JPH0159963B2 - - Google Patents

Info

Publication number
JPH0159963B2
JPH0159963B2 JP4297882A JP4297882A JPH0159963B2 JP H0159963 B2 JPH0159963 B2 JP H0159963B2 JP 4297882 A JP4297882 A JP 4297882A JP 4297882 A JP4297882 A JP 4297882A JP H0159963 B2 JPH0159963 B2 JP H0159963B2
Authority
JP
Japan
Prior art keywords
ozone generator
temperature
cooling water
ozone
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4297882A
Other languages
Japanese (ja)
Other versions
JPS58161906A (en
Inventor
Nobuyoshi Umiga
Osamu Takase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP4297882A priority Critical patent/JPS58161906A/en
Publication of JPS58161906A publication Critical patent/JPS58161906A/en
Publication of JPH0159963B2 publication Critical patent/JPH0159963B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Description

【発明の詳細な説明】 技術分野の説明 本発明は無声放電によりオゾンを生成し、その
際の放電熱を冷却水によつて除去するオゾン発生
器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Description of the Technical Field The present invention relates to an ozone generator that generates ozone by silent discharge and removes the discharge heat by cooling water.

従来技術の説明 第1図は、従来のオゾン発生器を示しており、
本体容器1内の接地金属電極2の内側に間隙を設
けて高圧側誘電体電極3を設けている。高圧側誘
電体電極3は、ガラスなどの誘電体内面に金属被
膜をつけた円筒状のものである。接地金属電極2
の端部は端板4で固定する。高圧側誘電体電極3
はヒユーズ7を介して高圧リード線6、プツシン
グ5を通して外部の電源に接続する。本体容器1
は蓋8で密閉され乾燥した原料ガスは原料ガス入
口9から導入される。そしてオゾン発成後、オゾ
ン含有ガスとしてオゾン含有ガス出口10から送
り出される。冷却水は冷却水導入管11より入
り、接地金属電極2の外側を通り、排出管12か
ら排水される。ここで、前記原料ガスは0.4〜0.8
Kg/cm3Gの圧力でオゾン発生器本体容器1に導入
され、端板4より接地金属電極2と高圧側誘電体
電極3との間隙で無声放電を受けながら通過し、
オゾン含有ガスとなり送り出される。無声放電は
高圧側誘電体電極3と接地金属電極2との間に10
〜20KVの高電圧を印加して起し、原料ガス中の
酸素からオゾンを生成する。この場合、オゾン発
生効率を低下させないため無声放電に伴つて生じ
る放電熱を接地金属電極2の外側から冷却水で冷
却し、一定温度に保つている。無声放電によるオ
ゾン発生器では、エネルギーの85〜95%が熱とし
て放出されるので、20℃程度の冷却水をオゾン1
Kg/Hの発生に対して5〜6m3/H必要とする。
このため井水、河川水、処理水などの一過性の冷
却、更にはクーリングタワー、クーラーなどを用
いた冷却水循環による冷却も利用されている。
Description of the Prior Art FIG. 1 shows a conventional ozone generator.
A high voltage side dielectric electrode 3 is provided inside the ground metal electrode 2 in the main body container 1 with a gap provided therebetween. The high voltage side dielectric electrode 3 is a cylindrical electrode made of a dielectric material such as glass and coated with a metal coating on the inner surface. Ground metal electrode 2
The end portion of is fixed with an end plate 4. High voltage side dielectric electrode 3
is connected to an external power source through a fuse 7, a high voltage lead wire 6, and a pushing 5. Main container 1
is sealed with a lid 8 and the dried raw material gas is introduced from the raw material gas inlet 9. After ozone is generated, it is sent out from the ozone-containing gas outlet 10 as an ozone-containing gas. Cooling water enters through a cooling water inlet pipe 11, passes outside the ground metal electrode 2, and is drained through a discharge pipe 12. Here, the raw material gas is 0.4 to 0.8
It is introduced into the main body container 1 of the ozone generator at a pressure of Kg/cm 3 G, passes through the end plate 4 while receiving a silent discharge in the gap between the ground metal electrode 2 and the high voltage side dielectric electrode 3,
It becomes ozone-containing gas and is sent out. Silent discharge occurs between the high voltage side dielectric electrode 3 and the ground metal electrode 2.
A high voltage of ~20KV is applied to generate ozone from oxygen in the raw material gas. In this case, in order not to reduce the ozone generation efficiency, the discharge heat generated due to silent discharge is cooled with cooling water from the outside of the grounded metal electrode 2 to maintain a constant temperature. In ozone generators using silent discharge, 85 to 95% of the energy is released as heat, so cooling water at about 20℃ is converted into ozone 1
For generation of Kg/H, 5 to 6 m 3 /H is required.
For this reason, temporary cooling of well water, river water, treated water, etc., and cooling by circulating cooling water using cooling towers, coolers, etc., are also used.

