JPH0160010B2 - - Google Patents

Info

Publication number
JPH0160010B2
JPH0160010B2 JP14987181A JP14987181A JPH0160010B2 JP H0160010 B2 JPH0160010 B2 JP H0160010B2 JP 14987181 A JP14987181 A JP 14987181A JP 14987181 A JP14987181 A JP 14987181A JP H0160010 B2 JPH0160010 B2 JP H0160010B2
Authority
JP
Japan
Prior art keywords
formula
substance
solution
antibacterial agent
cephalosporin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14987181A
Other languages
Japanese (ja)
Other versions
JPS5852221A (en
Inventor
Shigeaki Muto
Takao Ando
Masahiko Fujii
Koichi Niimura
Akihiko Sugano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP14987181A priority Critical patent/JPS5852221A/en
Publication of JPS5852221A publication Critical patent/JPS5852221A/en
Publication of JPH0160010B2 publication Critical patent/JPH0160010B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cephalosporin Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本願はセフアロスポリン系抗生物質よりなる薬
剤に関する。詳しくはセフアロスポリン系抗生物
質に化学修飾をほどこすことにより抗菌活性は失
なうが生体内に吸収されると再度抗菌活性を回復
することを特徴とするセフアロスポリン様活性を
有する薬剤に関する。 セフアロスポリン系抗生物質は現在広く用いら
れ、細菌に対する選択毒性がすぐれている薬剤で
ある。 しかしながら、生体内に常在する有用菌叢に対
しても等しく抗菌作用を有するために、生体内、
特に腸内の菌叢を乱すという重大な欠点を前記薬
剤は有する。この欠点は抗生物質を経口摂取した
場合に著しい。 その結果、菌交代症等の疾病を引きおこし、場
合によつては大腸炎、下痢等を引きおこす。 本発明者らは、これらの欠点のないセフアロス
ポリン様活性を有する抗生物質を鋭意検討した結
果、一般式()で示されるセフアロスポリン系
誘導体が有効であることを見い出し本発明に至つ
たものである。したがつて本発明の目的はセフア
ロスポリン系抗生物質を有効成分とする抗菌剤を
提供することにある。 以下本発明を詳しく説明する。 本発明は一般式() 〔式中、R1
The present application relates to a drug comprising a cephalosporin antibiotic. Specifically, the present invention relates to a drug having cephalosporin-like activity, which loses antibacterial activity by chemically modifying a cephalosporin antibiotic, but regains antibacterial activity once absorbed into the body. Cephalosporin antibiotics are currently widely used and are drugs with excellent selective toxicity against bacteria. However, since it has an antibacterial effect on beneficial bacterial flora resident in the living body,
In particular, these drugs have the serious drawback of disturbing the bacterial flora in the intestines. This drawback is significant when antibiotics are taken orally. As a result, diseases such as bacterial alternation may occur, and in some cases, colitis, diarrhea, etc. may occur. The present inventors have intensively investigated antibiotics having cephalosporin-like activity that do not have these drawbacks, and have found that cephalosporin derivatives represented by the general formula () are effective, leading to the present invention. Therefore, an object of the present invention is to provide an antibacterial agent containing a cephalosporin antibiotic as an active ingredient. The present invention will be explained in detail below. The present invention is based on the general formula () [In the formula, R 1 is

【式】【formula】

【式】{式中、R3は、―O (CH2oH (式中、nは2乃至4を示す)、―OCH
(CH32,―OC(CH33
[Formula] {wherein R 3 is -O (CH 2 ) o H (in the formula, n represents 2 to 4), -OCH
(CH 3 ) 2 , -OC(CH 3 ) 3 ,

