駆動信号DVの加熱期間の立下りに
おいて発生され、駆動信号DVの検出期間(オフ
期間)に定電流回路CCから一定電流を出力せし
める。12は断線検出回路である。スイツチ素子
制御回路11は始動信号を受けるとタイミングパ
ルスTPを発生し、このタイミングパルスTPによ
り定電流回路CCは一定電流を流す。断線検出回
路12は該一定電流による電圧値etを取込み、予
じめ定めた設定電圧値ecと比較してグロープラグ
の断線を検出する。 FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2 is a waveform diagram of each part thereof. In the figure, E is a power source, which can be considered as a vehicle battery. TR is an electrical switch element made of a semiconductor such as a power transistor. The switch element TR causes a current from the power source E to flow through the preheating plug GP during its on period, and stops supplying the current during its off period, under the control of the control section 1, which will be described later. GP is a preheating plug (glow plug), and there are as many preheating plugs as there are cylinders in the engine, and in Fig. 1 there are four preheating plugs. The preheating plug GP has a metal resistance wire as a heating element, and the resistance temperature characteristic of the resistance wire is positive (that is, the resistance increases as the temperature increases). CC is a constant current circuit that receives the timing pulse TP from the control section 1.
A constant current i is passed through the preheating plug GP during the off period of the switch element TR. AP is a differential amplifier,
It outputs the voltage drop caused by current flowing through the preheating plug GP as a voltage value e t , and is equipped with input balance resistors R 1 and R 2 . 10 is a set temperature comparison circuit, which determines the desired set preheating temperature (for example, 900°C)
The voltage value e s (= i × r s ) determined by the resistance value r s of the preheating plug GP in is set or stored, and the voltage value e t during the off period and the set voltage value e output by the differential amplifier AP s , and when e t ≧ e s, a prohibition signal ST (see FIG. 2) is provided to the switch element control circuit 11 (described later). Reference numeral 11 denotes a switch element control circuit, which is operated by an engine starting signal from a start switch (not shown) or the like, and controls the ON/OFF state of the switch element TR after the operation of the relay control circuit 14 (described later) is completed. Generate signal DV. One period of the drive signal DV is the switch element TR
The heating period a consists of a heating period a in which the switch element TR is turned on to heat the preheating plug, and a detection period b in which the switch element TR is turned off and the temperature of the preheating plug is detected by a constant current.
If a pulse is given to , switch element TR turns on. The intermittent cycle is determined from the temperature rise value/time value obtained from the preheating plug temperature-elapsed time characteristic obtained in advance and the allowable range of the set preheating temperature. In this embodiment, it is approximately 15 ms. Further, the switch element control circuit 11 generates a timing pulse TR that drives the constant current circuit CC. As shown in FIG. 2, the timing pulse TP is generated at the falling edge of the heating period of the drive signal DV, and causes the constant current circuit CC to output a constant current during the detection period (off period) of the drive signal DV. 12 is a disconnection detection circuit. When the switch element control circuit 11 receives the start signal, it generates a timing pulse TP, and this timing pulse TP causes the constant current circuit CC to flow a constant current. The disconnection detection circuit 12 takes in the voltage value e t due to the constant current and compares it with a predetermined set voltage value e c to detect a disconnection of the glow plug.
即ち、設定電圧値ecを予熱していない時の予熱
栓の抵抗値roと一定電流iとの積に等しい電圧値
に設定すれば、予熱前に設定電圧値ecより大きな
電圧値etを比較により検出すると断線出力を発生
し、リレー制御回路14に出力するものである。
即ち、予熱栓GPが図の如く並列に接続されてい
るとすると、各並列された予熱栓の抵抗値をr、
並列本数nとし、断線本数をkとすれば、測定電
圧値etは、
et=i・r/(n−k)
で表わされる。従つて、1本も断線していない時
の電圧値(i・r/n)を設定電圧値ecとすれ
ば、断線していれば、et>ecであるので、比較に
よる断線検出が可能となる。13は時間幅設定回
路であり、予熱栓GPに印加される電源Eの電圧
値Vpを受け、当該電圧値に応じた時間幅信号を
出力するもの。RLは電磁リレー等のリレースイ
ツチであり、14はリレースイツチRLの動作制
御を行うリレー制御回路であり、スイツチ素子制
御回路11からの起動信号で時間幅設定回路13
の時間幅信号で指定される時間巾のリレー動作信
号PSを出力し、リレースイツチRLを動作(閉動
作)せしめるものである。 That is, if the set voltage value e c is set to a voltage value equal to the product of the resistance value r o of the preheating plug when not preheating and the constant current i, a voltage value e larger than the set voltage value e c before preheating is set. When t is detected by comparison, a disconnection output is generated and output to the relay control circuit 14.