しかし、このようにして運転されるオゾン発生
器でも、実際の長期運転では、いくつかの問題が
生じる。その一つとして、夏期など湿度の高い場
合、オゾン発生器本体容器1の冷却によつて外側
壁面に大気中の水分が数集して結露する。そし
て、その量が多くなると、雫となり滴下し、設置
場所床全面を濡してしまうことになり、他の機器
材料を腐食したり汚したりするばかりでなく、洩
電、感電事故などの危険性もある。
However, even with an ozone generator operated in this manner, several problems occur during actual long-term operation. For example, when the humidity is high such as in the summer, some moisture in the atmosphere collects on the outer wall surface and condenses as the ozone generator main container 1 cools. If the amount is large, the droplets will drip and wet the entire floor of the installation location, not only corroding and staining other equipment materials, but also causing risks such as electrical leakage and electric shock accidents. There is also.

従来、この水分の問題を解決するため、オゾン
発生器本体容器1の外側壁面を周囲大気と接触さ
せないように断熱材を全面にまきつける工事、あ
るいは、結露した水が流れるよう下部に溝をつけ
るなどで対処してきている。
Conventionally, in order to solve this moisture problem, the outer wall of the ozone generator body container 1 was covered with insulation to prevent it from coming into contact with the surrounding atmosphere, or a groove was created at the bottom to allow condensed water to flow away. We have been dealing with this.

本発明者らは、上記の問題点を調査検討した結
果、オゾン発生器設置場所の周囲大気の湿度が高
くなつた場合に、冷却水の水量を減少させること
により、オゾン発生器本体容器壁面への結露を防
ぐことができることを見い出した。
As a result of investigating and considering the above-mentioned problems, the inventors of the present invention have found that when the humidity of the atmosphere surrounding the ozone generator installation location increases, by reducing the amount of cooling water, it is possible to reduce the amount of cooling water that is It was discovered that dew condensation can be prevented.

発明の目的 本発明の目的は、オゾン発生器本体の容器壁面
に生じる結露現象を電気的に検出し、本体を冷却
しすぎないよう冷却水流量を自動的に減少させる
ようにしたオゾン発生器を提供することにある。
OBJECTS OF THE INVENTION An object of the present invention is to provide an ozone generator that electrically detects dew condensation occurring on the container wall of the ozone generator main body and automatically reduces the cooling water flow rate so as not to over-cool the main body. It is about providing.

発明の構成および作用 以下本発明の構成を第4図で示す一実施例を参
照して説明する。ここで、まず始めに、オゾン発
生器本体容器壁面に結露する現象について説明す
る。この結露現象は一般に周囲大気の水蒸気圧が
比較的高く、冷却されている外壁面の温度が、そ
の周囲大気の露点温度以下になつていることを意
味している。大気の相対湿度は、その温度におけ
る飽和水蒸気圧に対する水蒸気圧の百分率で示さ
れる。露点温度は、大気の水蒸気圧が、冷却され
た物体表面の温度における飽和水蒸気圧と等し
く、相対湿度100%になつた場合に、物体表面に
露を結ぶ限界の温度である。従つて物体温度をこ
れ以下に保ち、周囲大気が絶えず入れかわると結
露する水分量は多くなり、水滴となつて物体表面
を落下することになる。
Structure and Operation of the Invention The structure of the present invention will be described below with reference to an embodiment shown in FIG. First, the phenomenon of dew condensation on the wall surface of the ozone generator main body container will be explained. This dew condensation phenomenon generally means that the water vapor pressure of the surrounding atmosphere is relatively high, and the temperature of the outer wall surface being cooled is below the dew point temperature of the surrounding air. The relative humidity of the atmosphere is expressed as a percentage of the water vapor pressure relative to the saturated water vapor pressure at that temperature. Dew point temperature is the limit temperature at which dew forms on the surface of an object when the atmospheric water vapor pressure is equal to the saturated water vapor pressure at the temperature of the cooled surface of the object and the relative humidity is 100%. Therefore, if the temperature of the object is kept below this level and the surrounding atmosphere is constantly replaced, the amount of moisture that condenses will increase, forming water droplets that will fall on the surface of the object.

