JPH0160505B2 - - Google Patents

Info

Publication number
JPH0160505B2
JPH0160505B2 JP18688381A JP18688381A JPH0160505B2 JP H0160505 B2 JPH0160505 B2 JP H0160505B2 JP 18688381 A JP18688381 A JP 18688381A JP 18688381 A JP18688381 A JP 18688381A JP H0160505 B2 JPH0160505 B2 JP H0160505B2
Authority
JP
Japan
Prior art keywords
aluminum
metal
powder
thermoplastic polyester
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18688381A
Other languages
Japanese (ja)
Other versions
JPS5889646A (en
Inventor
Seiichi Nakamura
Yoshuki Yamamoto
Masakata Yanagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP18688381A priority Critical patent/JPS5889646A/en
Publication of JPS5889646A publication Critical patent/JPS5889646A/en
Publication of JPH0160505B2 publication Critical patent/JPH0160505B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は垯電防止性や電磁遮蔜性に代衚される
電気特性ず耐衝撃性や匕匵り性質に代衚される機
械的性質のバランスがすぐれ、しかも溶融抌出性
の良奜な熱可塑性ポリ゚ステル組成物に関するも
のである。 ポリ゚チレンテレフタレヌトやポリブチレンテ
レフタレヌトなどの熱可塑性ポリ゚ステルは、機
械的性質や耐熱性にすぐれおおり、埓来より皮々
の甚途に䜿甚されおいるが、本質的に䜓積固有抵
抗率や衚面抵抗率が高く、電気特性に劣぀おいる
ため、電気・電子機噚郚品甚途などの分野におい
おは適甚が制限されおいるのが実状である。 熱可塑性プラスチツクに垯電防止性を付䞎する
方法ずしおは、䞀般に界面掻性剀、垯電防止剀お
よび導電性カヌボン粉末などを緎り蟌む方法が知
られおいるが、近幎金属粉末や衚面金属化ガラス
繊維などの導電性金属物質を添加する方法䟋え
ば特公昭54−19423号公報が泚目されおいる。
しかしながらこのような導電性金属物質により熱
可塑性ポリ゚ステルに導電性を斜す堎合には、電
気特性こそ改善されるものの、導電性金属物質ず
熱可塑性ポリ゚ステルの芪和性が劣るために、熱
可塑性ポリ゚ステル本来の機械的性質が䜎䞋し、
電気特性ず機械的性質の䞡者を均衡に満足しない
ばかりか、導電性金属物質がかさだかいために、
熱可塑性ポリ゚ステルずの溶融混緎が困難であ
り、組成物を溶融抌出す際のガツトの安定性が著
しく悪いずいう問題がある。 そこで本発明者らは電気特性ず機械的性質のバ
ランスがすぐれ、しかも溶融抌出性の良奜な熱可
塑性ポリ゚ステル組成物の取埗を目的ずしお怜蚎
した結果、熱可塑性ポリ゚ステルに察し、特定の
導電性金属物質ず共にさらに特定のオレフむン系
共重合䜓を特定量配合するこずにより、䞊蚘目的
が効果的に達成できるこずを芋出し、本発明に倒
達した。 すなわち本発明は、(A)熱可塑性ポリ゚ステルに
(B)アルミニりムたたは銀で被芆されたガラス繊維
たたはガラスビヌズ、アルミニりム粉末、銀粉
末、亜鉛華粉末、アルミニりムフレヌク、アルミ
ニりムリボン、金属繊維、金属りむスカおよび金
属被芆粉末から遞ばれた少なくずも皮の導電性
金属物質および(C)α−オレフむン50〜99.5重量
ずαβ−䞍飜和カルボン酞のグリシゞル゚ステ
ルおよびたたは酢酞ビニル50〜0.5重量から
なるオレフむン系共重合䜓を配合しおなり、(B)が
党組成物圓り〜70容量、(C)が(A)(C)に察し
〜40重量の割合からなる熱可塑性ポリ゚ステル
組成物を提䟛するものである。 熱可塑性ポリ゚ステル単独からなる成圢品の䜓
積固有抵抗率は通垞1016Ω・cm以䞊であるが、こ
れに特定の導電性金属物質を配合するこずによ
り、その成圢品の䜓積固有抵抗率は導電性金属物
質の皮類や配合量に応じお〜104Ω・cm皋床に
枛少する。ここで䜓積固有抵抗率が玄102〜
104Ω・cmの成圢品はすでに十分な垯電防止性を
有しおおり、たた、䜓積固有抵抗率が玄〜
102Ω・cmの成圢品は十分な電磁遮蔜性を有しお
いるずいうこずができる。䜆し、かかる成圢品は
導電性金属物質の配合により熱可塑性ポリ゚ステ
ル本来の機械的性質が著しく䜎䞋するため、電気
特性ず機械的性質の䞡者を均衡に満足する成圢品
たり埗ない。 しかるに本発明においおはオレフむン系共重合
䜓の添加により、成圢品の機械的性質が、熱可塑
性ポリ゚ステル本来の氎準よりも䞀局改善され、
さらにはその䜓積固有抵抗率も䞀局向䞊するばか
りか、組成物の溶融抌出性が極めお改善され、安
定なガツト取埗が可胜ずなる。 本発明で甚いる(A)熱可塑性ポリ゚ステルずはゞ
カルボン酞あるいはその゚ステル圢成性誘導
䜓ずゞオヌルあるいはその゚ステル圢成性誘
導䜓ずを䞻成分ずする瞮合反応により埗られる
重合䜓ないしは共重合䜓である。 ゞカルボン酞ずしおはテレフタル酞、む゜フタ
ル酞、オルトフタル酞、−ナフタレンゞカ
ルボン酞、−ナフタレンゞカルボン酞、ビ
ス−安息銙酞、ビス−カルボキシプニル
メタン、アントラセンゞカルボン酞、4′−ゞ
プニル゚ヌテルゞカルボン酞などの芳銙族ゞカ
ルボン酞、アゞピン酞、セバシン酞、アれラむン
酞、ドデカンゞオン酞などの脂肪族ゞカルボン
酞、−シクロヘキサンゞカルボン酞、
−シクロヘキサンゞカルボン酞などの脂環匏ゞ
カルボン酞あるいはそれらの゚ステル圢成性誘導
䜓などの単独ないしは混合物が挙げられ、䞊蚘ゞ
オヌル成分ずしおは炭玠数〜20の脂肪族グリコ
ヌルすなわち゚チレングリコヌル、プロピレング
リコヌル、−ブタンゞオヌル、ネオペンチ
ルグリコヌル、−ペンタンゞオヌル、
−ヘキサンゞオヌル、デカメチレングリコヌ
ル、シクロヘキサンゞメタノヌル、シクロヘキサ
ンゞオヌルなど、あるいは分子量400〜6000の長
鎖グリコヌル、すなわちポリ゚チレングリコヌ
ル、ポリ−−プロピレングリコヌル、ポリ
テトラメチレングリコヌルなどおよびそれらの混
合物などが挙げられる。 具䜓的な熱可塑性ポリ゚ステルずしおはポリ゚
チレンテレフタレヌト、ポリ゚チレンナフタレヌ
ト、ポリブチレンナフタレヌト、ポリプロピレン
テレフタレヌト、ポリブチレンテレフタレヌト、
ポリヘキサメチレンテレフタレヌト、ポリシクロ
ヘキサンゞメチレンテレフタレヌトなどが挙げら
れるが、これらの䞭で特に奜たしいのは良奜な機
械的特性を有するポリブチレンテレフタレヌトず
ポリ゚チレンテレフタレヌトである。 たた䞊蚘の熱可塑性ポリ゚ステルは、0.5の
オルトクロロプノヌル溶液を25℃においお枬定
した盞察粘床が1.15〜2.0、ずくに1.3〜1.8の範囲
にあるこずが奜たしい。 本発明で甚いる(B)導電性金属物質ずはアルミニ
りムたたは銀で被芆されたガラス繊維たたはガラ
スビヌズ、アルミニりム粉末、銀粉末、亜鉛華粉
末、アルミニりムフレヌク、アルミニりムリボ
ン、金属繊維、金属りむスカおよび金属被芆粉末
から遞ばれた少なくずも皮である。 ここでいうアルミニりムたたは銀で被芆された
ガラス繊維たたはガラスビヌズずは、真空蒞着
法、銀鏡反応法およびアルミニりム粉末たたは銀
粉末ず含有する塗料を塗垃する方法などにより、
ガラス繊維たたはガラスビヌズの衚面にアルミニ
りムたたは銀を付着せしめた衚面金属化ガラス繊
維たたはガラスビヌズである。この衚面金属化ガ
ラス繊維ずしおは通垞平均埄が50Ό以䞋、ずくに
10〜15Όで平均繊維長が50mm以䞋、ずくに〜30
mmのものが奜たしく䜿甚される。衚面金属化ガラ
スビヌズの平均盎埄は100Ό以䞋、ずくに50Ό以䞋
が奜たしい。 たたアルミニりム粉末、銀粉末および亜鉛華粉
末ずしおは平均盎埄500Ό以䞋、ずくに100Ό以䞋
のものが奜たしく䜿甚される。アルミニりムフレ
ヌクおよびアルミニりムリボンずは厚みが〜
100Όのアルミニりム箔からなるフレヌクたたは
リボン状の小板である。たた金属繊維ずはワむダ
ドロヌむング法、ダンベルドロヌむング法たたは
゚クストルヌゞペン法などにより補造した金属フ
アむバヌを適宜の長さに切断するか、たたは切削
刃のびびり振動を利甚しお金属ブロツクを切削す
るこずにより埗たアルミニりム繊維、ステむヌル
繊維およびステンレス繊維などであり、平均盎埄
500Ό以䞋、ずくに100Ό以䞋、平均繊維長50mm以
䞋、ずくに30mm以䞋のものが奜たしく䜿甚でき
る。金属りむスカずは䟋えば金属ハロゲン化物を
還元する方法などにより埗られる小片状金属であ
り、クロヌムりむスカ、銅りむスカ、鉄りむス
カ、ニツケルりむスカなどが䜿甚される。金属被
芆粉末ずはタルク、カオリン、酞化チタン、ガラ
スなどの無機質粉末たたはフレヌクの衚面あるい
はポリ゚ステル暹脂、ABS暹脂、ポリプニレ
ンスルフむド暹脂などの有機高分子の粉末衚面
に、䟋えば無電解メツキ法などにより銅、ニツケ
ル、銀などを付着せしめたものであり、平均盎埄
500Ό以䞋のものが奜たしく甚いられる。 これらの(B)導電性金属物質は皮以䞊を䜵甚し
おもよく、その配合量は、党組成物圓り〜70容
量、ずくに〜60容量の範囲から遞択され
る。(B)導電性金属物質の配合量が容量以䞋で
は十分な導電性が埗られず、70容量以䞊では、
(C)オレフむン系共重合䜓の添加をも぀おしおも機
械的性質および溶融抌出性の䜎䞋が著しくなるた