【式】【formula】

【式】又は[Formula] or

【式】を示す〕で示される セフアロスポリン系抗生物質誘導体を有効成分と
することに特徴を有する抗菌剤に関する。 本発明の抗菌剤は、特に経口用抗菌剤として使
用し得る。更に、生体内常在菌叢を乱さない、経
口用抗菌剤として使用し得る。 上記一般式()で示される化合物(以下、本
物質と称す)はセフアロスポリン系抗生物質に化
学修飾をほどこすことによつて得るものあるが、
薬剤投与時に生体内常在菌叢に影響を与えずに吸
収され、血中に入つて始めて抗菌活性を示すとい
うまつたく新しいタイプの抗生物質であり、又そ
の急性毒性も低いので極めて安全な物質といえ
る。 本物質の薬理学的効果を下記に示す。 (a) 急性毒性: ICR―JCL系マウスを用いて腹腔内及び強制
経口投与による急性毒性を調べた。本物質は腹
腔内及び経口投与ともに生理食塩水に、分散
し、これを注射筒または胃ゾンデを用いて所定
の量に調整して与えた。 投与後中毒症状の観察を続け、7日目までの
経時的死亡率からLD50値を求めた。生存例、
死亡例とも解剖して所見を得た。LD50値はリ
ツチフイールド・ウイルコクソン(Litchfield
―Wilcoxon)図計算法により求めた。その結
果、本物質のいずれも腹腔内、経口を問わず
LD50値は10g/Kg以上であつた。 (b) 腸内菌に対する影響: 本物質をマウスに500mg/Kg2日間経口投与
して投与前と投与後1日目にマウス糞便を採取
した。この一部を各種培地で25℃又は37℃にて
1乃至5日間培養して大腸菌、緑膿菌、連鎖球
菌、乳酸菌、ビフイダス菌及びバクテロイデス
菌について調べた。 本物質の投与前と投与後における上記各菌の
菌数はほとんど変らなかつた。したがつて、本
物質は腸内菌叢に実質的に影響しないことがわ
かる。 (c) 抗菌活性: 日本化学療法学会標準法に準拠して調べた。
供試菌としてEsherichia coli
IFO12734Staphylococcus aureus IAM1011を
用い最小発育阻止濃度(MIC)を求めた。 (d) 体内に吸収された時に活性変化することを証
明するために代謝活性化酵素〔ラツト肝ホモジ
ネート(以下S―9mixと称す)〕を用いて次の
実験を行なつた。 Staphylcocccus aureus IAM1011の前培養
液108/mlを調整し、次に50倍量のMueller
Hinton寒天培地へ前培養液を加え平板とした。 平板上に径8mmのペニシリンカツプを置き、
その中に本物質又は本物質とS―9mixの培養
物の0.1mlを加え、37℃18時間培養し、増阻止
円の径を測定した。セフアロチンナトリウム又
はペニシリンの増阻止円の径を100として比較
した場合、本物質のみの系のそれは0であつ
た。一方本物質+S−9mixの系のそれは0乃
至1であつた。 即ち、本物質はそのままでは抗菌性は低い
が、体内に入つてから酵素により活性化される
ことを示している。 (e) 感染症に対する効果: 生体内で活性化されることを確かめるために
本物質を用いて感染症に対する治療実験を行な
つた。 各群20匹のマウスの腹腔内にEsherichia
coli IFOを接種して感染させた後、各々の本
物質を感染直後及び4時間後に500mg/Kg経口
投与し、その後に7日目の感染死の有無で判定
した。無処理群は2日目に全例死亡したのに対
し、本物質のいずれでも35%以上の生存率を示
したので経口用抗感染症剤として効果のあるこ
とが知見された。 上述したように、本物質は安全であり、腸内菌
叢に対しても影響がなく、且つ生体内に入つて活
性型になる新しいセフアロスポリン系抗生物質で
あるといえる。 本物質は生体内でセフアロスポリン系抗生物質
に変換されるので、用途としてはセフアロスポリ
ン系抗生物質とまつたく同じ分野の抗菌剤とし
て、用いることが出来る。 本物質は一般式()で示されるセフアロスポ
リン系抗生物質の少なくとも1種と医薬として許
容されうる担体、希釈剤又は助剤を含有する医薬
組成物として、更に単位投与形態として用い得
る。これらは経口、注射または直腸投与による方
法で投与出来る。 経口投与は、錠剤、カプセル、粉末、顆粒、散
剤、丸剤、アンプル剤、等の形態でおこない得
る。 これらは、充填剤、伸展剤、結合剤、湿潤剤、
崩壊剤、溶解遅効剤、再吸収促進剤、吸着担体、
潤滑剤等を包含する。具体的には、殿紛、マニト
ール、ケイ酸、セルロース誘導体、ゼラチン、ア
ルギン酸塩、グリセリン、寒天、炭酸カルシウ
ム、重炭酸ナトリウム、パラフイン、第四アンモ
ニウム化合物、グリセリンモノステアレート、カ
オリン、ベントナイト、タルク、ステアリン酸カ
リウム、ステアリン酸マグネシウム、ポリエチレ
ングリコールなどがあげられる。 又医薬として許容されるエマルジヨン溶液、懸
濁液であつてもよい。 坐薬は、ポリエチレングリコール及び脂肪酸又
はそのエステルを含み得る。 シラツプ、エリキシールは、水またはパラフイ
ンのような不活性希釈剤を含有し、経口投与に適
当な液体組成物として使用し得る。これらは湿潤
剤、甘味剤、風味剤のような助剤を含有してもよ
い。 注射投与に用いる組成物は、無菌で、水性また
は非水性の溶液、懸濁液またはエマルジヨンであ
つてもよく、例えばプロピレングリコール、ポリ
エチレングリコール、オリーブ油等を含むことが
出来る。 組成物として用いる場合、本物質は活性成分と
して0.01乃至99.5%、通常0.1乃至90%含有し得
る。 本物質は、セフアロスポリン系抗生物質と同様
の用途に用いられ、細菌由来の感染の治療に有用
である。 薬剤は、感染の度合、患者の状態によつてその
投与量は異なるが一般的に成人患者1人に1日
0.1〜10gを数回に分けて投与する。 以下、本発明を実施例に基づいてより詳細に説
明する。しかしながら、本発明は下記実施例にの
み限定されるものではない。 実施例 1 7―(チオフエン―2―アセトアミド)セフア
ロスポラン酸1587mgを20mlのベンゼンにサスペン
ドさせた。DMFを1滴加えた後に、1016mgのオ
キザリルクロライドをゆつくり滴下した。ゆつく
り撹拌しながら7〜10℃にて45分間反応させた。
反応終了後、減圧下にてベンゼンを留去した。こ
のようにして得られたセフアロスポリンの酸塩化
物を、10mlの塩化メチレンに溶かした。2.4gの
n―プロピルアルコールと404mgのトリエチルア
ミンを溶かした塩化メチレン溶液4mlをゆつくり
滴下した。約1時間4℃で撹拌した。反応終了
後、塩化メチレン20mlをこゝに加えて、塩化メチ
レン層をPH3のHCl水溶液10mlで洗つた。次に1
%のNaHCO3水溶液10mlで洗つた。最後に水10
mlで洗浄後塩化メチレン層をMgSO4て乾燥した。
減圧・濃縮後粗結晶1210mgを得た。塩化メチレン
―n―ヘキサンより再結晶して964mgの製品を得
た。収率44%であつた。元素分析値の結果を下記
に示す。 C(%) H(%) N(%) 理論値 52.04 5.06 6.38 測定値 51.4 4.9 6.4 実施例 2 実施例2の反応におけるn―プロピルアルコー
ルの代りにiso―プロピルアルコールを用いて同
様の反応を行ない粗製品560mgを得た。塩化メチ
レン―n―ヘキサンより再結晶して328mgの製品
を得た。収率15%、融点139〜140℃であつた。元
素分析値を下記に示す。 C(%) H(%) N(%) 理論値 52.04 5.06 6.38 測定値 52.8 5.2 6.2 実施例 3 実施例2の反応におけるn―プロピルアルコー
ルの代りに、t―ブチルアルコールを用いて同様
の反応を行ない粗製品516mgを得た。塩化メチレ
ン―n―ヘキサンより再結晶して330mgの製品を
得た。収率15%、融点175〜176℃であつた。元素
分析値を下記に示す。 C(%) H(%) N(%) 理論値 53.10 5.3 6.19 実測値 53.4 5.3 6.1 実施例 4 フエニル7―(チオフエン―2―アセトアミ
ド)セフアロスポラネートを下記の方法で合成し
た。 7―(チオフエン―2―アセトアミド)セフア
ロスポラン酸2.0g、フエノール0.47gおよびN,
N′―ジシクロヘキシルカルボジイミド1.05gをテ
トラヒドロフラン100mlに溶かし、その溶液を室
温で24時間撹拌した。生成したN,N′―ジシク
ロヘキシルウレアを除去した後に液の溶媒を留
去し、次に残留物をクロロホルム100mlに溶かし
た。そのクロロホルム溶液を5%塩酸水溶液、5
%炭酸水素ナトリウム水溶液及び水の順で洗つた
後、無水硫酸マグネシウムで乾燥した。溶媒を留
去後、残留物を酢酸エチル―n―ヘキサンで再結
晶して1.6g(収率68%)の結晶を得た。融点は
162〜163℃であつた。各物性値を下記に示す。 (a) 赤外吸収スペクトルνnax(cm-1)(KBr) 1778;1660;1492;;1230 (b) 元素分析値(C22H20O6N2S2として) C(%) H(%) N(%) 計算値 55.46 4.24 5.93 実測値 55.40 4.23 5.88 実施例 5 7―(チオフエン―2―アセトアミド)セフア
ロスポラン酸1.6gを400mgのトリエチルアミンを
含むTHF溶液20mlに溶解させ、氷冷した。4ml
のTHFにクロロ炭酸エチルの430mgを溶かした液
をゆつくりと滴下した。1時間反応させた後、さ
らに1時間冷却した。溶媒を減圧留去後、残渣を
クロロホルム10mlに溶かした。クロロホルム液
は、1%のHCl,2%のNaHCO3溶液及び水の
順でよく洗浄後、MgSO4を入れて乾燥した。四
塩化炭素より再結晶をして200mgの製品を得た。
融点は96〜99℃であつた。各物性値を下記に示
す。 (a) 赤外吸収スペクトルνnax(cm-1)(KBr) 3301;1777;1733;1655;1535;1238 (b) 紫外吸収スペクトルnnax(nm)(CH3CN) 234266 (c) 元素分析 C(%) H(%) N(%) 計算値 48.71 4.30 5.98 実測値 49.4 4.4 6.0 実施例 6
The present invention relates to an antibacterial agent characterized in that it contains a cephalosporin antibiotic derivative represented by the following formula as an active ingredient. The antibacterial agent of the present invention can be used particularly as an oral antibacterial agent. Furthermore, it can be used as an oral antibacterial agent that does not disturb the resident flora of living organisms. The compound represented by the above general formula () (hereinafter referred to as the present substance) can be obtained by chemically modifying a cephalosporin antibiotic.