That is, assuming that the preheating plugs GP are connected in parallel as shown in the figure, the resistance value of each preheating plug connected in parallel is r,
If the number of parallel wires is n, and the number of disconnected wires is k, the measured voltage value e t is expressed as e t =i·r/(nk). Therefore, if the voltage value (i・r/n) when no wire is broken is the set voltage value e c , if there is a wire break, e t > e c , so the wire breakage can be detected by comparison. becomes possible. 13 is a time width setting circuit which receives the voltage value V p of the power source E applied to the preheating plug GP and outputs a time width signal according to the voltage value. RL is a relay switch such as an electromagnetic relay, 14 is a relay control circuit that controls the operation of the relay switch RL, and a time width setting circuit 13 is activated by a start signal from the switch element control circuit 11.
It outputs a relay operation signal PS with a time width specified by the time width signal, and operates (closes) the relay switch RL.
さて、第1図の回路の動作を第2図の波形図と
関連して説明する。 Now, the operation of the circuit shown in FIG. 1 will be explained in conjunction with the waveform diagram shown in FIG. 2.
始動信号がスイツチ素子制御回路11に到来す
ると、タイミングパルスTPを定電流回路CCへ送
り、加熱制御前に定電流回路CCより一定電流を
予熱栓GPに流し、予熱栓GPの電圧降下による電
圧値etを差動アンプAPから出力めしめる。 When the start signal arrives at the switch element control circuit 11, a timing pulse TP is sent to the constant current circuit CC, and before heating control, a constant current is passed from the constant current circuit CC to the preheating plug GP, and the voltage value due to the voltage drop of the preheating plug GP is Output e t from the differential amplifier AP.
そして、断線検出回路12はこの電圧値etを取
込み、内部に設定された設定電圧値ecと比較す
る。et>ecであれば、断線出力をリレー制御回路
14へ送り、リレー駆動信号PSの出力を禁止す
る。この断線出力は図示しない表示回路に断線表
示を行なわしめる。一方、et≦ecであれば、断線
出力は生じないので、リレー制御回路14はスイ
ツチ素子制御回路11の起動信号によつてリレー
動作信号PSを発生する。これによりリレースイ
ツチRLは閉動作するので、電源Eより予熱栓GP
に電流が供給されて、予熱栓GPが加熱される。
動作信号PSが発生すると、断線検出回路12は
動作が禁止される。電源Eより予熱栓GPに電流
が流れると、予熱栓GPの端部に電源Eの電圧Vp
が生じ、時間幅設定回路13に入力される。時間
幅設定回路13は電圧値Vpに応じた時間幅tpを出
力する。この時間幅tpは、基準の電圧値Vrを基準
時間tr印加すると、tr時間後予定予熱温度に達す
るとする予定の予熱温度−経過時間特性を作成し
ておき、基準電圧値Vrとの差に応じて時間巾tpを
変更するものである。即ち、時間幅tpは、
tp=tr−k(Vp−Vr)
によつて定めるものとする。尚、kは比例定数で