大気の温度と相対湿度は、1日中変化してお
り、晴れた日には、雨の降る日より大きく変化す
る。相対湿度の高くなる夏期などの標準的な1日
の温度変化、湿度変化は第2図で表わすことがで
きる。第2図における曲線aは気温変化、曲線b
は相対湿度変化を示す。気温の低下する時刻20時
頃から明方まで、相対湿度は徐々に上昇し、夜間
にいわゆる、夜露、朝露が生じることになる。こ
の変化は海岸近くの地域より内陸部で大きく現わ
れる。第2図は、外部大気の変化を示しており、
オゾン発生器の設置してある室内では、各種機器
による放熱のため、これより多少高温度、低湿度
の環境で、結露する頻度は少ない。しかし、水温
変化のほとんどない井水などを冷却に用いると、
夜間の相対湿度が高くなつた場合、オゾン発生器
本体容器壁面に結露し、この時間帯が長くなるに
つれて、壁面の露は水滴となり落下し床面を濡ら
してしまう。この水滴は床面にたまると日中の気
温上昇、湿度低下によつても蒸発乾燥せず、常に
濡れた危険な状態を招くことがある。
Atmospheric temperature and relative humidity change throughout the day, and vary more on sunny days than on rainy days. Typical daily temperature and humidity changes, such as during the summer when relative humidity is high, can be expressed in Figure 2. Curve a in Figure 2 is temperature change, curve b
indicates relative humidity change. Relative humidity gradually rises from around 8:00 p.m., when the temperature drops, until dawn, and so-called night dew and morning dew occur during the night. This change is more pronounced in inland areas than in areas near the coast. Figure 2 shows changes in the external atmosphere,
In a room where an ozone generator is installed, the temperature is slightly higher and the humidity is lower than this due to the heat dissipated by various devices, so condensation does not occur frequently. However, if well water, etc., whose temperature hardly changes, is used for cooling,
When the relative humidity at night is high, dew condenses on the wall of the ozone generator main container, and as this time period gets longer, the dew on the wall turns into water droplets and falls, wetting the floor. If these water droplets accumulate on the floor, they will not evaporate and dry even when the temperature rises or the humidity drops during the day, resulting in a dangerous and constantly wet condition.

更に、第3図の常温付近の水の飽和蒸気圧曲線
で説明するならば、25℃相対湿度100%(飽和水
蒸気圧23.76mmHg)のa点の大気では、この温度
が露点温度となり、オゾン発生器本体1の温度が
少しでも低ければ表面に露を結ぶことになる。ま
た相対湿度90%(水蒸気圧21.38mmHg)のb点で
は、2〜3℃の温度低下によつて相対湿度はb′点
の100%となる。このため、オゾン発生器本体1
をこの温度以下にすると結露する。つまり、相対
湿度100%では大気温度と本体温度とを等しく、
また相対湿度90%ぐらいでは、大気温度より2〜
3℃低い、本体温度に保てば結露しなくなる。
Furthermore, to explain this using the saturated vapor pressure curve of water near normal temperature in Figure 3, in the atmosphere at point a at 25°C and 100% relative humidity (saturated water vapor pressure 23.76 mmHg), this temperature becomes the dew point temperature, and ozone is generated. If the temperature of the container body 1 is even slightly low, dew will form on the surface. Further, at point b where the relative humidity is 90% (water vapor pressure 21.38 mmHg), the relative humidity becomes 100% of point b' due to a temperature drop of 2 to 3°C. For this reason, the ozone generator main body 1
If the temperature drops below this temperature, condensation will occur. In other words, at 100% relative humidity, the atmospheric temperature and body temperature are equal,
Also, at a relative humidity of about 90%, it is 2 to 2 times higher than the atmospheric temperature.
If you keep the main body temperature 3 degrees Celsius lower, there will be no condensation.

通常、オゾン発生器の運転では、冷却水の水温
上昇が2〜3℃程度に納まるように行なわれてい
るため、冷却水入口の流量を多少減少させれば、
この結露を防止することができる。
Normally, when operating an ozone generator, the temperature rise of the cooling water is kept within 2 to 3 degrees Celsius, so if the flow rate at the cooling water inlet is slightly reduced,
This condensation can be prevented.