It is a brand new type of antibiotic that is absorbed without affecting the resident flora of the body when administered, and only shows antibacterial activity once it enters the bloodstream.It is also an extremely safe substance as its acute toxicity is low. It can be said. The pharmacological effects of this substance are shown below. (a) Acute toxicity: Acute toxicity was investigated by intraperitoneal and forced oral administration using ICR-JCL mice. This substance was dispersed in physiological saline for both intraperitoneal and oral administration, and the solution was adjusted to a predetermined amount using a syringe or a stomach tube and administered. After administration, poisoning symptoms were continued to be observed, and the LD 50 value was determined from the mortality rate over time up to the 7th day. Survival cases,
In both cases of death, autopsies were performed to obtain findings. LD50 values are Litchfield-Wilcoxon (Litchfield
-Wilcoxon) Calculated using graphic calculation method. As a result, both intraperitoneal and oral administration of this substance
The LD50 value was 10g/Kg or more. (b) Effect on intestinal bacteria: This substance was orally administered to mice at 500 mg/Kg for 2 days, and mouse feces were collected before and on the 1st day after administration. A portion of this was cultured in various media at 25° C. or 37° C. for 1 to 5 days and examined for Escherichia coli, Pseudomonas aeruginosa, Streptococcus, Lactic acid bacteria, Bifidobacterium, and Bacteroides. There was almost no difference in the number of each of the above bacteria before and after administration of this substance. Therefore, it can be seen that this substance does not substantially affect the intestinal flora. (c) Antibacterial activity: Examined in accordance with the standard method of the Japanese Society of Chemotherapy.
Esherichia coli as a test bacterium
The minimum inhibitory concentration (MIC) was determined using IFO12734Staphylococcus aureus IAM1011. (d) In order to prove that the activity changes when absorbed into the body, the following experiment was conducted using a metabolically activating enzyme [rat liver homogenate (hereinafter referred to as S-9mix)]. Prepare a preculture of Staphylcocccus aureus IAM1011 at 108/ml, then 50 times the volume of Mueller
The preculture solution was added to Hinton agar medium and plated. Place a penicillin cup with a diameter of 8 mm on a flat plate,
0.1 ml of this substance or a culture of this substance and S-9mix was added thereto, incubated at 37°C for 18 hours, and the diameter of the circle of inhibition was measured. When comparing the diameter of the inhibition circle for cephalothin sodium or penicillin as 100, it was 0 for the system containing only this substance. On the other hand, it was 0 to 1 for the system of this substance + S-9 mix. This indicates that although this substance has low antibacterial properties as it is, it is activated by enzymes after entering the body. (e) Effect on infectious diseases: In order to confirm that it is activated in vivo, we conducted therapeutic experiments on infectious diseases using this substance. Esherichia intraperitoneally in 20 mice in each group.
After inoculation and infection with E. coli IFO, 500 mg/Kg of each of the present substances was orally administered immediately after infection and 4 hours later, and the presence or absence of death due to infection was determined on the 7th day. All cases in the untreated group died on the second day, whereas all cases of this substance showed a survival rate of 35% or more, indicating that it is effective as an oral anti-infective agent. As mentioned above, this substance is safe, has no effect on intestinal flora, and can be said to be a new cephalosporin antibiotic that enters the body and becomes active. Since this substance is converted into a cephalosporin antibiotic in vivo, it can be used as an antibacterial agent in the same field as cephalosporin antibiotics. The present substance can be used as a pharmaceutical composition containing at least one cephalosporin antibiotic represented by the general formula () and a pharmaceutically acceptable carrier, diluent or auxiliary agent, and further in a unit dosage form. These can be administered orally, by injection or by rectal administration. Oral administration may be in the form of tablets, capsules, powders, granules, powders, pills, ampoules, and the like. These include fillers, extenders, binders, wetting agents,
Disintegrants, dissolution slowing agents, reabsorption promoters, adsorption carriers,