ある。従つて電源電圧Vpが基準電圧値Vrより高
いと時間巾tpは予定時間trより小さく、逆にVp<
Vrであると、tp>trとなる。時間幅設定回路13
の時間巾出力tpはリレー制御回路14のレジスタ
にセツトされ、起動信号到来時からクロツクを計
数するカウンタの値と比較回路で比較され、一致
した時動作信号PSのパルスを立下げる。従つて、
第2図の如く起動信号到来時から電源電圧Vpに
よつて定まる時間巾tpのパルスを動作信号として
出力し、この期間リレースイツチRLは閉動作し
続ける。このため、電源電圧Vpが変動しても、
リレースイツチRLの閉動作で予熱栓GPは予定予
熱温度近傍まで達していることになる。リレー制
御回路14の比較一致出力はスイツチ素子制御回
路11に送られ、駆動信号DVの発生のトリガに
利用される。スイツチ素子制御回路11はこの一
致出力によりリレー制御期間の終了を検知し、駆
動信号DVを発生し、スイツチ素子TRをオン/
オフ駆動(断続駆動)する。一方、スイツチ素子
制御回路11からは駆動信号DVの立下りで発生
されるタイミングパルスTPが定電流回路CCへ与
えられるので、定電流回路CCからはスイツチ素
子TRのオフ期間に一定電流が出力される。従つ
て断続の一周期においては、スイツチ素子TRの
オン期間には、電源Eの電流がスイツチ素子TR
を介し予熱栓GPに供給され、スイツチ素子TR
のオフ期間には、定電流回路CCの電流が予熱栓
GPに供給されることになる。電源Eからの電流
により予熱栓GPは発熱し、温度を上昇せしめる
とともに予熱栓GPの抵抗値も増加する。スイツ
チ素子TRのオフ期間には、定電流回路CCから供
給される定電流によつて予熱栓GPの電圧降下に
よる電圧値etが差動アンプAPから出力される。
電圧値etの変化は抵抗値変化と比例し、従つて電
圧値etは温度の関数とみなされる。この電圧値et
は設定温度比較回路10に入力され、設定された
電圧値esと比較される。この比較によつて、es>
et、即ち予熱栓GPが設定予熱温度に達していな
いと検出されると、次の1周期にスイツチ素子
TRをオンするパルスを出力する様、スイツチ素
子制御回路11を制御する。逆に、予熱栓GPが
設定予熱温度に達すると、比較結果はet≧esとな
るので、次の1周期にはスイツチ素子TRをオン
するパルスの出力を禁止する禁止信号STをスイ
ツチ素子制御回路11に出力する。第2図に示す
様に、オフ期間の電圧値etは駆動信号DVの印加
による予熱栓GPの加熱により上昇していき、設
定電圧値esに達したことがオフ期間に検出される
と禁止信号STを発生し、第2図の駆動信号DV
の点線で示す様にパルス出力が禁止され、従つて
スイツチ素子TRがオンにならず、予熱栓GPに
は加熱のための電流は付与されない。次の周期の
オフ期間で、予熱栓GPの温度が設定予熱温度以
下となることが検知されると(即ち比較結果とし
てet<esが検出されると)、禁止信号STが出力さ
れないので、スイツチ素子制御回路11は次の次
の周期にはオン期間を示すパルスを出力する。こ
のようにして、予熱栓GPはリレー制御期間終了
後予定予熱温度まで断続的に加熱制御され、しか
も予定予熱温度に達するとこの温度に保持制御さ
れる。このような断続制御では、温度検出に定電
流を用いているため、従来の電源Eの電流を用い
るものに比し、電源電圧の変動に影響されずに正
確に温度検出が出来、しかも電圧検出用抵抗を設
けていないので、電源Eの電流を温度検出のため
に消費せず、特にエンジン等の限られた電源しか
有しない場合に有効である。 Then, the disconnection detection circuit 12 takes in this voltage value e t and compares it with an internally set set voltage value e c . If e t > e c , a disconnection output is sent to the relay control circuit 14, and output of the relay drive signal PS is prohibited. This disconnection output causes a display circuit (not shown) to display a disconnection. On the other hand, if e t ≦e c , no disconnection output occurs, so the relay control circuit 14 generates the relay operation signal PS in response to the activation signal of the switch element control circuit 11. This closes the relay switch RL, so the preheating valve GP is connected to the power supply E.
A current is supplied to heat the preheating plug GP.