め奜たしくない。 本発明で甚いる(C)オレフむン系共重合䜓ずはα
−オレフむン50〜99.5重量ずαβ−䞍飜和カ
ルボン酞のグリシゞル゚ステルおよびたたは酢
酞ビニル50〜0.5重量ずからなる共重合䜓であ
る。ここでいうα−オレフむンずぱチレン、プ
ロピレン、ブテン−などであり、゚チレンが奜
たしく䜿甚される。たた、αβ−䞍飜和カルボ
ン酞のグリシゞル゚ステルずは䞀般匏 匏䞭のは氎玠原子たたは䜎玚アルキル基を瀺
すで衚わされる化合物であり、具䜓的にはグリ
シゞルアクリレヌト、グリシゞルメタクリレヌ
ト、グリシゞル゚タクリレヌトなどが挙げられ、
なかでもグリシゞルメタクリレヌトが奜たしく䜿
甚される。(C)オレフむン系共重合䜓におけるα
β−䞍飜和カルボン酞およびたたは酢酞ビニル
の共重合量は0.5〜50重量、ずくに〜20重量
が適圓であり、0.5重量以䞋では本発明の効
果が埗られず、たた50重量以䞊では溶融混緎時
に組成物がゲル化し易くなるため奜たしくない。 しかしお本発明で䜿甚する(C)オレフむン系共重
合䜓の具䜓䟋ずしおは、゚チレングリシゞルメ
タクリレヌト共重合䜓、゚チレングリシゞルメ
タクリレヌト酢酞ビニル共重合䜓および゚チレ
ン酢酞ビニル共重合䜓などが挙げられ、これら
は皮以䞊䜵甚するこずができる。これらの(C)オ
レフむン系共重合䜓の配合量は(A)(C)に察し〜
40重量、ずくに〜30重量で、か぀(B)導電性
金属物質の配合量に比䟋しお遞択されるのが望た
しい。ただし、(C)オレフむン系共重合䜓の配合量
が1.0重量以䞋では機械的性質ず溶融抌出性の
改良効果が小さく、40重量以䞊では熱可塑性ポ
リ゚ステル本来の特性が阻害されるため奜たしく
ない。なおこれらの(C)オレフむン系共重合䜓の添
加時期は、溶融抌出性改善効果を発揮させるため
に、組成物の溶融混合前たたは溶融混合䞭の段階
から遞択すべきである。 なお、本発明の熱可塑性ポリ゚ステル組成物に
はさらに導電性カヌボン粉末や炭玠繊維などの他
の導電性付䞎物質やねりこみ型の各皮垯電防止剀
を添加するこずができ、これらの䜵甚により垯電
防止効果を䞀局たかめるこずができる。ここでい
う各皮垯電防止剀ずしおは、非むオン、陜むオ
ン、陰むオンの各界掻性剀などであり、䟋えばポ
リ゚チレングリコヌル、ドデシルベンれスルホン
酞゜ヌダ、ラりリル硫酞゜ヌダなどがあげられ
る。 たた、本発明の熱可塑性ポリ゚ステル組成物に
は、内郚および倖郚滑剀ずしお働く各皮の滑剀や
離圢剀を添加するこずができ、これらの添加によ
り成圢性を改善するこずができる。これらの滑剀
および離圢剀ずしおは、たずえば脂肪族カルボン
酞金属塩、脂肪酞゚ステル、モンタンロり、有機
シロキサン、合成ロりポリアルキレンワツク
スなどが挙げられる。 本発明の組成物には、本発明の目的を損わない
範囲で通垞の添加剀、䟋えば繊維状および粉末充
填剀䟋えば炭酞カルシりム、炭酞マグネシり
ム、硫酞バリりム、埮粉ケむ酞、ワラステナむ
ト、タルク、クレヌ、マむカ、セリサむト、れオ
ラむト、ベンナむト、ドロマむト、カオリンな
どおよび匷化剀䟋えばガラス繊維、ガラスビ
ヌズなどを含有させるこずができる。たた、可
塑剀、難燃剀、栞剀、酞化防止剀、玫倖線吞収
剀、熱安定剀、顔料、染料などを含有させるこず
ができる。 たた少量の他の熱可塑性暹脂䟋えばポリ゚チ
レン、ポリプロピレン、ABS暹脂、MBS暹脂、
アクリル暹脂、フツ玠暹脂、ポリアミド、ポリア
セタヌル、ポリカヌボネヌト、ポリスルホン、ポ
リプニレンオキサむドなど、熱硬化性暹脂
䟋えばプノヌル暹脂、メラミン暹脂、ポリ゚
ステル暹脂、シリコヌン暹脂、゚ポキシ暹脂な
ど、軟質熱可塑性暹脂䟋えばポリ゚ステル゚
ラストマヌ、゚チレンプロピレンタヌポリマヌ
などを含有させるこずができる。 本発明の熱可塑性ポリ゚ステル組成物の補造方
法にはずくに制限がなく、䟋えば(A)熱可塑性ポリ
゚ステル、(B)導電性金属物質および(C)オレフむン
系共重合䜓の䞉者を予備混合しおたたはせずに抌
出機に䟛絊し、溶融混緎する方法などが採甚され
る。 本発明の組成物を射出成圢、抌出成圢、吹蟌成
圢、圧瞮成圢などの通垞の成圢法に䟛するこずに
より、電気特性ず機械的性質のバランスがすぐれ
た成圢品を埗るこずができ、これらの成圢品は各
皮の電気・電子機噚郚品や電磁遮蔜板などずしお
有甚である。 以䞋に実斜䟋により本発明をさらに説明する。 実斜䟋  (A)盞察粘床1.45のポリブチレンテレフタレヌト
PBT、(B)平均寞法が25Ό×mm×1.4mmのフレ
ヌク状アルミニりムおよび(C)゚チレングリシゞ
ルメタクリレヌト9010重量比共重合䜓を、
(B)(A)(B)(C)が15容量、(C)(A)(B)が10重
量
ずなるように配合し、250℃に蚭定したスクリ
ナヌ抌出機により溶融混緎、ペレタむズした。次
に埗られたペレツトを130℃を熱颚で時間也燥
埌、250℃に蚭定したスクリナヌオンラむン型射
出成圢機に䟛しお、金型枩床80℃の条件でIZOD衝
撃詊隓片および厚みmm×巟40mm×長さ40mmの電
気抵抗枬定甚詊隓片を䜜成した。これらの詊隓片
をNo.ずする。 たた、䞊蚘PBT単独No.およびPBTずフ
レヌク状アルミニりム15容量ずの混合物No.
から䞊蚘ず同様に各詊片を䜜成した。 これらの詊隓片に぀いおASTMD256によりア
むゟツト衝撃匷さを、たたDC䜎抗蚈を甚いお䜓
積固有抵抗率を枬定した。 なお抌出機による溶融混緎時の抌出機に察する
党組成物仕蟌量X1ず埗られたペレツト量X2
を評量し、X2X1×100により、溶融抌出
性を評䟡した。これらの結果を第衚に瀺す。
The present invention relates to a thermoplastic polyester composition that has an excellent balance between electrical properties such as antistatic properties and electromagnetic shielding properties and mechanical properties such as impact resistance and tensile properties, and has good melt extrudability. be. Thermoplastic polyesters such as polyethylene terephthalate and polybutylene terephthalate have excellent mechanical properties and heat resistance and have been used for various purposes, but they inherently have high specific volume resistivity and surface resistivity. Due to its poor electrical properties, its application is currently limited in fields such as electrical and electronic equipment parts. Generally known methods for imparting antistatic properties to thermoplastics include incorporating surfactants, antistatic agents, conductive carbon powder, etc., but in recent years, metal powders and surface metallized glass fibers have been incorporated into thermoplastics. A method of adding a conductive metal substance (for example, Japanese Patent Publication No. 54-19423) is attracting attention.
However, when making thermoplastic polyester conductive with such a conductive metal substance, although the electrical properties are improved, the affinity between the conductive metal substance and the thermoplastic polyester is poor, so the original properties of the thermoplastic polyester are Mechanical properties are reduced,
Not only are electrical and mechanical properties not balanced, but the conductive metal material is bulky.
There are problems in that it is difficult to melt-knead with thermoplastic polyester, and the stability of the gut is extremely poor when the composition is melt-extruded. Therefore, the present inventors conducted studies with the aim of obtaining a thermoplastic polyester composition that has an excellent balance between electrical and mechanical properties and also has good melt extrudability. It has been discovered that the above object can be effectively achieved by further blending a specific amount of a specific olefin copolymer, and the present invention has been achieved. That is, the present invention provides (A) thermoplastic polyester with