この場合、オゾン発生器本体が2〜3℃の温度
上昇しても、オゾン発生効率の低下は1%程度で
しかない。
In this case, even if the temperature of the ozone generator body rises by 2 to 3° C., the ozone generation efficiency decreases by only about 1%.

本発明では結露現象の検出を結露して本体容器
壁面を流れ落ちる水滴を、本体下部につけた電気
的な検出器により検出し、その信号により冷却水
流量を減少させ、オゾン発生器本体を露点温度以
上として、それ以上の結露を防止するもので、初
期の結露では、夜間に土台全面を濡らすほどには
ならない。
In the present invention, the dew condensation phenomenon is detected by using an electric detector attached to the bottom of the main body to detect water droplets that condense and flow down the wall surface of the main body container, and the cooling water flow rate is reduced based on the signal, and the ozone generator main body is heated to a temperature higher than the dew point temperature. This prevents further condensation, and the initial condensation does not reach the level that wets the entire foundation at night.

第4図は、第1図と対応する部分に同一符号を
付けており、図においてオゾン発生器本体容器1
の下部に設けた原料ガス入口9から酸素を含む乾
燥ガスが入り、無声放電空間を通つてオゾン含有
ガスとなり、上部の出口10から送り出される。
一方冷却水は、オゾン発生器本体容器1の下部に
設けた冷却水導入管11から入り、無声放電に伴
う熱をうばつて、上部の排出管12から排水され
る。冷却水導入管11の途中にはバイパス配管1
3を分枝させ、その途中に電磁弁14をつける。
多湿の条件になり、オゾン発生器本体容器1の外
壁に露が生じ、更に冷却されると、外壁に付着凝
集した水分は、大きな水滴となり自重によつて、
壁面を流れ、本体1の下部から雫となつて落ち
る。この雫が落ちる場所に検出器、例えば電極1
5を絶縁材料による支持材16により取りつけ、
結露し流れ落ちる水滴を検出する。
In Fig. 4, parts corresponding to those in Fig. 1 are given the same reference numerals, and in the figure, the ozone generator main container 1
Dry gas containing oxygen enters from the source gas inlet 9 provided at the bottom of the chamber, passes through a silent discharge space, becomes ozone-containing gas, and is sent out from the outlet 10 at the top.
On the other hand, the cooling water enters from the cooling water introduction pipe 11 provided at the lower part of the ozone generator main body container 1, removes the heat accompanying the silent discharge, and is drained from the upper discharge pipe 12. A bypass pipe 1 is installed in the middle of the cooling water introduction pipe 11.
3 is branched, and a solenoid valve 14 is attached in the middle.
Due to high humidity conditions, dew forms on the outer wall of the ozone generator main container 1, and when it is further cooled, the water that adheres to the outer wall and aggregates becomes large water droplets due to its own weight.
The water flows down the wall and falls from the bottom of the main body 1 as drops. A detector, e.g. electrode 1, is placed where the droplets fall.
5 is attached by a support member 16 made of an insulating material,
Detects condensation and falling water droplets.

この電極15は導電式のもので水滴の接触によ
つて電流が本体1と電極15との間に流れるよ
う、その間隙は1〜2mmに設定しておく。このよ
うにしておけば、1滴の水滴が、その間隙に入る
と、上述した通電による検出信号が弁開閉器17
に出力され、この弁開閉器17の指令により水量
減少装置、例えばバイパス配管13の途中につけ
た電磁弁14を開く。この動作により冷却水の一
部を放出し、その湿度におけるオゾン発生器本体
1の冷却を調節する。オゾン発生器は発熱体であ
るため、冷却水を制限すれば、簡単に本体容器壁
面の温度をかえることができる。ここで電磁弁1
4からバイパス配管13を通して流す冷却水流量
は、オゾン発生器本体容器温度が2〜3℃上る程
度にあらかじめ調節しておく。この調節手段とし
ては、バイパス配管13の管径抵抗により流量減
少させたり電磁弁14により流量を減少させたり
すればよい。そのほか、図示しないが、電磁弁1
4の前段もしくは後段に調節弁を付けてもよい。
電磁弁14は、弁開閉器17からの信号で全開、
全閉を行なう。もちろん電磁弁以外に電動弁を用
いてもよい。
This electrode 15 is of a conductive type, and the gap therebetween is set to 1 to 2 mm so that current flows between the main body 1 and the electrode 15 by contact with water droplets. If this is done, when a single drop of water enters the gap, a detection signal due to the above-mentioned energization will be sent to the valve switch 17.
The command from the valve switch 17 opens a water volume reduction device, for example, a solenoid valve 14 installed in the middle of the bypass pipe 13. This operation releases a portion of the cooling water and adjusts the cooling of the ozone generator main body 1 at that humidity. Since the ozone generator is a heating element, the temperature of the wall surface of the main container can be easily changed by restricting the amount of cooling water. Here, solenoid valve 1
4 through the bypass pipe 13 is adjusted in advance to such an extent that the temperature of the ozone generator main body container increases by 2 to 3°C. This adjustment means may include reducing the flow rate by using the pipe diameter resistance of the bypass pipe 13 or reducing the flow rate by using the electromagnetic valve 14. In addition, although not shown, the solenoid valve 1
A control valve may be provided at the front stage or the rear stage of 4.
The solenoid valve 14 is fully opened by the signal from the valve switch 17.
Fully close. Of course, an electric valve may be used instead of the electromagnetic valve.