When the operation signal PS is generated, the operation of the disconnection detection circuit 12 is prohibited. When a current flows from the power supply E to the preheating plug GP, the voltage V p of the power supply E is applied to the end of the preheating plug GP.
is generated and input to the time width setting circuit 13. The time width setting circuit 13 outputs a time width tp according to the voltage value Vp . This time width t p is determined by creating a preheating temperature vs. elapsed time characteristic that assumes that when a reference voltage value V r is applied for a reference time t r, the preheating temperature will reach the preheating temperature after t r time. The time width t p is changed according to the difference from r . That is, the time width t p is determined by t p =t r −k(V p −V r ). Note that k is a proportionality constant. Therefore, when the power supply voltage V p is higher than the reference voltage value V r , the time width t p is smaller than the scheduled time t r , and conversely, V p <
If V r , t p > t r . Time width setting circuit 13
The time width output tp is set in the register of the relay control circuit 14, and compared with the value of a counter that counts clocks from the arrival of the activation signal in a comparator circuit, and when they match, the pulse of the operation signal PS is lowered. Therefore,
As shown in FIG. 2, a pulse having a time width t p determined by the power supply voltage V p is outputted as an operation signal from the time the activation signal arrives, and the relay switch RL continues to close during this period. Therefore, even if the power supply voltage V p fluctuates,
By closing the relay switch RL, the preheating plug GP reaches a temperature close to the scheduled preheating temperature. The comparison match output of the relay control circuit 14 is sent to the switch element control circuit 11 and used to trigger the generation of the drive signal DV. The switch element control circuit 11 detects the end of the relay control period based on this coincidence output, generates a drive signal DV, and turns on/off the switch element TR.
Drive off (intermittent drive). On the other hand, since the timing pulse TP generated at the falling edge of the drive signal DV is given from the switch element control circuit 11 to the constant current circuit CC, a constant current is output from the constant current circuit CC during the off period of the switch element TR. Ru. Therefore, in one intermittent period, the current of the power source E flows through the switch element TR during the ON period of the switch element TR.
is supplied to the preheating plug GP via the switch element TR
During the off period of the constant current circuit CC, the current of the preheating valve is
It will be supplied to GP. The preheating plug GP generates heat due to the current from the power source E, raising the temperature and increasing the resistance value of the preheating plug GP. During the off period of the switch element TR, the voltage value e t due to the voltage drop across the preheating plug GP is output from the differential amplifier AP by the constant current supplied from the constant current circuit CC.
The change in the voltage value e t is proportional to the resistance value change, and therefore the voltage value e t can be considered as a function of temperature. This voltage value e t
is input to the set temperature comparison circuit 10 and compared with the set voltage value es . By this comparison, e s >
e t , that is, when it is detected that the preheating plug GP has not reached the set preheating temperature, the switch element is activated in the next cycle.
The switch element control circuit 11 is controlled to output a pulse that turns on the TR. Conversely, when the preheating plug GP reaches the set preheating temperature, the comparison result is e t ≧ e s , so in the next cycle, the prohibition signal ST that prohibits the output of the pulse that turns on the switch element TR is sent to the switch element. It is output to the control circuit 11. As shown in Fig. 2, the voltage value e t during the off period increases due to the heating of the preheating plug GP due to the application of the drive signal DV, and when it is detected during the off period that it has reached the set voltage value e s . Generates the prohibition signal ST and drives the drive signal DV in Figure 2.
As shown by the dotted line, the pulse output is prohibited, so the switch element TR is not turned on, and no current for heating is applied to the preheating plug GP. In the off period of the next cycle, if it is detected that the temperature of the preheating plug GP is below the set preheating temperature (that is, if e t < e s is detected as a comparison result), the prohibition signal ST will not be output. , the switch element control circuit 11 outputs a pulse indicating the on period in the next cycle. In this way, the preheating plug GP is intermittently controlled to be heated up to the scheduled preheating temperature after the end of the relay control period, and furthermore, when it reaches the scheduled preheating temperature, it is maintained at this temperature. Since this kind of intermittent control uses a constant current for temperature detection, it is possible to accurately detect temperature without being affected by fluctuations in the power supply voltage, compared to conventional methods that use current from power supply E. Since no resistor is provided, the current of the power source E is not consumed for temperature detection, which is particularly effective when the engine has only a limited power source.
上述の説明では、制御部1を設定温度検出回路
10〜リレー制御回路14の5つの構成回路に分
けた例について説明したが、制御部1にマイクロ
コンピユータを用いればこれらを共通化しうる。
このためには、電圧値et、Vpがデジタル値でマイ
クロコンピユータに入力されるとともに、設定電
圧値ec、es、Vr、時間巾trはそのメモリに記憶さ
れ、マイクロコンピユータがメモリの制御プログ
ラムに従い、電圧の比較、時間巾の演算、パルス
(駆動信号)の発生を行えばよい。 In the above description, an example has been described in which the control section 1 is divided into five component circuits, ie, the set temperature detection circuit 10 to the relay control circuit 14, but if a microcomputer is used in the control section 1, these circuits can be made common.