Includes lubricants, etc. Specifically, powder, mannitol, silicic acid, cellulose derivatives, gelatin, alginate, glycerin, agar, calcium carbonate, sodium bicarbonate, paraffin, quaternary ammonium compounds, glycerin monostearate, kaolin, bentonite, talc, Examples include potassium stearate, magnesium stearate, and polyethylene glycol. It may also be a pharmaceutically acceptable emulsion solution or suspension. Suppositories may include polyethylene glycol and fatty acids or esters thereof. Sills and elixirs may be used as liquid compositions containing an inert diluent such as water or paraffin and suitable for oral administration. They may also contain auxiliary agents such as wetting agents, sweetening agents and flavoring agents. Compositions for injection administration may be sterile, aqueous or non-aqueous solutions, suspensions, or emulsions, and may contain, for example, propylene glycol, polyethylene glycol, olive oil, and the like. When used as a composition, the material may contain from 0.01 to 99.5%, usually from 0.1 to 90%, as active ingredient. This substance is used in a similar way to cephalosporin antibiotics and is useful in treating infections of bacterial origin. The dosage of the drug varies depending on the degree of infection and the patient's condition, but it is generally administered per adult patient per day.
Administer 0.1-10g in several doses. Hereinafter, the present invention will be explained in more detail based on examples. However, the present invention is not limited only to the following examples. Example 1 1587 mg of 7-(thiophene-2-acetamido)cephalosporanic acid was suspended in 20 ml of benzene. After adding one drop of DMF, 1016 mg of oxalyl chloride was slowly added dropwise. The reaction was carried out at 7 to 10°C for 45 minutes with gentle stirring.
After the reaction was completed, benzene was distilled off under reduced pressure. The acid chloride of cephalosporin thus obtained was dissolved in 10 ml of methylene chloride. 4 ml of a methylene chloride solution containing 2.4 g of n-propyl alcohol and 404 mg of triethylamine was slowly added dropwise. Stir for about 1 hour at 4°C. After the reaction was completed, 20 ml of methylene chloride was added thereto, and the methylene chloride layer was washed with 10 ml of an aqueous HCl solution of PH3. Next 1
Washed with 10 ml of 3 % NaHCO3 aqueous solution. Finally water 10
After washing with ml of methylene chloride, the methylene chloride layer was dried with MgSO 4 .
After concentration under reduced pressure, 1210 mg of crude crystals were obtained. Recrystallization from methylene chloride-n-hexane yielded 964 mg of product. The yield was 44%. The results of elemental analysis values are shown below. C(%) H(%) N(%) Theoretical value 52.04 5.06 6.38 Measured value 51.4 4.9 6.4 Example 2 A similar reaction was carried out using iso-propyl alcohol in place of n-propyl alcohol in the reaction of Example 2 to obtain 560 mg of a crude product. Recrystallization from methylene chloride-n-hexane gave 328 mg of product. The yield was 15%, and the melting point was 139-140°C. The elemental analysis values are shown below. C(%) H(%) N(%) Theoretical value 52.04 5.06 6.38 Measured value 52.8 5.2 6.2 Example 3 A similar reaction was carried out using t-butyl alcohol instead of n-propyl alcohol in the reaction of Example 2 to obtain 516 mg of a crude product. Recrystallization from methylene chloride-n-hexane gave 330 mg of product. The yield was 15%, and the melting point was 175-176°C. The elemental analysis values are shown below. C(%) H(%) N(%) Theoretical value 53.10 5.3 6.19 Actual value 53.4 5.3 6.1 Example 4 Phenyl 7-(thiophene-2-acetamido)cephalosporanate was synthesized by the following method. 7-(thiophene-2-acetamido)cephalosporanic acid 2.0 g, phenol 0.47 g and N,
1.05 g of N'-dicyclohexylcarbodiimide was dissolved in 100 ml of tetrahydrofuran, and the solution was stirred at room temperature for 24 hours. After removing the generated N,N'-dicyclohexylurea, the solvent of the liquid was distilled off, and the residue was then dissolved in 100 ml of chloroform. Add the chloroform solution to 5% aqueous hydrochloric acid solution,
% aqueous sodium bicarbonate solution and water, and then dried over anhydrous magnesium sulfate. After evaporating the solvent, the residue was recrystallized from ethyl acetate-n-hexane to obtain 1.6 g (yield: 68%) of crystals. The melting point is
The temperature was 162-163℃. The physical property values are shown below. (a) Infrared absorption spectrum ν nax (cm -1 ) (KBr) 1778; 1660; 1492; ; 1230 (b) Elemental analysis value (as C 22 H 20 O 6 N 2 S 2 ) C(%) H( %) N(%) Calculated value 55.46 4.24 5.93 Actual value 55.40 4.23 5.88 Example 5 1.6 g of 7-(thiophene-2-acetamido)cephalosporanic acid was dissolved in 20 ml of THF solution containing 400 mg of triethylamine and cooled on ice. 4ml
A solution of 430 mg of ethyl chlorocarbonate dissolved in THF was slowly added dropwise. After reacting for 1 hour, it was further cooled for 1 hour. After evaporating the solvent under reduced pressure, the residue was dissolved in 10 ml of chloroform. The chloroform solution was thoroughly washed with 1% HCl, 2% NaHCO 3 solution, and water in that order, and then dried with MgSO 4 . Recrystallization from carbon tetrachloride yielded 200 mg of product.
The melting point was 96-99°C. The physical property values are shown below. (a) Infrared absorption spectrum ν nax (cm -1 ) (KBr) 3301; 1777; 1733; 1655; 1535; 1238 (b) Ultraviolet absorption spectrum n nax (nm) (CH 3 CN) 234266 (c) Elemental analysis C(%) H(%) N(%) Calculated value 48.71 4.30 5.98 Actual value 49.4 4.4 6.0 Example 6 (

