JPH0160045B2 - - Google Patents

Info

Publication number
JPH0160045B2
JPH0160045B2 JP17560581A JP17560581A JPH0160045B2 JP H0160045 B2 JPH0160045 B2 JP H0160045B2 JP 17560581 A JP17560581 A JP 17560581A JP 17560581 A JP17560581 A JP 17560581A JP H0160045 B2 JPH0160045 B2 JP H0160045B2
Authority
JP
Japan
Prior art keywords
polyester
acidic
spinning
degree
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17560581A
Other languages
Japanese (ja)
Other versions
JPS5879012A (en
Inventor
Toshihiro Mita
Hironori Yamada
Toshiro Itsushiki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP17560581A priority Critical patent/JPS5879012A/en
Publication of JPS5879012A publication Critical patent/JPS5879012A/en
Publication of JPH0160045B2 publication Critical patent/JPH0160045B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)
  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はポリエステルの製造法、更に詳しくは
高速紡糸に適したポリエステルの製造法に関す
る。 ポリエステル、特にポリアルキレンテレフタレ
ートは多くの優れた特性を有するため繊維、フイ
ルム、樹脂等巾広い分野に利用されている。なか
でもポリエチレンテレフタレートで代表されるポ
リエステルは繊維の分野において最も巾広く大量
に利用されている。 従来、ポリエステル繊維、例えばポリエステル
フイラメントの加工糸を製造するには、紡糸・延
伸・仮撚加工をそれぞれ別工程で行なう方法が主
流となつていた。しかしながら、近年紡糸速度を
高速化することにより中位配向未延伸糸が出現
し、延伸仮撚加工を連続して1段で行なう、所謂
るPOY−DTY法が行なわれるようになつてい
る。この方法はポリエステルフイラメントの加工
糸製造工程の生産性向上及び工程短縮化が可能と
なり、製造コストの低減の観点からも優れてお
り、今後の製糸技術の主流をなすものである。 しかしながら、紡糸技術を高速化するに従い
種々の問題が発生してきた。例えば紡糸速度が
2500m/分以上、特に3000m/分以上の高速域に
おいては、しばしば紡糸時の断糸、延伸仮撚加工
時の断糸等の製糸工程調子の悪化及び得られる加
工糸に毛羽の発生、強度低下、染着斑の発生等の
品質低下といつた問題が発生し、紡糸速度の高速
化による生産性向上を充分に満足させることは極
めて困難であつた。 これら問題点の対策として種々の検討がなされ
ている。例えば紡糸温度、冷却用空気の風量・温
度等の紡糸条件の最適化、紡糸筒、紡糸口金等の
改良が試みられているが、充分に改善するには到
つていない。また、ポリエステルの改質について
も検討されており、ジエチレングリコールやポリ
オキシエチレングリコールの如きポリアルキレン
グリコール、スルホネート基を有する化合物、ペ
ンタエリスリトール、トリメリツト酸、トリメチ
ロールプロパンの如き連鎖分枝剤等の共重合、更
にはカオリナイト、カルシウムやリチウムの如き
金属種の添加等数多くの試みがなされている。し
かしながら、共重合による改良法はポリエステル
のもつ優れた特性の低下が伴ない、カルシウムや
リチウム等の金属の添加はポリマー中の異物の原
因となり、紡糸パツク圧の上昇、紡糸口金周辺の
異物堆積といつた好ましからざる現象をも誘引
し、好ましい対策とはいいがたい。 本発明者らはかかる欠点を防止し、高速防止域
においても生産性が高くかつ品質低下のない条件
について種々検討したところ、高速紡糸により得
られた紡出糸の配向度、結晶化度といつたその微
細構造に基づく要因が製糸工程調子及び品質に大
きく関与し、特に生産性及び品質に対して最も有
利な条件は得られた紡出糸が高配向度で且つ低結
晶化度であるという知見が得られた。この知見に
基づき高速紡糸域において、高配向度で低結晶化
度である紡出糸が得られるポリエステルを提供せ
んとして鋭意研究したところ、ポリエステルの製
造反応が完結するまでに特定の化合物を添加すれ
ば、上記目的が達成できることを知り、本発明に
到つた。 即ち、本発明はテレフタル酸を主とする二官能
性カルボン酸又はそのジメチルエステルと少なく
とも一種のグリコールとを反応せしめ、次いで該
反応生成物を重縮合せしめてポリエステルを製造
するに当り、該製造反応が完結するまでの任意の
段階で酸性亜硫酸アルカリ金属塩及び酸性亜硫酸
アルカリ土類金属からなる群から選ばれた少なく
とも一種の化合物を添加することを特徴とするポ
リエステルの製造法である。 本発明で言うポリエステルは、テレフタル酸又
はそのジメチルエステルとアルキレングリコール
とから得られるポリアルキレンテレフタレートを
主たる対象とし、ここで使用するアルキレングリ
コールとしては、炭素数2〜6のアルキレングリ
コールが好ましく、なかでもエチレングリコー
ル、トリメチレングリコール、テトラメチレング
リコールが特に好ましい。また、第3成分として
テレフタル酸以外の二官能性カルボン酸成分及
び/又は主成分とするアルキレングリコール以外
のジオール化合物を共重合せしめたポリエステル
であつてもよい。 かかるポリエステルを製造するには、所謂エス
テル化法又はエステル交換法が採用される。例え
ばポリエチレンテレフタレートについて説明する
と、テレフタル酸又はテレフタル酸ジメチルとエ
チレングリコールとを加熱して発生する水又はメ
タノールを留出させながらエステル化又はエステ
ル交換反応させ、得られた反応生成物を減圧下加
熱して所望の重合度になるまで重縮合反応させる
方法で製造される。なお、この製造反応には必要
に応じて触媒を使用することができ、特に重縮合
触媒としてアンチモン化合物を使用するとき、本
発明はより大きな効果を奏することができる。 本発明において上記ポリエステルの製造に当つ
て添加する化合物は酸性亜硫酸アルカリ金属塩及
び/又は酸性亜硫酸アルカリ土類金属塩であり、
この金属塩の好ましい具体例としては酸性亜硫酸
リチウム、酸性亜硫酸カリウム、酸性亜硫酸ナト
リウム、酸性亜硫酸ルビジウムの如きアルカリ金
属の塩、酸性亜硫酸カルシウム、酸性亜硫酸マグ
ネシウム、酸性亜硫酸バリウムの如きアルカリ土
類金属の塩をあげることができる。これら添加剤
は一種のみ単独で使用しても、2種以上使用して
もよい。 かかる添加剤の使用量は、極めて少量で目的と
する高配向度で低結晶化度の紡出糸を得ることが
できるが、ポリエステルを構成する二官能性カル
ボン酸成分に対して1ミリモル%以上使用するの
が好ましい。また、その上限も特に制限する必要
はないが、あまりに多くなるとポリエステルに着
色や異物が発生するようになるので、20モル%以
下が好ましい。特に好ましい使用量は1ミリモル
%以上5モル%以下の範囲である。 また、その添加時期は、重縮合反応が完結する
以前であれば何時でもよいが、重縮合初期以前具
体的にはポリマーの数平均重合度が30に到達する
以前に添加するのが好ましい。その添加手段は任
意でよく、例えば添加剤をそのまま添加しても、
グリコールの溶液又はスラリーとして添加して
も、水溶液として添加してもよい。 このようにして得られるポリエステルを紡糸速
度が2500m/分以上特に3000m/分以上に高速域
において紡糸して、配向度が高くかつ結晶化度が
低い紡出糸を断糸等のトラブルを起こすことなく
容易に製造できるため、紡糸速度をさらに高速化
することができ、より一層の生産性の向上も可能
となる。また、得られた紡出糸の繊維配向度及び
結晶化度のバラツキが少なく、加工時のトラブル
もなく、最終的に得られる加工糸は染着斑等の品
質変動も低下し、品質の安定したものである。更
にこのポリエステルは、バルク状態では易結晶性
を呈するため、繊維以外の一般成形用途、樹脂用
途にも極めて有用である。 なお、本発明の方法で得られるポリエステルに
は各種添加剤例えば制電剤、易染剤、着色剤等必
要に応じて混合添加してもよく、エーテル生成防
止剤、結晶剤との併用も何ら支障なく採用でき
る。 次に実施例を挙げて本発明を詳細に説明する。
実施例中の部は重量部を示し、実施例中に使用す
る記号及び測定法は下記に説明する。 〔η〕:30℃のオルソクロロフエノール溶媒中で
測定したポリマーの粘度より求めた極限粘度。 col−L、col−b:ポリマーの色相を表わし、ハ
ンター型色差計を用いて測定した。 col−Lの値は大きい程ポリマーの白度が高く、
col−bの値は大きい程ポリマーの黄味が強い
ことを示す。 △n:紡出糸の配向度を示し、ベレツク
(Berek)法で測定した。 沸水収縮率(BWS):繊維の結晶化度は次式で求
められる沸水収縮率(BWS)で表わした。沸
水収縮率(BWS)の値が大きい程、低結晶化