For this purpose, the voltage values e t and V p are input into the microcomputer as digital values, and the set voltage values e c , e s , V r , and time width t r are stored in its memory, and the microcomputer inputs them into the microcomputer. Comparison of voltages, calculation of time width, and generation of pulses (drive signals) may be performed according to the control program of the memory.
以上の様に、本発明によれば、リレースイツチ
によつて予熱栓に予定温度近傍に到るまで電流を
連続的に流して加熱し、その後半導体スイツチを
断続制御するとともに温度検出して予熱栓を予定
温度に保持するので、予熱栓の予定温度に到る時
間が短縮されるとともに、予熱栓を加熱していな
い期間を予熱栓の温度検出に用いることができる
ので、正確できめ細い温度検出ができ、かつ半導
体スイツチが小容量で済むため本願装置を廉価に
て提供することが出来る。 As described above, according to the present invention, the relay switch heats the preheating plug by continuously passing an electric current until it reaches a predetermined temperature, and then controls the semiconductor switch intermittently, detects the temperature, and heats the preheating plug. Since the temperature of the preheating plug is maintained at the scheduled temperature, the time required for the preheating plug to reach the scheduled temperature is shortened, and the period when the preheating plug is not heated can be used to detect the temperature of the preheating plug, allowing for accurate and detailed temperature detection. The present invention can be provided at a low price because the semiconductor switch has a small capacity.
又、本発明では、スイツチ素子のオフ期間に定
電流を流して予熱栓の電圧降下の電圧値を検出し
て温度を検出するので、予熱栓の加熱のための電
源を消費することが少く、温度検出が出来、又そ
の精度も定電流であるので、向上するという利点
がある。 Furthermore, in the present invention, since the temperature is detected by flowing a constant current during the off period of the switch element and detecting the voltage value of the voltage drop of the preheating plug, the power consumption for heating the preheating plug is reduced. It has the advantage of being able to detect temperature and improving its accuracy since it uses constant current.
尚、本発明を一実施例により説明したが、本発
明は上述の実施例に限定されることなく、本発明
の主旨に従い種々の変形が可能であり、これらを
本発明の範囲から排除するものではない。 Although the present invention has been explained using one example, the present invention is not limited to the above-mentioned example, and various modifications can be made in accordance with the gist of the present invention, and these are excluded from the scope of the present invention. isn't it.
第1図は本発明の一実施例ブロツク図、第2図
は第1図実施例の各部波形図を示す。
E……電源、TR……スイツチ素子、GP……
予熱栓、CC……定電流回路、AP……差動アン
プ、1……制御部、10……設定温度比較回路、
11……スイツチ素子制御回路、14……リレー
制御回路、RL……リレースイツチ。
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2 is a waveform diagram of each part of the embodiment of FIG. E...Power supply, TR...Switch element, GP...
Preheating plug, CC... constant current circuit, AP... differential amplifier, 1... control section, 10... set temperature comparison circuit,
11...Switch element control circuit, 14...Relay control circuit, RL...Relay switch.