(B) At least one conductive material selected from aluminum or silver-coated glass fibers or glass beads, aluminum powder, silver powder, zinc white powder, aluminum flakes, aluminum ribbon, metal fibers, metal whiskers, and metal-coated powders. 50-99.5% by weight of metallic substances and (C) α-olefin
and an olefinic copolymer consisting of glycidyl ester of α,β-unsaturated carboxylic acid and/or vinyl acetate 50 to 0.5% by weight, (B) is 3 to 70% by volume based on the total composition, ( C) is 1 for (A) + (C)
Thermoplastic polyester compositions having a proportion of ˜40% by weight are provided. The specific volume resistivity of a molded product made of thermoplastic polyester alone is usually 10 16 Ω・cm or more, but by adding a specific conductive metal substance to this, the specific volume resistivity of the molded product becomes conductive. It decreases to about 1 to 10 4 Ω・cm depending on the type and amount of the metal substance mixed. Here, the specific volume resistivity is approximately 10 2 ~
10 4 Ω・cm molded products already have sufficient antistatic properties, and the specific volume resistivity is approximately 1~1.
It can be said that a molded product with a resistance of 10 2 Ω·cm has sufficient electromagnetic shielding properties. However, in such a molded article, the inherent mechanical properties of the thermoplastic polyester are significantly reduced by the addition of the conductive metal substance, so that it is impossible to obtain a molded article that satisfies a balance between electrical properties and mechanical properties. However, in the present invention, by adding the olefin copolymer, the mechanical properties of the molded article are further improved compared to the original level of thermoplastic polyester.
Furthermore, not only the specific volume resistivity is further improved, but also the melt extrudability of the composition is greatly improved, making it possible to obtain stable guttation. The thermoplastic polyester (A) used in the present invention is a polymer or copolymer obtained by a condensation reaction containing dicarboxylic acid (or its ester-forming derivative) and diol (or its ester-forming derivative) as main components. be. Examples of dicarboxylic acids include terephthalic acid, isophthalic acid, orthophthalic acid, 2,6-naphthalene dicarboxylic acid, 1,5-naphthalene dicarboxylic acid, bis-benzoic acid, and bis(P-carboxyphenyl).
Aromatic dicarboxylic acids such as methane, anthracene dicarboxylic acid, and 4,4'-diphenyl ether dicarboxylic acid; aliphatic dicarboxylic acids such as adipic acid, sebacic acid, azelaic acid, and dodecanedioic acid; 1,3-cyclohexane dicarboxylic acid; 1,
Alicyclic dicarboxylic acids such as 4-cyclohexanedicarboxylic acid or their ester-forming derivatives may be used alone or in mixtures, and the diol component may include aliphatic glycols having 2 to 20 carbon atoms, such as ethylene glycol, propylene glycol, 1 , 4-butanediol, neopentyl glycol, 1,5-pentanediol, 1,
6-hexanediol, decamethylene glycol, cyclohexanedimethanol, cyclohexanediol, etc., or long chain glycols with a molecular weight of 400 to 6000, such as polyethylene glycol, poly-1,3-propylene glycol, polytetramethylene glycol, etc., and mixtures thereof. can be mentioned. Specific thermoplastic polyesters include polyethylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polypropylene terephthalate, polybutylene terephthalate,
Examples include polyhexamethylene terephthalate, polycyclohexane dimethylene terephthalate, and among these, particularly preferred are polybutylene terephthalate and polyethylene terephthalate, which have good mechanical properties. Further, the above thermoplastic polyester preferably has a relative viscosity of 1.15 to 2.0, particularly 1.3 to 1.8, as measured at 25° C. in a 0.5% orthochlorophenol solution. (B) Conductive metal substances used in the present invention are glass fibers or glass beads coated with aluminum or silver, aluminum powder, silver powder, zinc white powder, aluminum flakes, aluminum ribbons, metal fibers, metal whiskers, and metal coatings. At least one kind selected from powders. The glass fibers or glass beads coated with aluminum or silver herein refer to the glass fibers or glass beads coated with aluminum or silver, which can be produced by vacuum evaporation, silver mirror reaction, or by applying a paint containing aluminum powder or silver powder.