度であることを示している。 BWS=Lo−Lf/Lo×100 Lo:高速紡糸により得られた紡出糸の繊維長 Lf:得られた紡出糸を沸水中に30分間保持した
後の繊維長 紡糸継手:2.5Kg捲き100本中の本数で示した。 実施例 1 ジメチルテレフタレート970部、エチレングリ
コール640部、エステル交換触媒として酢酸マン
ガン0.31部及び酸性亜硫酸ナトリウム0.1部を撹
拌後、精留塔及びコンデンサーを設けた反応器に
仕込み、140℃から230℃に加熱し生成するメタノ
ールを系外に留去させながらエステル交換反応せ
しめた。反応開始後3時間で内温が230℃に達し
た段階で安定剤としてトリメチルフオスフエート
0.18部を加え、10分後に重縮合触媒として三酸化
アンチモン0.4部及び艶消剤として二酸化チタン
2.91部とエチレングリコール11.6部よりなるスラ
リーを加えた後、撹拌機、グリコール留出コンデ
ンサーを設けた重合釜に移し、重縮合反応せしめ
た。得られたポリマーの品質は表−1に示した。 次にこのポリマーを紡糸速度3600m/分にて
115デニール/36フイラメントに紡糸し、得られ
た紡出糸の物性及び紡糸継糸について表−1に併
せて示した。表−1より明らかな如く得られた紡
出糸は高配向度・低結晶化度であり、紡糸継糸も
なく良好な結果であつた。 実施例 2 実施例1において使用した酸性亜硫酸ナトリウ
ムに代えて酸性亜硫酸カルシウム0.06部を使用す
る以外は実施例1と同様に行なつた。結果は表−
1に示す如く高配向度・低結晶化度の紡出糸が得
られ、紡糸継糸も0本と良好であつた。 実施例 3〜5 実施例1において使用した酸性亜硫酸ナトリウ
ムの使用量及び添加時期を表−1記載の通りにす
る以外は実施例1と同様に行なつた。結果は表−
1に示す如く高配向度・低結晶化度の紡出糸が得
られ、紡糸断糸も0本と良好であつた。 比較例 酸性亜硫酸ナトリウムを使用しない以外は実施
例1と同様に行なつた。結果は表−1に示す如く
低配向度・高結晶化度であり、紡糸断糸も10本と
不良であつた。
The present invention relates to a method for producing polyester, and more particularly to a method for producing polyester suitable for high-speed spinning. Polyester, particularly polyalkylene terephthalate, has many excellent properties and is therefore used in a wide range of fields such as fibers, films, and resins. Among them, polyesters represented by polyethylene terephthalate are most widely used in large quantities in the textile field. Conventionally, in order to produce processed yarns of polyester fibers, such as polyester filaments, the mainstream method has been to perform spinning, drawing, and false twisting in separate steps. However, in recent years, by increasing the spinning speed, intermediately oriented undrawn yarns have appeared, and the so-called POY-DTY method, in which drawing and false twisting are performed in one continuous stage, has come to be practiced. This method makes it possible to improve the productivity and shorten the process of manufacturing processed polyester filament yarn, and is also excellent from the viewpoint of reducing manufacturing costs, and will become the mainstream of future yarn spinning technology. However, as the speed of spinning technology increases, various problems have arisen. For example, the spinning speed
At high speeds of 2,500 m/min or higher, especially 3,000 m/min or higher, the quality of the spinning process often deteriorates, such as yarn breakage during spinning or yarn breakage during stretching and false twisting, and the resulting processed yarn becomes fluffy and its strength decreases. Problems such as quality deterioration such as the occurrence of dyeing spots occurred, and it was extremely difficult to sufficiently improve productivity by increasing the spinning speed. Various studies have been made to address these problems. For example, attempts have been made to optimize spinning conditions such as spinning temperature, cooling air flow rate and temperature, and to improve spinning tubes, spinnerets, etc., but sufficient improvements have not been achieved. Modification of polyester is also being studied, including copolymerization with polyalkylene glycols such as diethylene glycol and polyoxyethylene glycol, compounds with sulfonate groups, and chain branching agents such as pentaerythritol, trimellitic acid, and trimethylolpropane. Furthermore, many attempts have been made to add metal species such as kaolinite, calcium, and lithium. However, the improvement method by copolymerization is accompanied by a decrease in the excellent properties of polyester, and the addition of metals such as calcium and lithium causes foreign matter in the polymer, resulting in increased spin pack pressure and foreign matter accumulation around the spinneret. It is difficult to say that this is a desirable countermeasure, as it also induces other undesirable phenomena. The present inventors investigated various conditions for preventing such drawbacks and achieving high productivity and no quality deterioration even in the high-speed prevention range, and found that the degree of orientation and crystallinity of spun yarn obtained by high-speed spinning Factors based on the fine structure of the yarn greatly affect the quality and quality of the spinning process, and in particular, the most advantageous conditions for productivity and quality