【式】はシクロヘキサン環を示す) 上記化合物は実施例5の反応の副生成物として
得られた。実施例5の再結晶液の溶媒を留去
後、残留物を酢酸エチルを少量含むn―ヘキサン
で再結晶して、0.24g(収率21%)の結晶を得
た。融点は151〜152℃であつた。各物性値を下記
に示す。 (a) 赤外吸収スペクトルνnax(cm-)(KBr) 3340;2905;1782;1702;1652;1225 (b) 元素分析値(C29H38N4C6S2として) C(%) H(%) N(%) 計算値 57.78 6.35 9.29 実測値 57.8 6.3 9.3 (c) 紫外吸収スペクトルλnax(nm)(CH3CN) 236;266 実施例 7 腸内菌叢に対する各化合物の影響を調べた。 上記の各薬剤をICR雌マウス(6週令)5匹を
1群とするものに1日当り500mg/Kgを2日間経
口投与した。 投与前ならびに投与後7日目に各マウスの糞便
を採取して、100倍量の嫌気性稀釈液(リン酸緩
衝液)で希釈し摩砕し、その0.1mlを下記第1表
に示す各被測定菌の培地に塗布し37℃又は25℃で
1〜5日間好気培養ならびに嫌気培養(嫌気性グ
ローブボツクス法)を行なつて大腸菌、緑膿菌、
連鎖球菌、乳酸菌、ビフイダス菌およびバクテロ
イデス菌の各々の菌数を測定した。
[Formula] represents a cyclohexane ring) The above compound was obtained as a by-product of the reaction of Example 5. After distilling off the solvent of the recrystallization solution in Example 5, the residue was recrystallized from n-hexane containing a small amount of ethyl acetate to obtain 0.24 g (yield: 21%) of crystals. The melting point was 151-152°C. The physical property values are shown below. (a) Infrared absorption spectrum ν nax (cm - ) (KBr) 3340; 2905; 1782; 1702; 1652; 1225 (b) Elemental analysis value (as C 29 H 38 N 4 C 6 S 2 ) C (%) H(%) N(%) Calculated value 57.78 6.35 9.29 Actual value 57.8 6.3 9.3 (c) Ultraviolet absorption spectrum λ nax (nm) (CH 3 CN) 236; 266 Example 7 Effect of each compound on intestinal flora Examined. Each of the above drugs was orally administered at a dose of 500 mg/Kg per day for 2 days to a group of 5 female ICR mice (6 weeks old). Before administration and on the 7th day after administration, feces from each mouse were collected, diluted with 100 times the volume of anaerobic diluent (phosphate buffer), ground, and 0.1ml of each sample shown in Table 1 below. It is applied to the culture medium of the bacteria to be measured and cultured aerobically or anaerobically (anaerobic glove box method) at 37°C or 25°C for 1 to 5 days.
The numbers of streptococci, lactic acid bacteria, bifidus bacteria, and bacteroides bacteria were measured.