These are surface-metalized glass fibers or glass beads with aluminum or silver adhered to the surface of the glass fibers or glass beads. This surface metalized glass fiber usually has an average diameter of 50Ό or less, especially
10~15Ό and average fiber length less than 50mm, especially 1~30
mm is preferably used. The average diameter of the surface metallized glass beads is preferably 100Ό or less, particularly 50Ό or less. Further, as the aluminum powder, silver powder and zinc white powder, those having an average diameter of 500 Όm or less, particularly 100 Όm or less are preferably used. Aluminum flakes and aluminum ribbons have a thickness of 5~
It is a flake or ribbon shaped plate made of 100Ό aluminum foil. Metal fibers are produced by cutting metal fibers manufactured by wire drawing method, dumbbell drawing method, extrusion method, etc. into appropriate lengths, or by cutting a metal block using the chatter vibration of a cutting blade. obtained aluminum fibers, steel fibers, stainless steel fibers, etc., with an average diameter of
Those having an average fiber length of 500Ό or less, especially 100Ό or less, and an average fiber length of 50mm or less, especially 30mm or less can be preferably used. Metal whiskers are small pieces of metal obtained by, for example, a method of reducing metal halides, and examples include chrome whiskers, copper whiskers, iron whiskers, and nickel whiskers. Metal-coated powder is applied to the surface of inorganic powder or flakes such as talc, kaolin, titanium oxide, and glass, or to the surface of organic polymer powder such as polyester resin, ABS resin, and polyphenylene sulfide resin, for example by electroless plating method. Copper, nickel, silver, etc. are deposited by
Those with a diameter of 500Ό or less are preferably used. Two or more of these conductive metal substances (B) may be used in combination, and the amount thereof is selected from the range of 3 to 70% by volume, particularly 5 to 60% by volume, based on the total composition. (B) If the amount of the conductive metal substance is less than 3% by volume, sufficient conductivity cannot be obtained, and if it is more than 70% by volume,
(C) Even if an olefin copolymer is added, the mechanical properties and melt extrudability will be significantly lowered, which is not preferable. What is the (C) olefin copolymer used in the present invention?
- A copolymer consisting of 50-99.5% by weight of olefin and 50-0.5% by weight of glycidyl ester of α,β-unsaturated carboxylic acid and/or vinyl acetate. The α-olefin referred to herein includes ethylene, propylene, butene-1, etc., and ethylene is preferably used. In addition, the glycidyl ester of α,β-unsaturated carboxylic acid has the general formula (R in the formula represents a hydrogen atom or a lower alkyl group), specific examples include glycidyl acrylate, glycidyl methacrylate, glycidyl ethacrylate, etc.
Among them, glycidyl methacrylate is preferably used. (C) α in olefin copolymer,
The copolymerization amount of β-unsaturated carboxylic acid and/or vinyl acetate is suitably 0.5 to 50% by weight, especially 1 to 20% by weight; if it is less than 0.5% by weight, the effect of the present invention cannot be obtained; % or more is not preferable because the composition tends to gel during melt-kneading. Specific examples of the (C) olefin copolymer used in the present invention include ethylene/glycidyl methacrylate copolymer, ethylene/glycidyl methacrylate/vinyl acetate copolymer, and ethylene/vinyl acetate copolymer. These can be used in combination of two or more. The blending amount of these (C) olefin copolymers is 1 to (A) + (C).