このようにして露点温度以上になつて結露が減
少すれば、検出用の電極15と本体1との間の電
源は切れるので、弁開閉器17からの信号によつ
て、電磁弁14が閉じ、冷却水は、全てオゾン発
生器本体1に導入される。温度と湿度は刻々と変
化するため、多湿による夜間に一度、この結露検
出、電磁弁開放があれば十分結露防止となる。
In this way, when the temperature exceeds the dew point and dew condensation decreases, the power between the detection electrode 15 and the main body 1 is cut off, so the solenoid valve 14 is closed by the signal from the valve switch 17. All of the cooling water is introduced into the ozone generator main body 1. Since temperature and humidity change from moment to moment, detecting this condensation and opening the solenoid valve once during a humid night is enough to prevent condensation.

次に本発明の他の実施例を第5図にて説明す
る。第5図では水量減少装置として、電磁弁14
を付けたバイパス配管13を調節弁18を設けた
冷却水導入管11に戻してつなげたものである。
通常、調節弁18と電磁弁14とは全開して冷却
水を流し運転するが、本体容器1の壁面に結露が
生じ、雫が流れ、検出用の電極15と本体1との
間に電流が流れれば、弁開閉器17の信号により
電磁弁14を閉じ、本体容器に導入する冷却水の
流量を減少させることができる。本実施例は、前
記実施例に比べ、冷却水量の節約、更には、バイ
パス配管13も短かくてよく、材料の節約ともな
る。
Next, another embodiment of the present invention will be described with reference to FIG. In Fig. 5, a solenoid valve 14 is used as a water volume reduction device.
The bypass piping 13 with a 2.5 mm diameter is connected back to the cooling water introduction pipe 11 equipped with a control valve 18.
Normally, the control valve 18 and the solenoid valve 14 are fully opened to allow cooling water to flow through the operation, but condensation forms on the wall of the main body container 1, drops flow, and current flows between the detection electrode 15 and the main body 1. If the cooling water flows, the solenoid valve 14 is closed by a signal from the valve switch 17, and the flow rate of the cooling water introduced into the main body container can be reduced. Compared to the previous embodiments, this embodiment saves on the amount of cooling water, and furthermore, the bypass pipe 13 can be shortened, resulting in savings in materials.

更に、水量減少装置としてバイパス配管を用い
ず、冷却水導入管に直列に電磁開閉によつて流量
が減少できるリーク弁と調節弁とを付け、結露の
検出によつて冷却水流量を減少させることも可能
である。
Furthermore, without using bypass piping as a water volume reduction device, a leak valve and a control valve that can reduce the flow rate by electromagnetic opening and closing are installed in series with the cooling water introduction pipe, and the cooling water flow rate is reduced by detecting dew condensation. is also possible.