are that the resulting spun yarn has a high degree of orientation and a low degree of crystallinity. Knowledge was obtained. Based on this knowledge, we conducted intensive research to provide a polyester that can yield spun yarn with a high degree of orientation and low crystallinity in the high-speed spinning range. Therefore, the inventors have found that the above object can be achieved, and have arrived at the present invention. That is, the present invention involves reacting a difunctional carboxylic acid mainly consisting of terephthalic acid or its dimethyl ester with at least one type of glycol, and then polycondensing the reaction product to produce a polyester. This method of producing polyester is characterized in that at least one compound selected from the group consisting of acidic alkali metal sulfites and alkaline earth metal acidic sulfites is added at any stage until the completion of the process. The polyester referred to in the present invention mainly refers to polyalkylene terephthalate obtained from terephthalic acid or its dimethyl ester and alkylene glycol, and the alkylene glycol used here is preferably an alkylene glycol having 2 to 6 carbon atoms. Particularly preferred are ethylene glycol, trimethylene glycol, and tetramethylene glycol. Further, the third component may be a polyester copolymerized with a bifunctional carboxylic acid component other than terephthalic acid and/or a diol compound other than the alkylene glycol as the main component. In order to produce such polyester, a so-called esterification method or transesterification method is employed. For example, to explain polyethylene terephthalate, terephthalic acid or dimethyl terephthalate and ethylene glycol are heated to cause an esterification or transesterification reaction while distilling off the generated water or methanol, and the resulting reaction product is heated under reduced pressure. It is produced by a method of carrying out a polycondensation reaction until a desired degree of polymerization is achieved. Note that a catalyst can be used in this production reaction if necessary, and in particular, when an antimony compound is used as a polycondensation catalyst, the present invention can achieve greater effects. In the present invention, the compound added in the production of the polyester is an acidic alkali metal sulfite salt and/or an acidic alkaline earth metal sulfite salt,
Preferred specific examples of the metal salts include salts of alkali metals such as acidic lithium sulfite, acidic potassium sulfite, acidic sodium sulfite, and acidic rubidium sulfite; alkaline earth metal salts such as acidic calcium sulfite, acidic magnesium sulfite, and acidic barium sulfite. can be given. These additives may be used alone or in combination of two or more. The amount of such additives used is such that a spun yarn with the desired high degree of orientation and low degree of crystallinity can be obtained with a very small amount; It is preferable to use Further, there is no need to particularly limit the upper limit, but if the amount is too large, the polyester will be colored or foreign matter will be generated, so it is preferably 20 mol% or less. A particularly preferable usage amount is in the range of 1 mmol% or more and 5 mol% or less. The addition time may be any time before the polycondensation reaction is completed, but it is preferably added before the initial stage of polycondensation, specifically before the number average degree of polymerization of the polymer reaches 30. The addition means may be arbitrary, for example, adding the additive as it is,