Claims (1)
温度まで加熱し、通電断時に定電流による電圧降
下量により該予熱栓の温度を測定する予熱栓加熱
制御装置において、前記開閉素子を電源投入時の
ラツシユカーレントを導通させる機械式接点を有
する第1の開閉素子で構成し、該第1の開閉素子
と並列に前記ラツシユカーレント通過後、該電流
よりも少ない電流の断続を司る半導体素子からな
る第2の開閉素子を接続したことを特徴とする予
熱栓加熱制御装置。 2 前記第1の開閉素子の動作時間は前記電源か
ら前記予熱栓に供給される電圧を測定して定める
ことを特徴とする特許請求の範囲第1項記載の予
熱栓加熱制御装置。 3 前記第1の開閉素子の動作は、前記第1の開
閉素子の動作前に前記定電流回路から流された一
定電流によつて生ずる前記予熱栓の電圧値が設定
電圧値より大の場合に禁止されることを特徴とす
る特許請求の範囲第1項又は第2項記載の予熱栓
加熱制御装置。[Scope of Claims] 1. A preheating plug heating control device that heats a preheating plug to a set temperature by intermittent energization by an opening/closing element, and measures the temperature of the preheating plug based on a voltage drop due to a constant current when energization is interrupted, wherein the opening/closing element is composed of a first switching element having a mechanical contact that conducts the rush current when the power is turned on, and a current smaller than the current after the rush current passes in parallel with the first switching element. A preheating plug heating control device characterized in that a second switching element made of a semiconductor element that controls disconnection is connected. 2. The preheating plug heating control device according to claim 1, wherein the operating time of the first switching element is determined by measuring the voltage supplied to the preheating plug from the power source. 3 The operation of the first switching element is performed when the voltage value of the preheating plug generated by the constant current flowed from the constant current circuit before the operation of the first switching element is larger than the set voltage value. The preheating plug heating control device according to claim 1 or 2, wherein the preheating plug heating control device is prohibited.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1667882A JPS58135371A (en) | 1982-02-04 | 1982-02-04 | Control apparatus for heating of preglow plug |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1667882A JPS58135371A (en) | 1982-02-04 | 1982-02-04 | Control apparatus for heating of preglow plug |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58135371A JPS58135371A (en) | 1983-08-11 |
JPH0160674B2 true JPH0160674B2 (en) | 1989-12-25 |
Family
ID=11922965
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1667882A Granted JPS58135371A (en) | 1982-02-04 | 1982-02-04 | Control apparatus for heating of preglow plug |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58135371A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS632872U (en) * | 1986-06-25 | 1988-01-09 | ||
WO2003095828A1 (en) | 2002-05-14 | 2003-11-20 | Ngk Spark Plug Co., Ltd. | Controller of glow plug and glow plug |
JP5948740B2 (en) * | 2011-06-01 | 2016-07-06 | 株式会社デンソー | Control unit integrated glow plug and its energization control method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55101771A (en) * | 1979-01-25 | 1980-08-04 | Diesel Kiki Co Ltd | Auxiliary starting device for diesel engine |
JPS5654473A (en) * | 1979-10-12 | 1981-05-14 | Canon Inc | Electrophotographic copier |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5468039U (en) * | 1977-10-21 | 1979-05-15 | ||
JPS55112072U (en) * | 1979-01-31 | 1980-08-06 | ||
JPS636465Y2 (en) * | 1980-04-26 | 1988-02-23 |
-
1982
- 1982-02-04 JP JP1667882A patent/JPS58135371A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55101771A (en) * | 1979-01-25 | 1980-08-04 | Diesel Kiki Co Ltd | Auxiliary starting device for diesel engine |
JPS5654473A (en) * | 1979-10-12 | 1981-05-14 | Canon Inc | Electrophotographic copier |
Also Published As
Publication number | Publication date |
---|---|
JPS58135371A (en) | 1983-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4377138A (en) | Glow plug control system for diesel engine | |
US4504732A (en) | Simulative temperature controller for a motor vehicle | |
US4500775A (en) | Method and apparatus for detecting an open circuit in a glow plug group for combination with a glow plug heating control circuit | |
US4516543A (en) | Circuit for controlling glow plug energization | |
EP0191348A2 (en) | An adaptive glow plug controller | |
US5325038A (en) | Driving apparatus for controlling an electric load in a vehicle | |
US4694145A (en) | Electronic controller for predetermined temperature coefficient heater | |
JPH0160674B2 (en) | ||
JPH0118265B2 (en) | ||
EP0068881A2 (en) | A voltage control circuit for a glow plug | |
JPS6234945B2 (en) | ||
JPS6149508B2 (en) | ||
JPH0316502B2 (en) | ||
JPS636465Y2 (en) | ||
JPH021983B2 (en) | ||
JPS58113581A (en) | Discontinuity sensing device for preheated plug | |
JPH0158343B2 (en) | ||
JPH0423112B2 (en) | ||
JPH0135186B2 (en) | ||
JPH06105449A (en) | Overcurrent detecting apparatus | |
JPS62255578A (en) | Device for controlling power supply to glow plug | |
JPS626295Y2 (en) | ||
JPS6324152B2 (en) | ||
JPH0160676B2 (en) | ||
JPS62139977A (en) | Device for controlling electrification to glow plug |