総合的な効果 以上のように本発明は、多湿時にも簡単に、オ
ゾン発生器の冷却水流量を調節することによつ
て、結露防止ができ、安いコストで安全な運転を
行なうことができる。
Overall Effects As described above, the present invention can prevent dew condensation by simply adjusting the flow rate of cooling water in the ozone generator even in high humidity, and can perform safe operation at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の構造を示す断面図、第2図は、
一日における大気の温度変化、湿度変化を示す説
明図、第3図は常温付近の飽和水蒸気圧曲線を示
す説明図、第4図は本発明によるオゾン発生器の
一実施例を示す断面図、第5図は本発明の他の実
施例を示す断面図である。 1……オゾン発生器本体容器、11……冷却水
導入管、12……冷却水排出管、14……電磁
弁、15……検出器、17……弁開閉器、13,
14,17……水量減少装置。
Figure 1 is a sectional view showing the conventional structure, Figure 2 is
An explanatory diagram showing atmospheric temperature changes and humidity changes over a day; FIG. 3 is an explanatory diagram showing a saturated water vapor pressure curve near normal temperature; FIG. 4 is a cross-sectional diagram showing an embodiment of the ozone generator according to the present invention; FIG. 5 is a sectional view showing another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Ozone generator main body container, 11... Cooling water introduction pipe, 12... Cooling water discharge pipe, 14... Solenoid valve, 15... Detector, 17... Valve switch, 13,
14, 17...Water volume reduction device.

Claims (1)

【特許請求の範囲】[Claims] 1 放電空間、誘電体を介して互いに対向する電
極に、高電圧を印加して無声放電を起し、そこを
通過するガス中の酸素からオゾンを生成させ、そ
の際の放電熱を冷却水によつて除去するオゾン発
生器において、オゾン発生器本体容器壁面下部に
設けられ結露した水滴を検出する検出器と、その
検出器からの検出信号によつて、冷却水流量を減
少させる流量減少装置とを設けたことを特徴とす
るオゾン発生器。
1 A high voltage is applied to electrodes facing each other through a dielectric in the discharge space to cause a silent discharge, and ozone is generated from the oxygen in the gas passing through the discharge space, and the heat of the discharge is transferred to cooling water. In the ozone generator, the ozone generator is equipped with a detector for detecting condensed water droplets provided at the lower part of the wall surface of the main container of the ozone generator, and a flow rate reduction device for reducing the flow rate of cooling water based on a detection signal from the detector. An ozone generator characterized by being provided with.
JP4297882A 1982-03-19 1982-03-19 Ozonizer Granted JPS58161906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4297882A JPS58161906A (en) 1982-03-19 1982-03-19 Ozonizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4297882A JPS58161906A (en) 1982-03-19 1982-03-19 Ozonizer

Publications (2)

Publication Number Publication Date
JPS58161906A JPS58161906A (en) 1983-09-26
JPH0159963B2 true JPH0159963B2 (en) 1989-12-20

Family

ID=12651125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4297882A Granted JPS58161906A (en) 1982-03-19 1982-03-19 Ozonizer

Country Status (1)

Country Link
JP (1) JPS58161906A (en)

Also Published As

Publication number Publication date
JPS58161906A (en) 1983-09-26

Similar Documents

Publication Publication Date Title
CN111029949A (en) Transformer case with dehumidification cooling function
US4321421A (en) Vaporization cooled transformer having a high voltage
CN109449767B (en) Anti-condensation distribution box and control method thereof
WO1995001828A1 (en) Dehumidifier
CA2520989C (en) Dehumidifier for oil-insulated transformer, choke coil, and tap changer
JPH0159963B2 (en)
KR20060126634A (en) Method for dehumidifying air and air dehumidifier for oil-insulated transformers, reactance coils and step switch
US5598710A (en) Superconducting apparatus and method for operating said superconducting apparatus
JPH0159962B2 (en)
US2514559A (en) Liquid heater
KR102264599B1 (en) Dehumidifier using thermoelectric element
CN214100292U (en) Moisture-proof and condensation-proof switch cabinet
CN111864553A (en) Anti-condensation device for electrical cabinet
US2189618A (en) Vapor electric tube
US2475473A (en) Cooling system for electron tubes and other devices
JPS5842210A (en) Electric apparatus
JPS58156507A (en) Ozonizer
JP2913907B2 (en) Winding body drying method
CN2136698Y (en) High voltage insulator
JPH1118217A (en) Preventive equipment from dew condensation for cubicle for of-cable defect detector
CN212210189U (en) Heat insulation preassembled bin type transformer substation
CN216055709U (en) Switch cabinet moisture absorber
CN218386241U (en) Holographic sensing condensation dehumidifying device
CN212991948U (en) Condensation terminal box is prevented to transformer substation
JPH08331710A (en) Switching device