It may be added as a glycol solution or slurry, or as an aqueous solution. When the polyester thus obtained is spun at a spinning speed of 2,500 m/min or higher, especially 3,000 m/min or higher, problems such as breakage of the spun yarn with a high degree of orientation and low crystallinity may occur. Since it can be easily manufactured without any process, the spinning speed can be further increased, and productivity can be further improved. In addition, there is little variation in the degree of fiber orientation and crystallinity of the obtained spun yarn, there is no trouble during processing, and the quality fluctuations such as dyeing spots in the final processed yarn are reduced, resulting in stable quality. This is what I did. Furthermore, since this polyester exhibits easy crystallinity in a bulk state, it is extremely useful for general molding applications other than fibers and resin applications. In addition, various additives such as antistatic agents, dye-facilitating agents, coloring agents, etc. may be mixed and added to the polyester obtained by the method of the present invention, as necessary, and ether formation inhibitors and crystallizing agents may also be used in combination. It can be adopted without any problem. Next, the present invention will be explained in detail with reference to Examples.
Parts in the examples indicate parts by weight, and symbols and measurement methods used in the examples are explained below. [η]: Intrinsic viscosity determined from the viscosity of the polymer measured in orthochlorophenol solvent at 30°C. col-L, col-b: represents the hue of the polymer, and was measured using a Hunter type color difference meter. The higher the value of col-L, the higher the whiteness of the polymer.
The larger the value of col-b, the stronger the yellowness of the polymer. Δn: Indicates the degree of orientation of the spun yarn and was measured by the Berek method. Boiling water shrinkage (BWS): The degree of crystallinity of the fiber was expressed as boiling water shrinkage (BWS) determined by the following formula. The larger the value of boiling water shrinkage (BWS), the lower the degree of crystallinity. BWS=Lo−Lf/Lo×100 Lo: Fiber length Lf of spun yarn obtained by high-speed spinning: Fiber length after holding the obtained spun yarn in boiling water for 30 minutes Spun joint: 2.5Kg winding 100 It is indicated by the number of books in the book. Example 1 After stirring 970 parts of dimethyl terephthalate, 640 parts of ethylene glycol, 0.31 part of manganese acetate as a transesterification catalyst, and 0.1 part of acidic sodium sulfite, the mixture was charged into a reactor equipped with a rectification column and a condenser, and heated from 140°C to 230°C. The transesterification reaction was carried out while heating and producing methanol was distilled out of the system. Trimethyl phosphate was added as a stabilizer when the internal temperature reached 230℃ 3 hours after the start of the reaction.
After 10 minutes, add 0.18 parts of antimony trioxide as a polycondensation catalyst and titanium dioxide as a matting agent.
After adding a slurry consisting of 2.91 parts of ethylene glycol and 11.6 parts of ethylene glycol, the mixture was transferred to a polymerization vessel equipped with a stirrer and a glycol distillation condenser, and a polycondensation reaction was carried out. The quality of the obtained polymer is shown in Table-1. Next, this polymer was spun at a spinning speed of 3600 m/min.
The physical properties of the resulting spun yarn and spun yarn are also shown in Table 1. As is clear from Table 1, the obtained spun yarn had a high degree of orientation and a low degree of crystallinity, and there was no spun splicing yarn, giving good results. Example 2 The same procedure as in Example 1 was carried out except that 0.06 part of acidic calcium sulfite was used in place of the acidic sodium sulfite used in Example 1. The results are in the table-
As shown in Fig. 1, a spun yarn with a high degree of orientation and a low degree of crystallinity was obtained, and the number of spun spliced yarns was also zero, which was good. Examples 3 to 5 The same procedure as in Example 1 was conducted except that the amount of sodium acid sulfite used in Example 1 and the timing of addition were changed as shown in Table-1. The results are in the table-
As shown in Fig. 1, spun yarn with a high degree of orientation and low crystallinity was obtained, and the number of yarn breakages was also good, with no yarn breakage. Comparative Example The same procedure as in Example 1 was carried out except that sodium acid sulfite was not used. As shown in Table 1, the results were that the degree of orientation was low and the degree of crystallinity was high, and the number of broken yarns was 10, which was poor.