【表】 結果を第2表に示す。【table】 The results are shown in Table 2.

【表】【table】

【表】 第2表より明らかのようにセフアロチン投与剤
では大腸菌の増大がみられるが、本物質のそれぞ
れは投与前とあまり変らない。又セフアロチンは
乳酸菌が減少するのに対して本物質のそれぞれは
投与前の乳酸菌数と変らない。 実施例 8 抗菌活性を日本化学療法学会標準法に準拠して
寒天平板希釈法により測定した。 試験方法: 供試菌 Esherichia coli IFO 12734 Staphylococcus aureus IAM 1011 上記菌株をMueller―Hinton培地に接種し37℃
で18〜48時間培養した後に106/mlに調整したも
のを供試菌液とした。 各所定温度の検体液を薬剤感受性測定用培地と
してMueller―Hinton培地にそれぞれ1/9量加え、
寒天平板を作製した。上記供試菌液を各平板に白
金耳にて約2cm画線塗抹した後37℃18時間〜24時
間培養を行い、完全に菌の発育が阻止された濃度
をもつて最小発育阻止濃度とした。結果を第3表
に示す。
[Table] As is clear from Table 2, an increase in Escherichia coli was observed in the cephalothin administration, but the numbers of each of the substances did not change much from before administration. Furthermore, while cephalothin reduces the number of lactic acid bacteria, the number of lactic acid bacteria in each of these substances remains unchanged from the number before administration. Example 8 Antibacterial activity was measured by the agar plate dilution method in accordance with the standard method of the Japanese Society of Chemotherapy. Test method: Test bacteria Esherichia coli IFO 12734 Staphylococcus aureus IAM 1011 The above strains were inoculated into Mueller-Hinton medium at 37°C.
After culturing for 18 to 48 hours, the culture was adjusted to 10 6 /ml and used as a test bacterial solution. Add 1/9 volume of each sample solution at the specified temperature to Mueller-Hinton medium as a medium for drug susceptibility measurement.
An agar plate was prepared. The above test bacterial solution was smeared with a platinum loop on each plate in approximately 2 cm streaks, then cultured at 37°C for 18 to 24 hours, and the concentration at which bacterial growth was completely inhibited was defined as the minimum inhibitory concentration. . The results are shown in Table 3.