It is preferably 40% by weight, particularly 3 to 30% by weight, and selected in proportion to the amount of the conductive metal substance (B). However, if the blending amount of (C) olefin copolymer is less than 1.0% by weight, the effect of improving mechanical properties and melt extrudability will be small, and if it is more than 40% by weight, the inherent properties of thermoplastic polyester will be inhibited, which is undesirable. . The timing of addition of the olefin copolymer (C) should be selected before or during melt mixing of the composition in order to exhibit the effect of improving melt extrudability. The thermoplastic polyester composition of the present invention may further contain other conductivity-imparting substances such as conductive carbon powder and carbon fibers, as well as various types of antistatic agents. The effect can be further enhanced. The various antistatic agents mentioned herein include nonionic, cationic, and anionic surfactants, such as polyethylene glycol, sodium dodecylbenzesulfonate, and sodium lauryl sulfate. Further, various lubricants and mold release agents that act as internal and external lubricants can be added to the thermoplastic polyester composition of the present invention, and moldability can be improved by adding these agents. Examples of these lubricants and mold release agents include aliphatic carboxylic acid metal salts, fatty acid esters, montan wax, organic siloxanes, and synthetic waxes (polyalkylene waxes). The composition of the present invention may contain conventional additives such as fibrous and powder fillers (e.g. calcium carbonate, magnesium carbonate, barium sulfate, finely divided silicic acid, wollastenite, talc, clay, mica, sericite, zeolite, bennite, dolomite, kaolin, etc.) and reinforcing agents (eg, glass fibers, glass beads, etc.). Additionally, plasticizers, flame retardants, nucleating agents, antioxidants, ultraviolet absorbers, heat stabilizers, pigments, dyes, and the like can be contained. Also small amounts of other thermoplastic resins (e.g. polyethylene, polypropylene, ABS resin, MBS resin,
Acrylic resins, fluororesins, polyamides, polyacetals, polycarbonates, polysulfones, polyphenylene oxides, etc.), thermosetting resins (e.g. phenolic resins, melamine resins, polyester resins, silicone resins, epoxy resins, etc.), soft thermoplastic resins ( For example, polyester elastomers, ethylene/propylene terpolymers, etc.) can be included. There are no particular restrictions on the method for producing the thermoplastic polyester composition of the present invention, and for example, by premixing (A) thermoplastic polyester, (B) conductive metal material, and (C) olefinic copolymer. Alternatively, a method of supplying the material to an extruder without melting and kneading may be adopted. By subjecting the composition of the present invention to conventional molding methods such as injection molding, extrusion molding, blow molding, and compression molding, molded products with an excellent balance of electrical properties and mechanical properties can be obtained, and these molded products The products are useful as parts of various electrical and electronic devices and electromagnetic shielding plates. The present invention will be further explained below with reference to Examples. Example 1 (A) polybutylene terephthalate (PBT) with a relative viscosity of 1.45, (B) flaky aluminum with average dimensions of 25 Ό x 1 mm x 1.4 mm and (C) ethylene/glycidyl methacrylate (90/10 weight ratio) copolymer. The union,
(B)/(A)+(B)+(C) was mixed at 15% by volume and (C)/(A)+(B) was mixed at 10% by weight in a screw extruder set at 250℃. The mixture was melt-kneaded and pelletized. Next, the obtained pellets were dried with hot air at 130°C for 3 hours, and then subjected to a screw-on-line injection molding machine set at 250°C to produce I ZOD impact test pieces and 3 mm thick A test piece for measuring electrical resistance with a width of 40 mm and a length of 40 mm was prepared. These test pieces will be referred to as (No. 3). In addition, the above-mentioned PBT alone (No. 1) and a mixture of PBT and 15% by volume of flaky aluminum (No.
2), each specimen was prepared in the same manner as above. The Izot impact strength of these test pieces was measured using ASTMD256, and the volume resistivity was measured using a DC resistance meter. In addition, the amount of the total composition charged to the extruder during melt-kneading by the extruder X 1 g and the amount of pellets obtained X 2 g
The melt extrudability was evaluated using X 2 /X 1 ×100 (%). These results are shown in Table 1.