【表】 実施例 6 実施例1において使用した酸性亜硫酸ナトリウ
ムの使用量を2部にする以外は実施例1と同様に
してポリマーを製造した。得られたポリエステル
の〔η〕は0.639、軟化点は263.1℃、col−Lは
69.3、col−bは8.5であつた。また、このポリエ
ステルの20℃/分の昇温速度におけるDSC(示差
熱分析機)の結果、昇温時の結晶化温度Tciは
135℃、溶融した後の降温時の結晶化温度Tcdは
213℃で △T=Tcd−Tci=78℃ と極めて易結晶性であつた。 これに対し、前記比較例で得たポリエステル同
一条件下でのDSCの結果はTciが136℃、Tcdが
202℃で△Tは66℃であつた。
[Table] Example 6 A polymer was produced in the same manner as in Example 1 except that the amount of sodium acid sulfite used in Example 1 was changed to 2 parts. [η] of the obtained polyester is 0.639, the softening point is 263.1℃, and the col-L is
69.3, col-b was 8.5. Additionally, as a result of DSC (differential thermal analyzer) at a heating rate of 20°C/min for this polyester, the crystallization temperature Tci during heating was found to be
The crystallization temperature Tcd when cooling down after melting at 135℃ is
At 213°C, ΔT=Tcd−Tci=78°C, indicating extremely easy crystallinity. On the other hand, the DSC results for the polyester obtained in the comparative example above under the same conditions show that Tci is 136°C and Tcd is
At 202°C, ΔT was 66°C.