【表】 実施例 9 体内で活性化されることを証明するモデル実験
として次の方法を採用した。代謝活性化酵素とし
てラツト肝ホモジネート(S―9、オリエンタル
酵母社製)を以下の組成(以下S―9mixと呼ぶ)
にて用いた。 1ml中の組成 S―9 0.5ml KCl 3.3μmol MgCl2・6H2O 8μmol Glucose―6―phosphate 5μmol NADH 4μmol NADPA 4μmol 0.2Mリン酸緩衝液 0.5ml (PH7.4) 検体液0.1mlとS―9mix0.9mlあるいは対照とし
て0.1Mリン酸緩衝液0.9mlを混和し、37℃にて20
分振とう培養し、感受性試験を行つた。
Staphylococcus aureus IAM1011をMueller―
Hinton培地に接種し37℃18時間培養した後、
108/mlに調整し50倍量のMueller―Hinton寒天
培地を混和し平板とした。その上にペニシリンカ
ツプ(径8mm)を置き、その中に上記反応液0.1
mlを加え4℃で2時間放置後、37℃で18時間培養
し、増殖阻止円の径を測定した。結果を第4表に
示す。
[Table] Example 9 The following method was adopted as a model experiment to prove that it is activated in the body. Rat liver homogenate (S-9, manufactured by Oriental Yeast Co., Ltd.) was used as a metabolic activating enzyme with the following composition (hereinafter referred to as S-9mix).
It was used in Composition in 1ml S-9 0.5ml KCl 3.3μmol MgCl 2・6H 2 O 8μmol Glucose-6-phosphate 5μmol NADH 4μmol NADPA 4μmol 0.2M phosphate buffer 0.5ml (PH7.4) Sample solution 0.1ml and S-9mix0 Mix .9ml or 0.9ml of 0.1M phosphate buffer as a control and incubate at 37℃ for 20 minutes.
The cells were cultured in separate spindles and subjected to susceptibility tests.
Mueller Staphylococcus aureus IAM1011
After inoculating Hinton medium and culturing at 37℃ for 18 hours,
A 50-fold amount of Mueller-Hinton agar medium was adjusted to 10 8 /ml and plated. Place a penicillin cup (diameter 8 mm) on top of it, and place 0.1 of the above reaction solution in it.
ml and left at 4°C for 2 hours, cultured at 37°C for 18 hours, and the diameter of the growth inhibition zone was measured. The results are shown in Table 4.

【表】 実施例 10 マウス実験的感染症に対する効果: ddY系SPFマウス各群20匹にEsherichia doli
IFO 12734 1.4×108をそれぞれ腹腔内接種して感
染させ、感染直後並びに4時間後の2回、本物質
を500mg/Kg経口投与し、7日間感染死の有無を
観察したところ、無処置対照群では感染2日目に
全数死亡したが、本物質投与群のいずれにおいて
も感染7日目でもなお20%以上の生存がみられ
た。 実施例 11 〔1〕 錠剤 実施例1で得られた本物質 175mg 乳糖 16mg でん粉 5mg ハイドロキシプロピルセルロース 3.0mg ステアリン酸マグネシウム 1.0mg 200mg/錠 本物質、乳糖を混合しハイドロキシプロピルセ
ルロース水溶液を加え練合してから乾燥粉砕す
る。この粉砕物にあらかじめ、でん粉に分散した
ステアリン酸マグネシウムを添加混合し、通常の
方法で打錠を行い錠剤とした。 〔2〕 顆粒剤 実施例2で得られた本物質 176mg 乳糖 16mg でん粉 4mg ハイドロキシプロピルセルロース 4mg 本物質、でん粉、乳糖を混合しておき、ハイド
ロキシプロピルセルロース水溶液を加え、混合乾
燥、粉砕する。12乃至48メツシユの範囲で篩別す
ることにより顆粒剤を得た。
[Table] Example 10 Effect on experimental infection in mice: Esherichia doli was administered to each group of 20 ddY SPF mice.
IFO 12734 1.4 × 10 8 was inoculated intraperitoneally and infected, and 500 mg/Kg of this substance was orally administered twice, immediately after infection and 4 hours later, and the presence or absence of death due to infection was observed for 7 days. All of the animals in this group died on the second day after infection, but more than 20% of the animals in all groups administered with this substance were still alive on the seventh day after infection. Example 11 [1] Tablet This substance obtained in Example 1 175mg Lactose 16mg Starch 5mg Hydroxypropylcellulose 3.0mg Magnesium stearate 1.0mg 200mg/tablet This substance and lactose were mixed, and an aqueous hydroxypropylcellulose solution was added and kneaded. Then dry and crush. Magnesium stearate dispersed in starch was added and mixed in advance to this pulverized product, and the mixture was compressed into tablets using a conventional method. [2] Granules: The present substance obtained in Example 2: 176 mg Lactose: 16 mg Starch: 4 mg Hydroxypropyl cellulose: 4 mg The present substance, starch, and lactose are mixed together, an aqueous solution of hydroxypropyl cellulose is added, the mixture is dried, and pulverized. Granules were obtained by sieving in the range of 12 to 48 meshes.