【衚】 第衚から明らかなように、本発明の組成物
No.は、電気特性ず機械的性質が均衡にすぐ
れ、抌出安定性も極めお改善される。 実斜䟋  (A)盞察粘床1.45のポリブチレンテレフタレヌ
ト、(B)第衚に瀺した皮類の導電性金属物質およ
び(C)第衚に瀺した共重合組成のオレフむン系共
重合䜓をそれぞれ第衚の量比で配合し、実斜䟋
ず同様に成圢しお埗た詊隓片に぀いお、機械的
性質、電気特性および溶融抌出性を評䟡した。こ
の結果を第衚に瀺す。なお第衚䞭の略号たた
は物質各の詳现は次のずおりである。 Alフレヌク平均25Ό×mm×1.4mmサむズのフレ
ヌク状アルミニりム Al−GFアルミニりムを平均厚さ2.5Όコヌテむ
ングした平均埄15Ό×mmサむズのア
ルミニりム被芆ガラス繊維 Al−フアむバ平均埄65Ό×mmサむズのフアむ
バ状アルミニりム Al−リボン平均20Ό×100Ό×mmサむズのリボ
ン状アルミニりム Al−GBアルミニりムを平均厚さ2Όコヌテむン
グした平均粒埄28Όサむズのアルミニ
りム被芆ガラスビヌズ Ag−GB銀を平均厚さ1Όコヌテむングした平均
粒埄28Όサむズの銀被芆ガラスビヌズ 黄銅繊維平均埄50Ό×mmサむズの繊維状黄銅 亜鉛華粉末平均粒埄2Όサむズの粉状亜鉛華 導電性カヌボン粉末平均粒埄50〜60Όのカヌボ
ンブラツク 炭玠繊維平均埄8.5Ό×mmの炭玠繊維 GMAVA゚チレングリシゞルメタク
リレヌト酢酞ビニル共重合䜓
[Table] As is clear from Table 1, the composition of the present invention (No. 3) has well-balanced electrical properties and mechanical properties, and has extremely improved extrusion stability. Example 2 (A) polybutylene terephthalate with a relative viscosity of 1.45, (B) a conductive metal material of the type shown in Table 2, and (C) an olefin copolymer with a copolymer composition shown in Table 2, respectively. The mechanical properties, electrical properties, and melt extrudability of test pieces obtained by blending in the ratios shown in Table 2 and molding in the same manner as in Example 1 were evaluated. The results are shown in Table 2. The details of each abbreviation or substance in Table 2 are as follows. Al flakes: Aluminum flakes with an average size of 25 Ό x 1 mm x 1.4 mm Al-GF: Aluminum coated glass fiber with an average diameter of 15 Ό x 6 mm coated with aluminum to an average thickness of 2.5 Ό Fiber: Aluminum coated glass fiber with an average diameter of 65 Ό x 6 mm Fiber-shaped aluminum Al-ribbon: Ribbon-shaped aluminum with an average size of 20 Ό x 100 Ό x 6 mm Al-GB: Aluminum coated glass beads with an average particle size of 28 Ό coated with aluminum to an average thickness of 2 Ό Ag-GB: Silver coated with an average thickness of 1 Ό Coated silver coated glass beads Brass fiber with an average particle size of 28Ό: Fibrous brass zinc oxide powder with an average diameter of 50Ό x 3mm: Powdered zinc oxide conductive carbon powder with an average particle size of 2Ό: Average particle size 50 to 60Ό Carbon black Carbon fiber: Carbon fiber with an average diameter of 8.5 Ό x 3 mm E/GMA/VA: Ethylene/glycidyl methacrylate/vinyl acetate copolymer