Claims (1)

【特許請求の範囲】[Claims] 1 テレフタル酸を主とする二官能性カルボン酸
又はそのジメチルエステルと少なくとも一種のグ
リコールとを反応せしめ、次いで該反応生成物を
重縮合せしめてポリエステルを製造するに当り、
該製造反応が完結するまでの任意の段階で、酸性
亜硫酸アルカリ金属塩及び酸性亜硫酸アルカリ土
類金属塩からなる群より選ばれた少なくとも一種
の化合物を添加することを特徴とするポリエステ
ルの製造法。
1. In producing a polyester by reacting a difunctional carboxylic acid mainly consisting of terephthalic acid or its dimethyl ester with at least one type of glycol, and then polycondensing the reaction product,
A method for producing polyester, which comprises adding at least one compound selected from the group consisting of acidic alkali metal sulfites and alkaline earth metal acidic sulfites at any stage until the production reaction is completed.
JP17560581A 1981-11-04 1981-11-04 Preparation of polyester Granted JPS5879012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17560581A JPS5879012A (en) 1981-11-04 1981-11-04 Preparation of polyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17560581A JPS5879012A (en) 1981-11-04 1981-11-04 Preparation of polyester

Publications (2)

Publication Number Publication Date
JPS5879012A JPS5879012A (en) 1983-05-12
JPH0160045B2 true JPH0160045B2 (en) 1989-12-20

Family

ID=15999010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17560581A Granted JPS5879012A (en) 1981-11-04 1981-11-04 Preparation of polyester

Country Status (1)

Country Link
JP (1) JPS5879012A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993723A (en) * 1982-11-22 1984-05-30 Teijin Ltd Preparation of polyester

Also Published As

Publication number Publication date
JPS5879012A (en) 1983-05-12

Similar Documents

Publication Publication Date Title
US4113704A (en) Polyester filament-forming polymer and its method of production
US4092299A (en) High draw ratio polyester feed yarn and its draw texturing
US4663423A (en) Polyester and process for preparation thereof
JPS62187726A (en) Production of poplyester for high-speed spinning
JPH0160045B2 (en)
JPS6411068B2 (en)
JPS6149409B2 (en)
WO2021249521A1 (en) Cationic dyeable polyester composition, preparation method therefor and use thereof
JPS63530B2 (en)
US4399270A (en) Fiber-forming polyesters of ketodiols
US4133801A (en) Process for the preparation of polyesters
KR970010720B1 (en) Super high speed spinning process for polyester fiber
JPS627283B2 (en)
US20070093637A1 (en) Polyester, production method thereof, fibers therefrom and catalyst for polymerization of polyester
JPH0433888B2 (en)
JPH0135926B2 (en)
JPS6143445B2 (en)
KR0160479B1 (en) Process for preparing polyester
JPS5847020A (en) Production of polyester
JPS627282B2 (en)
JPS5865719A (en) Production of polyester
JPS627284B2 (en)
JPH0118167B2 (en)
JPS5842616A (en) Production of polyester
JPS5896624A (en) Manufacture of polyester