Claims (1)

【特許請求の範囲】 1 一般式() [式中、R1は【式】を示し、Yは 【式】{式中、R3は、―O (CH2oH(式中、nは2乃至4を示す)―OCH
(CH32,―OC(CH33,【式】 【式】又は 【式】を示す]で示されるセ フアロスポリン系抗生物質誘導体を有効成分とす
ることを特徴とする抗菌剤。 2 前記抗菌剤が経口投与形態を有していること
を特徴とする特許請求の範囲第1項に記載の抗菌
剤。 3 前記抗菌剤が腸内菌叢を乱さない効果を有す
ることを特徴とする特許請求の範囲第1項又は第
2項に記載の抗菌剤。
[Claims] 1 General formula () [In the formula, R 1 represents [Formula], Y represents [Formula] {In the formula, R 3 represents -O (CH 2 ) o H (in the formula, n represents 2 to 4) -OCH
An antibacterial agent characterized by containing as an active ingredient a cephalosporin antibiotic derivative represented by (CH 3 ) 2 , -OC(CH 3 ) 3 , [Formula] [Formula] or [Formula]]. 2. The antibacterial agent according to claim 1, wherein the antibacterial agent has an oral administration form. 3. The antibacterial agent according to claim 1 or 2, wherein the antibacterial agent has the effect of not disturbing intestinal flora.
JP14987181A 1981-09-22 1981-09-22 Antimicrobial agent Granted JPS5852221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14987181A JPS5852221A (en) 1981-09-22 1981-09-22 Antimicrobial agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14987181A JPS5852221A (en) 1981-09-22 1981-09-22 Antimicrobial agent

Publications (2)

Publication Number Publication Date
JPS5852221A JPS5852221A (en) 1983-03-28
JPH0160010B2 true JPH0160010B2 (en) 1989-12-20

Family

ID=15484468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14987181A Granted JPS5852221A (en) 1981-09-22 1981-09-22 Antimicrobial agent

Country Status (1)

Country Link
JP (1) JPS5852221A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114844A (en) * 1983-11-25 1985-06-21 Canon Inc Picture formation device
JP2771599B2 (en) * 1989-05-23 1998-07-02 三洋電機株式会社 Copier with variable magnification function

Also Published As

Publication number Publication date
JPS5852221A (en) 1983-03-28

Similar Documents

Publication Publication Date Title
JPH0160010B2 (en)
US4496574A (en) Penicillin derivative
US4540689A (en) Penicillin derivative
US4496561A (en) Cephalosporin derivative
EP0113242B1 (en) Cephalosporin derivatives
EP0075450B1 (en) Cephalosporin derivatives
EP0075452B1 (en) Cephalosporin derivatives
JPH0160034B2 (en)
US4446137A (en) Cephalosporin derivative and pharmaceutical composition containing the derivative
US4681877A (en) Pivaloyloxymethyl 7-β-[2-(2-amino-4-thiazolyl)-2-methoxyiminoacetamido]-3-(2-amino-1,3-thiadiazolyl-5-thiomethyl)-3-cepheme-4-carboxylate and pharmaceutical composition containing the same
EP0075451B1 (en) Cephalosporin derivatives
EP0113245B1 (en) Cephalosporin derivatives
US4734409A (en) Cephalosporin derivative, process for producing the same and pharmaceutical composition containing the same
JPH0234357B2 (en) SEFUAROSUHORINJUDOTAIOYOBIGAIJUDOTAIOGANJUSURUYAKUZAI
JPH0235759B2 (en) SEFUAROSUHORINJUDOTAIOYOBIGAIJUDOTAIOGANJUSURUYAKUZAI
JPH021836B2 (en)
JPH0240071B2 (en) SEFUAROSUHORINJUDOTAIOYOBIGAIJUDOTAIOGANJUSURUYAKUZAI
JPS59161386A (en) Cephalosporin derivative and pharmaceutical containing said derivative
WO2005051959A1 (en) Β-lactamase-resistant cephalosporin ester compounds and salts of thereof
JPS59118793A (en) Cephalosporin derivative and drug containing it