【衚】 第衚からは、オレフむン系共重合䜓の添加に
より組成物の電気特性および機械的性質が向䞊
し、溶融抌出性が著しく改善されるこずが明らか
である。 実斜䟋  (A)盞察粘床1.35のポリ゚チレンテレフタレヌト
PET、(B)平均寞法が25Ό×mm×1.4mmのフレヌ
ク状アルミニりムおよび(C)゚チレングリシゞル
メタクリレヌト9010重量比共重合䜓を、
(B)(A)(B)(C)が30容量、(C)(A)(C)が10重
量
ずなるように配合し、285℃に蚭定したスクリ
ナヌ抌出機により溶融混緎、ペレタむズした。埗
られたペレツトを130℃の熱颚で時間也燥埌、
285℃に蚭定したスクリナヌオンラむン型射出成
圢機に䟛し、金型枩床150℃の条件で実斜䟋ず
同様の詊隓片No.を䜜成した。同様にPET
単独No.およびPETずフレヌク状アルミニ
りム30容量ずの混合物No.から詊隓片を䜜
成した。 これらの詊隓片に぀いおの評䟡結果を第衚に
瀺す。
[Table] It is clear from Table 2 that the addition of the olefinic copolymer improves the electrical and mechanical properties of the composition and significantly improves the melt extrudability. Example 3 (A) Polyethylene terephthalate (PET) with a relative viscosity of 1.35, (B) flaky aluminum with average dimensions of 25 Ό x 1 mm x 1.4 mm, and (C) ethylene/glycidyl methacrylate (90/10 weight ratio) copolymer. of,
(B)/(A)+(B)+(C) is mixed at 30% by volume and (C)/(A)+(C) is mixed at 10% by weight in a screw extruder set at 285℃. The mixture was melt-kneaded and pelletized. After drying the obtained pellets with hot air at 130℃ for 5 hours,
A test piece (No. 6) similar to that in Example 1 was prepared using a screw-on-line injection molding machine set at 285°C and a mold temperature of 150°C. Similarly PET
Test specimens were prepared from PET alone (No. 4) and from a mixture of PET and 30% by volume of flaky aluminum (No. 5). Table 3 shows the evaluation results for these test pieces.

【衚】 第衚から明らかなようにPETの堎合も、
PBTず同様の効果が埗られる。
[Table] As is clear from Table 3, in the case of PET,
The same effect as PBT can be obtained.

Claims (1)

【特蚱請求の範囲】[Claims]  (A)熱可塑性ポリ゚ステルに(B)アルミニりムた
たは銀で被芆されたガラス繊維たたはガラスビヌ
ズ、アルミニりム粉末、銀粉末、亜鉛華粉末、ア
ルミニりムフレヌク、アルミニりムリボン、金属
繊維、金属りむスカおよび金属被芆粉末から遞ば
れた少なくずも皮の導電性金属物質および(C)α
−オレフむン50〜99.5重量ずαβ−䞍飜和カ
ルボン酞のグリシゞル゚ステルおよびたたは酢
酞ビニル50〜0.5重量からなるオレフむン系共
重合䜓を配合しおなり、(B)が党組成物圓り〜70
容量、(C)が(A)(C)に察し、〜40重量の割合
からなる熱可塑性ポリ゚ステル組成物。
1. From (A) thermoplastic polyester (B) glass fibers or glass beads coated with aluminum or silver, aluminum powder, silver powder, zinc white powder, aluminum flakes, aluminum ribbon, metal fibers, metal whiskers and metal coated powders. At least one selected conductive metal substance and (C)α
- an olefin copolymer consisting of 50 to 99.5% by weight of olefin and 50 to 0.5% by weight of glycidyl ester of α,β-unsaturated carboxylic acid and/or vinyl acetate, in which (B) is based on the total composition; 370
A thermoplastic polyester composition in which (C) is 1 to 40% by volume based on (A) + (C).
JP18688381A 1981-11-24 1981-11-24 Thermoplastic polyester composition Granted JPS5889646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18688381A JPS5889646A (en) 1981-11-24 1981-11-24 Thermoplastic polyester composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18688381A JPS5889646A (en) 1981-11-24 1981-11-24 Thermoplastic polyester composition

Publications (2)

Publication Number Publication Date
JPS5889646A JPS5889646A (en) 1983-05-28
JPH0160505B2 true JPH0160505B2 (en) 1989-12-22

Family

ID=16196345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18688381A Granted JPS5889646A (en) 1981-11-24 1981-11-24 Thermoplastic polyester composition

Country Status (1)

Country Link
JP (1) JPS5889646A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59197453A (en) * 1983-04-23 1984-11-09 Kanebo Ltd Electrically conductive polyester resin composition
JPS6112745A (en) * 1984-06-27 1986-01-21 Toray Ind Inc Hollow article of polybutylene terephthalate
WO1993004123A1 (en) * 1991-08-27 1993-03-04 General Electric Company Thermoplastic molding compositions
JP2012184346A (en) * 2011-03-07 2012-09-27 Teijin Ltd Polyester composition and polyester molding

Also Published As

Publication number Publication date
JPS5889646A (en) 1983-05-28

Similar Documents

Publication Publication Date Title
US4111892A (en) Reinforced fire retardant resin composition improved in electrical characteristics
JPH10152607A (en) Method and composition for reinforcing polyester resin
KR920006217B1 (en) Polyarlylene sulfide resin composition
JPH0662837B2 (en) Flame-retardant polybutylene terephthalate composition
JPS59189170A (en) Thermoplastic resin molding composition
JPH0114935B2 (en)
JPH0160505B2 (en)
CA2081529C (en) Electrical and electronic parts formed of polybutylene naphthalenedicarboxylate
JP2732986B2 (en) Resin composition for shielding electromagnetic waves
EP0342780A2 (en) Thermoplastic polyester resin composition
JP2004067852A (en) Polyester resin composition
JP2726580B2 (en) Sliding property improved polyarylene sulfide resin composition
KR100582338B1 (en) Polyester Resin Compositions with Excellent Heat Resistance and Surface Finish
JPS6348900B2 (en)
JP2819506B2 (en) Resin composition for shielding electromagnetic waves
JP2000038497A (en) Black polyester resin composition and its molded product
KR100903675B1 (en) Thermoplastic resin composition with high flowability, good impact strength and thermostability
JPH07188529A (en) Polyalkylene terephthalate injection molding compound
JPH0689232B2 (en) Polybutylene terephthalate composition
US5290864A (en) Thermoplastic polybutylene terephthalate resin compositions and molded articles formed thereof
JPS5889647A (en) Preparation of thermoplastic polyester composition
JP2002241605A (en) Resin structure
JPH0657792B2 (en) Polyarylene sulfide resin composition
JPH0759666B2 (en) Polyarylene sulfide resin composition
JP2000154308A (en) Flame retardant polyester resin composition